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Abstract: In modern digital control system such as model reference control and model predictive control, where the 

real time calculation is the main challenge, the model order reduction has become very important issue to minimize 

the execution time. In this work, our aim is to construct a novel technique for reduction of high order discrete time 

systems. This could be achieved by computation algorithm model from a given high order pulse transfer function. 

The proposed model is based on matching the weighting sequence of the original parameters with those adopted in 

the low-order model. The generalized least squares method is then used to determine the reduced model parameters. 

The efficiency of the proposed algorithm is validated by using the integral squared error minimization between the 

original system and the reduced model. An example is presented and discussed to validate the efficiency of the 

proposed low-order model. Performance comparisons with many recent related works showed that the proposed 

model is promising in terms of low error indices and time responses. 
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1. Introduction 

Many large size and complex mathematical 

models, in real-life operations, show serious 

challenges in the processes of numerical simulations. 

The reduction of model order is vital to lower the 

mathematical model complexity and to decrease its 

size. Model order reduction receives attention in 

mathematics community and engineering areas such 

as control systems [1], electronics [2], and filters in 

image processing [3]. 

 In electronics, reduced order models are 

essential in capturing the behavior of complicated 

electronic systems in the form of small electronic 

circuits. To achieve better description to the system 

that contains a circuit and its interconnections, these 

small circuits are coupled to an existing circuit and 

co-simulated with it. The complete full order models 

are mostly unpractical to perform numerical 

simulations, and then the reduced order models are 

important to make the full order model feasible in 

numerical simulations. In the design of control 

system and in computer simulations, it is vital to use 

models of low order to minimize the execution time.  

The rapid development in engineering sciences 

made supernumerary research in large-scale systems 

is vital, and accordingly the mathematical 

complexity becomes higher. As a result, most 

computational procedures become more complicated 

due to increase of the system order. Therefore, 

simulation of controller design is difficult to be used 

in case of high order system. Hence, it is essential to 

represent the complex high order system into 

satisfactory lower-order model. The aim of the 

model reduction is to produce a low-order model 

that can preserve the real properties of the original 

system as closely as possible.  

Many researchers have proposed different 

approaches for reducing high order models to lower 

order ones. In shin and Wu [1], a model reduction is 

performed using continued fraction. Chen and Tsay 

[4] used the combination of squared magnitude 

fraction with factorization technique to achieve 

stable reduced model. The square magnitude Pade 

approximation has been proposed by Lepschy [5]. 

The bilinear-transformed domain based on squared-

magnitude approximation was used by Hwang and 

Chow [6, 7] to simplify z-transfer functions. For 



Received:  March 25, 2021.     Revised: May 29, 2021.                                                                                                    481 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.42 

 

ensuring the similarity between characteristics of 

both the simplified model and the high order model, 

the bilinear transformation is utilized in calculating 

numerator and the denominator polynomials or is 

performed on the z-transfer functions.  

Hwang and Chow [8] have also investigated the 

tangent phase Pade approximation for order 

reduction of pulse transfer function through the 

bilinear transformation. However this technique is 

very tedious. The Pade approximation technique, 

used by Shamash in [9, 10], is very popular among 

the proposed techniques of model reduction. It is 

attractive and has significant advantages in terms of 

computation simplicity over many other related 

methods. However, there is a major concern in this 

method that it is unable to obtain stable reduced 

models even when using stable original system. 

Moore et al. [11] developed minimal realization 

of Kalman’s theory in terms of responses of injected 

signals. In this paper, component analysis is used for 

analyzing signals. Safonov and Chiang [12] 

presented the Moore reduction model and proved 

that the balance of state-space realization is not 

necessary. This approach showed that the Moore 

model could be computed without need for 

projection balancing, which is determined by using 

the right and left eigenspaces that are related to large 

eigenvalues. The methods of both Moore and 

Safonov achieved reduction model with superior 

stability, but with a drawback of big overshoot and 

large integral squared error.  

In Benner et al. [13], the actual model reduction 

is achieved by reduction of the stable part, and the 

technique of state space truncation. The sign 

function approach is used in all core computational 

steps. The proposed method efficiency is tested 

using experiments on Intel Pentium-IV processors. 

The measurement of the approximation errors and 

the ways of minimizing these errors are different for 

different methods of truncated state-space 

transformations. Gugercin and Antoulas [14] 

presented a new approach based on compromise 

between related model reduction systems and their 

resulting errors. Two proposed methods, for 

balancing between positive real and frequency 

weighted are presented. However, this approach has 

the disadvantage of being computationally complex. 

