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Abstract: The wide amount of data in the modern applications available on the Internet make it very complicated to 

deal with the knowledge behind these data. The data classification task is a useful tool that used to deal with a huge 

amount of data by classify these data into coherent groups. The data size decreases the performace of the classification 

technique, especially when contain uninformative data (i.e., irrelevant, noisy). The stochastic local search algorithm 

is an optimization approaches employed to find the informative data to build the classification model. These methods 

are used to search for the optimal patterns to construct the classification algorithm. Thus, this research introduces a 

stochastic local search algorithm for rule induction called Iterated-Miner (Iterated local search-based rule induction). 

The purpose of the algorithm is to construct classification rules from data. This classification algorithm is inspired by 

the concepts and principles of stochastic local search and rule induction. The performance of the proposed classifier 

evaluated with a well-known and state of art classification algorithms called, Ant-Miner, ACO/PSO2, PART FURIA, 

and ACO/GA on 10 UCI datasets. The results demonstrate that our classifier is superior compare with all classifiers 

respect to classification accuracy; and the model sizes by our classifier are considerably competitive with those 

discovered by other classifier. 

Keywords: Data mining, Metaheuristic, Rule induction, Rule-based classification, Stochastic local search. 

 

 

1. Introduction 

Rule induction is the most widely used machine 

learning field that creates rules from a set of given 

database. The inductive learning algorithms are 

considered as accurate and simple compared to other 

techniques of machine learning [1, 2]. Inductive 

learning algorithms are divided into two main groups, 

which are, rule induction and decision tree induction. 

The decision tree induction, in which various 

algorithms have been proposed to convert different 

decision tree algorithms into a group of rules, such as 

C4.5, CN2 and ID3 [3, 4]. These algorithms initially 

create and then transfer a