The approximation of large-scale dynamical 

systems is presented by Antoulas [15], where two 

families, namely the Krylov-based and SVD-based 

approximation methods are adopted. The preceding 

family is based on decomposition of the singular 

value while the second family is based on moment 

matching. Since the preceding family has many 

properties, like an error bound, it is not applicable to 

be used with high complexity systems. The strength 

of the second family is that it can be implemented 

iteratively, and hence it is appropriate to be used 

with high complexity systems. 

Gu [16] investigated the method that is based on 

approximation of McMillan multivariable transfer. 

The McMillan degree is set to be smaller than that 

of discrete-time. The optimal Hankel-norm 

approximation problem is remedied by using state-

space solution with approximations of optimal 

Hankel-norm. Singh et al. [17] proposed a new 

method based on factor division and Routh Hurwitz 

for reduction of model order. For obtaining biased 

denominators, Routh Hurwitz array and Reciprocal 

transformation are used. The numerator could be 

obtained using factor division method. This method 

obtains stable reduced models, but with large 

integral time weighted absolute error. 

Rozza et al. [18] have used a posteriori error 

estimation and a hierarchical approximation for 

linear functional outputs of parameterized elliptic 

partial differential equations. This method showed 

interpretative results for convection-diffusion heat 

conduction, and linear elasticity. The output of the 

interpretative results includes stress intensity factors, 

added mass, and transport rates. 

The factor division approach has been used by 

Vishwakarma and Prasad [19] to determine the 

numerator coefficients and then to produce simple 

and efficient low order model. The proposed 

approach is also modified to be applicable for 

reducing the order of linear stable multivariable 

system. Dinesh et al. [20] proposed a new approach 

by combination of Pade approximation methods and 

pole clustering and these methods are simple and 

could be oriented computationally. The technique of 

pole clustering was used to extract lower model 

denominator. The technique of Pade approximation 

was utilized to get the numerator coefficients. For a 

stable original system, this algorithm can generate 

stable reduced model efficiently. 

Kumar et al. [21] proposed uncertain parameters 

based method for reduction of model order, where 

the bounds of the uncertain parameters are initially 

specified. The parameters of the numerator could be 

obtained using one of the following methods: Pade 

approximation, moment matching, differentiation, or 

factor division. The differentiation method is the 

only suitable method for obtaining the denominator. 

Soloklo and farsangi [22] proposed a new 

approach based on weighted-sum multi-objective 

approach for reduction of high model. In this 

approach, Routh–Pade approximation, along with 

the harmony search is utilized to optimize the 

parameters of the reduced model. The Routh 
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criterion is used to determine the stability condition, 

and this condition is adopted to be the constraint in 

the process of optimization. The drawback of this 

approach is the very long settling time (53 s). 

Huang et al. [23] investigated the setting of the 

steady-state value using the transfer function matrix 

and the gain factor of the reduced model. In this 

work, the balanced truncation method is modified to 

narrow the deviation of the reduced model. 

Introducing the gain factor in the lower model does 

not change the dynamic behavior of the lower model. 

The defect of this work is that it performs the 

reduction process with very large integral time 

weighted absolute error. 

Sambariya and Manohar [24] proposed a 

reduced order approximant using a bat algorithm, 

where the numerator and denominator coefficients 

are selected in a way to achieve desired reduced 

order model. Test results showed that this algorithm 

is efficient in terms of low error rates compared to 

the results of Routh-Pade approximation method, 

but with a defect of long rise time and settling time.  

Sikander and Prasad [25, 26] proposed a new 

technique to simplify high order systems using the 

technique of single-input single-output and multiple-

input multiple-output. This technique is based on 

applying factor division algorithm and stability 

equation. The numerator polynomial coefficients are 

estimated using the approach of factor division, 

while the denominator polynomial coefficients are 

calculated using the stability equations. In [26] a 

modified pole clustering and the algorithm of factor 

division are used to ensure obtaining satisfactory 

stable low-order system. In both the proposed and 

later the modified systems, some examples are 

presented to prove the superiority of the proposed 

models compared to the existing recent methods.  

Anyhow, the drawback associated with these two 

models is the large integral time weighted absolute 

error. 

Tiwari and Kaur [27] used new indices to 

determine the dominancy of the transfer function 

poles efficiently. In this approach poles are selected 

in such a way that the improved dominant poles 

could be obtained. The Pade approximation is also 

adopted to get the numerator polynomial coefficient 

to the proposed model. Prajapati and Prasad [28] 

proposed a new approach based on generalized pole 

clustering for computing the reduced model 

denominator. The technique of factor division is 

efficient to extract the numerator polynomial value. 

In this work, the reduction process includes the 

translation of all large scale features into the lower 

order model. This method could preserve the main 

original system properties in the reduced model, 

such as initial time moments and the stability.  

Tang et al. [29] presented a new system by using 

absolute nodal coordinate formation with nonlinear 

finite elements and then followed by local linearized 

series of quasi-static equilibrium orders. The 

reduced model is built by using the Craig-Bampton 

technique which is based on utilizing the 

incremental displacements of the local linearized 

system. This method is able to perform with 

variation of dimension and time which are vital for 

elaborating and achieving efficient reduction for 

model order. Anyhow, this method is 

computationally complex and has long settling time. 

Zhu et al. [30] investigated optimization of 

parameters using the approach of chaotic particle 

swarm optimization (CPSO) to enhance the 

performance of vehicle electrical systems. This 

work adopted CPSO to select optimum power 

system parameters of the vehicle. The Cruise 

software was used to carry out performance 

simulations, and a comparison for the results before 

and after the optimization was carried out, and 

showed great improvement in the dynamic 

performance of vehicles driving range.  

Pady et al. [31] presented a combined approach 

to obtain single-input-single-output model using 

modified Routh approximation. This approach is 

followed by matching Markov parameters and then 

the time moments of interval system for reduced and 

higher order model. Sun et al. [32] proposed a new 

model for reducing the linear periodic time-varying 

systems. In this model, the technique of state space 

realization has been applied in the form of Fourier-

lifted. This could be achieved by using 

exponentially modulated periodic matrices. The 

resulting Fourier-lifted system is then expanded by 

using Laguerre functions.  

Abdulla [33] proposed a developed Chaotic 

Particle Swarm Optimization to accomplish efficient 

reduced model from a large scale model and to 

develop a Linear Quadratic Regulator based 

controller. The modified model is based on 

combining advantages of Particle Swarm 

Optimization (PSO) and the Chaotic PSO. This 

model has the properties of being simple execution, 

fast convergence, few control parameters, and able 

to avoid probable local extremes.  

The above survey shows that each of the existing 

proposed methods, in the literature, has important 

advantages and some limitations. General concerns 

about most of their limitations are the tedious 

computational procedures and maintaining the 

stability of the original high order system.  
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In this work, we state the following model 

reduction problem giving the impulse response data 

for a high order discrete time system of order n. A 

lower model of order m (m˂n) is obtained and the 

reduced model response is sufficiently very close to 

that of the original high order system. Our aim, of 

this work, is to construct an algorithm to obtain 

stable reduced model from stable original system 

and to maintain initial time moments of the original 

system. The model of high order pulse transfer 

function is performed through two stages. First, the 

weighting sequence of the original model is 

computed and then matched with the weighting 

sequence of the reduced model. Second, a set of 

linear equations are analyzed using the generalized 

least square method. 

The structure of this article follows the 

following stages: Section 2 presents the proposed 

algorithm for model reduction of pulse transfer 

function. Section 3 introduces the procedure steps of 

the proposed model. In section 4 an example and 

simulation results has been presented. Section 5 is 

associated with the performance analysis to present 

the goodness and feasibility of the proposed model 

and finally in Section 5, our conclusions have been 

presented. 

2. Model reduction of pulse transfer 

function 

Consider a high order sampled data system with 

the following pulse transfer function of order n; 

 

Gn(z
-1)= 

𝑎0+a1z
-1+…+anz

-n

1+b1z-1+…+bnz-n                  (1) 

 

where a0, a1, …an, b0, b1, ….bn are defined as 

coefficients of the discrete time system and z is the 

z-transfer variable.  

Assume the pulses of the system are included in 

the z-plane unit circle. The problem is how to obtain 

the model of order m<n having a pulse transfer 

function Gm(𝑧−1) and given by; 

 

Gm(z-1)= 
α0+α1z

-1+…+αmz-m

1+β1z-1+…+βmz-m       (m<n)       (2) 

 

which approximate the original system, of Eq. (1). 

The problem leads to think of how we can find 

the coefficients of the reduced mode which are; 

 

𝛼0, 𝛼1, …𝛼𝑚 and 𝛽1, 𝛽2 …𝛽𝑚 

 

Let 𝑔𝑛(𝑘𝑇) be the impulse response function or 

weighting function of the system denotes; 

𝑔𝑛(𝐾𝑇) = ℎ𝐾        (k=0, 1, 2, … p)          (3) 

 

where ℎ𝐾 refers to the impulse response function of 

the original system at sampling time k. From the 

definition of Z-transform, the pulse transfer function 

of the high order system can be expressed as; 

 

𝐺𝑛(𝑧−1) = ∑ 𝑔(𝑘𝑇)𝑧−𝑘𝑝
𝑘=0     (𝑝 > 2𝑛) 

or 

𝐺𝑛(𝑧−1) = ∑ ℎ𝑘𝑧−𝑘𝑝
𝑘=0           (𝑝 > 2𝑛)     (4) 

 

The system, of Eq. (1), can be expanded as a 

weighting sequence {hi, i=0, 1, 2, ..., p} as follows; 
 

Gn (𝑧
−1) = h0 + h1𝑧

−1 + ⋯+ hpz-p         (5) 

 

To match the weighting sequence of the original 

system, represented by Eq. (1), with the that of the 

model of Eq. (2), it is necessary that; 

 

 
𝛼0+𝛼1𝑧−1+⋯+𝛼𝑚𝑧−𝑚

1+𝛽1𝑧−1+⋯+βm𝑧−𝑚 = h0 + h1𝑧
−1 + ⋯+ hpz-p (6) 

 

Therefore; 

𝛼0 + 𝛼1𝑧
−1 + ⋯+ 𝛼𝑚𝑧−𝑚  =(h0+h1z-1+…+hpz-p) 

(1 + 𝛽1𝑧
−1 + ⋯+ β

m
𝑧−𝑚)               (7) 

Expanding Eq. (7), and equating the coefficients 

of equal powers of z in both sides of Eq. (7), we can 

obtain the following linear equations; 

 

𝛼0 = ℎ0𝛽0 

𝛼1 = ℎ1𝛽0 + ℎ0𝛽1 

𝛼2 = ℎ2𝛽0 + ℎ1𝛽1 + ℎ0𝛽2                                         

.                                                                               (8)                                                                              

. 

. 

𝛼𝑚 = ℎ𝑚𝛽0 + ℎ𝑚−1𝛽1 + ℎ𝑚−2𝛽2 + ⋯+ ℎ0𝛽𝑚         

 

Or the following linear algebraic equations can 

be obtained as follows; 

  

αi= ∑ βj
i
j=0 hi-j         (i=0,1, 2,…, m)             (9) 

 

Noting that; 𝛽0=1, Eq. (9) can be written in vector 

matrix form; 



Received:  March 25, 2021.     Revised: May 29, 2021.                                                                                                    484 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.42 

 

[

α0

α1

⋮
αm

] =

[
 
 
 
 

h0                                 
h1   h0                             
h2   h1   h0                        

 ⋮      ⋮      ⋮                       
 h m  hm-1       …       h0 ]

 
 
 
 

[

𝛽0

𝛽1

⋮
𝛽𝑚

]       (10) 

 

Using same mathematical manipulation, we 

obtain the following linear equations; 

 

ℎ𝑚𝛽1 + ℎ𝑚−1𝛽2 + ⋯+ ℎ1𝛽𝑚        = −ℎ𝑚+1  
ℎ𝑚+1𝛽1 + ℎ𝑚𝛽2 + ⋯+ ℎ2𝛽𝑚        = −ℎ𝑚+2                                                                      
….…………………………………………….                            (11) 
…………………………………………….. 
ℎ𝑝−1𝛽1 + ℎ𝑝−2𝛽2 + ⋯+ ℎ𝑝−𝑚𝛽𝑚 = −ℎ𝑝          
 

or in the vector-matrix form;  

 

[
 
 
 
 
 
hm             hm-1            hm-2    …ℎ1

hm+1

    
        hm

                hm-1    …ℎ2

hm+2        hm+1            hm     … ℎ3

⋮             ⋮                   ⋮       …  ⋮
hp-1          ℎ𝑝−2        ℎ𝑝−3… ℎ𝑝−𝑚 ]

 
 
 
 
 

[
 
 
 
 
β1

β2

β3
⋮

βm]
 
 
 
 

=

[
 
 
 
 
-h𝑚+1

-h𝑚+2

-hm+3

⋮
-hp ]

 
 
 
 

                    

[ H ]                                         [ 𝛽 ]  =  [ h ]                (12) 

 

Eq. (12) can be solved for the 𝛽 -parameters 

using the generalized least square method. The least 

square solution of Eq. (12) is:  

 

β=[HTH]
−1

HTh                          (13) 

 

where "T" refers to a matrix transpose.  Having the 

reduced model denominator, the parameters of the 

numerator, 𝛼-parameters can be computed using Eq. 

(9) or Eq. (10).  

3. Proposed algorithm for model reduction 

The reduction procedure can be easily 

summarized and presented as follows: 

Step 1: Compute the weighting sequence of the 

original system, Eq. (1), 
 

{hi,  i=0, 1 2,…, p},          (p>2n) 
 

Step 2: Construct the matrices H and h using Eq. 

(12). 

Step 3: Compute the 𝛽-parameters of the reduced 

model using Eq. (13).  

Step 4: Compute the 𝛼-parameters of the reduced 

model using Eq. (9) or Eq. (10). 

Step 5: Obtain the reduced model Gm(𝑧−1) using Eq. 

(2). 

 

4. Numerical example 

To clarify the application feasibility of the 

proposed reduction procedure, it is convenient to 

take the pulse transfer function of 4th order system 

as follows: 

 

 G4(𝑧) =
0.07844𝑧3−0.1556𝑧2+0.1042𝑧−0.02388

𝑧4−2.698𝑧3+2.643𝑧2−1.106𝑧+0.1653
    (14) 

Our aim is to get the second order discrete time 

model with the following form: 

 

Ĝ2(𝑧
−1) =

𝛼0+𝛼1𝑧−1+𝛼2𝑧−2

1+𝛽1𝑧−1+𝛽2𝑧−2                  (15) 

Let the impulse response of the system, 

represented in Eq. (14), to be: 

 

  hk = 𝑔(𝑘𝑇) ; 𝑘 = 0, 1, 2… . , 𝑝              (16) 

 

The impulse response data of the system of Eq. 

(16), for  p = 20  and sampling period T = 1 𝑠𝑒𝑐 , 

are: 

 
ℎ𝑘 = 0.0000, 0.0784, 0.0560, 0.0481,

0.0444, 0.0419, 0.0394, 0.0369, 0.0344,
0.0318, 0.0293, 0.0269, 0.0247, 0.0225,
0.0206, 0.0188, 0.0177, 0.0155, 0.0128,

 

0.0128, 0.0116 

 

The constructions of the matrices H, and h are: 

 

𝐻

= [ 
0.0560 0.0481 0.0444 0.0419 0.0394
0.0784 0.0560 0.0481 0.0444 0.0490

 

0.0369 0.0344 0.0318 0.0293 0.0269
0.0394 0.0369 0.0344 0.0318 0.0293

 

0.0247 0.0225 0.0206 0.0188 0.0171
0.0269 0.0247 0.0225 0.0206 0.0188

 

      
0.0155 0.0141 0.0128 
0.0171 0.0155 0.0128

]𝑇 

 

and  

 

ℎ = [ 0.0481 0.0444 0.0419 0.0394 

0.0369 0.0344 0.0318 0.0293 

0.0269 0.0247 0.0225 0.0206 

0.0188 0.0177 0.0155 0.0128 

0.0128 0.0116 ]𝑇 

 

Since 
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 α = [

α0

α1

α2

]                             (17) 

 

 𝛽 = [
𝛽1

𝛽2
]                             (18) 

 

Then, the β- parameters of the second order 

model using Eq. (14), are: 

 

𝛽 = [
−1.0929
0.1588

] 

 

where, 𝛽1 = −1.0929,  and 𝛽2 = 0.1588. 

Then, the α- parameters of the model is 

computed as: 

 

 α= [

α0

α1

α2

] = [

h0 0 0

h1 h0 0

h2 h1 h0

] [

𝛽0

𝛽1

𝛽2

] = 

 

[
0 0 0

0.0784 0 0
0.056 0.0784 0

] [
1

−1.0929
0.1588

]   = [
0

0.0784
−0.0297

] 

 

where, 𝛼0 = 0,𝛼1 = 0.0784, 𝛼2 = −0.0297.  

 

The resulting second order discrete model of the 

system of Eq. (15) is: 

 

 Ĝ2(𝑧
−1) =

0.0784𝑧−1−0.0297𝑧−2

1−1.0929𝑧−1+0.1588𝑧−2           (19) 

or 

Ĝ2(𝑧) =
0.0784𝑧−0.0297

𝑧2−1.0929𝑧+0.1588
                  (20) 

 

A second order model using the proposed 

method is given as follows: 

 

G2(z) =
0.0448𝑧−0.03733

𝑧2−1.822𝑧+0.8327
                     (21) 

5. Performance analysis 

Evaluation of the proposed reduction system can 

be realized by calculating its performance indices 

and time responses and then comparing them with 

those of the existing related works. With respect to 

the performance indices, integral square error (ISE) 

is calculated for the transient regions of the original 

system and reduced order model. Integral absolute 

error (IAE) and integral time weighted absolute 

error (ITAE) are also calculated to test the goodness 

of the proposed reduced models approach. Smaller 

values of ISE, IAE, and ITAE demonstrate that the 

reduced models are efficient and are closer to the 

original system. 

 

𝐼𝑆𝐸 = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]
2𝑑𝑡

∞

0
               (22) 

 

𝐼𝐴𝐸 = ∫ |𝑦(𝑡) −𝑦𝑟(𝑡)|𝑑𝑡
∞

0
                 (23) 

 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑦(𝑡) −𝑦𝑟(𝑡)|𝑑𝑡
∞

0
               (24) 

 

where y(t) and yr(t) refer to step responses of the 

original system and the reduced order model 

respectively.  

To verify the robustness of the reduced model, 

the time responses of the original system and the 

reduced model are compared to test their proximity. 

The closer step responses and fast impulse responses 

are essential evidences of superiority of the 

proposed model. Lowest values of the overshoot 

percentage, rise time, and settling time are the 

prominent signs of reduction approach efficiency. 

Moreover, calculating the error between the system 

step response and the model step response is vital in 

the evaluation of the proposed model. 

The error e(kT)=y(kT)-ŷ(kT , between the step 

response of the original system y(kT) and the step 

response of the reduced model ŷ(kT) is computed 

for k=0, 1, 2,…,47. Fig. 1 shows the error e(kT), and 

the calculated averaged square error is found to be 

1.5643 × 10−4,  which is very small. The 

performance with respect to error indices for the 

proposed reduced models and the original system 

are presented in Table 1. This table is associated 

with quantitative comparisons between the proposed 

method and various related works with respect to the 

ISE, IAE, and ITAE.  

Looking into the error indices comparisons, in  

 
Figure. 1 The error e(kT) between  the original system 

output and the proposed model output 
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Table 1, one can easily notice that the proposed 

reduction model could obtain the lowest ISE among 

the recent and well-known related works. With 

respect to IAE and ITAE, the comparisons illustrate 

competitive performance of the proposed model 

compared with that of the best related researches. 

The reason behind the superiority of low error 

indices among the related works is that the proposed 

model response is much closer to that of the original 

model compared to those of the other techniques.     

Fig. 2 presents the step responses of the original 

system and the proposed model, and these responses 

show that they are approximately matched to each 

other. Fig. 3 shows the impulse response of the 

original system and its proposed model, and it also 

clearly shows that the impulse response of the 

reduced model is following the step response of the 

higher model. The closeness between the step 

response and impulse response of both reduced 

model and higher model demonstrates that the 

proposed reduction method is efficient to simplify 

and reflect the properties of the higher model.  

To evaluate the performance of the proposed 

model against other recent related works, in terms of 

time response, a comparison between the proposed 

model and many other related methods is presented 

in Table 2. The comparison shows that the proposed 

model could produce reduced model with lowest 

over-shoot percentage (zero) compared with those of 

the recent related methods. The settling time and  

Table 1. Quantitative comparisons of different methods in terms of error indices 

Author of reduction method Reduced order model 
Performance Index 

ISE IAE ITAE 

Safonov and Chiang (1989) [12] 
0.0961𝑠 + 0.0042

𝑠2 + 0.1342𝑠 + 0.0046
 2.3754 40.2052 2777.9 

Gu (2005) [16] 
0.0492𝑠 + 0.0896

𝑠2 + 0.9811𝑠 + 0.09526
 2.4924 47.8283 2741.6 

Singh et al. (2006) [17] 
5.6402𝑠 + 1

87.3752𝑠2 + 15.9402𝑠 + 1
 0.7712 18.1392 429.4817 

Vishwakarma and Prasad (2008) 

[19] 

−0.5076𝑠 + 0.1209

𝑠2 + 0.7377𝑠 + 0.1209
 12.653 52.0168 689.369 

Kumar et al. (2013) [21] 
1512𝑠 + 360

2458𝑠2 + 2196𝑠 + 360
 12.0636 49.9090 657.9140 

Huang (2013) [23] 
0.0961𝑠 + 0.0046

𝑠2 + 0.1342𝑠 + 0.0046
 0.6091 20.4007 772.3096 

Sikander and Prasad (2015) [25] 
8𝑠 + 1

101.0101𝑠2 + 18.3𝑠 + 1
 0.2506 10.4825 263.2632 

Sikander and Prasad (2017) [26] 
0.0105𝑠 + 0.0404

𝑠2 + 0.4266𝑠 + 0.0404
 1.0487 17.5677 305.0096 

Tiwari and Kaur (2018)  [27] 
0.4809𝑠 + 0.6369

𝑠2 + 6.1070𝑠 + 0.6393
 0.2700 8.0013 136.8471 

Prajapati and Prasad (2019) [28] 
0.0913𝑠 + 0.0209

𝑠2 + 0.3066𝑠 + 0.0209
 0.0210 2.2612 37.7357 

Proposed method 
0.0448𝑧 − 0.03733

𝑧2 − 1.822𝑧 + 0.8327
 0.0094 2.6335 38.3224 

 
  

 
Figure. 2 Step response of the original system and the 

reduced model 
 

 
Figure. 3 Impulse response of the original system and its 

proposed model 
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rise time are competitive compared with those who 

have obtained the lowest overshoot percentage. 

It is obvious that the proposed method 

performance error indices is least for ISE and 

competitive for both IAE and ITAE. It is also clear 

that the proposed reduction approach obtains 

superior performance results compared to some 

robust model reduction methods. From table 1 and 

table 2, it can be noticed that it is not easy to find a 

method with superior performance for all 

performance criteria i.e. the time responses and the 

error indices. Therefore a compromise between 

assigned performance criteria should be considered 

in the evaluation of the model performance. 

To demonstrate the goodness of the proposed 

reduction method, the step response of the proposed 

model is compared to those of many well-known 

related works as illustrated in Fig. 3. This figure 

clearly shows that the reduced model response is 

following the response of the original model. 

Looking into the response trajectories in Fig. 3, we 

can notice that even for those methods of fast rise 

time, they suffer of high over-shoot percentage 

which affects the settling time. From the 

comparisons in Table 2 and Fig. 4, it is observed 

that the proposed model performance outperforms 

the performance results of most recent related works. 

In addition, it ensures the preservation of initial few 

time moments of the complete order system in the 

reduced order model.  

6. Conclusions 

In this work, order reduction for high order 

sampled data systems is proposed. The analysis of 

the numerical example shows that the proposed 

method is an efficient approach for model order 

reduction. It is computationally simple and can 

ensure stable reduced model for the stable full order 

model. It has fast convergence and is very simple 

implementation compared with existing related 

works. From numerical example results of the 

proposed model, we can state the following 

properties: First, it preserves model stability. Second, 

it preserves the time domain characteristics. Third, 

the approximation error is small. Fourth, it is easily 

adaptable for digital computation. Extension of the 

proposed procedure to multivariable systems is 

possible. 
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Table 2. Quantitative comparisons of different methods in 

terms of overshoot percentage and time responses 

Authors of reduction 

methods 

Over-

shoot % 

Rise 

time(s) 

Settling 

time (s) 

Shamash  [9] 10 0.206 0.892 

Moore [11] 17.4 0.2116 0.8381 

Gu  [16] 16.5 0.217 0.869 

Soloklo and Farsangi 

[22] 7.6 14.3 53 

Huang et al.  [23] 18 0.207 1.145 

Sambariya & Manhar 

[24] 0 22.99 40.93 

Sikander and Prasad  

[25] 7 2.3 3.41 

Tiwari and Kaur [27] 0 3.3 4.04 

Prajapati and Prasad 

[28] 5.6 0.203 0.933 

Proposed method 0 2.8 4.4 
 

 

 

 
Figure 4: Comparisons of step responses between high-

order model and low-order models for the proposed model 

and previous related works. 
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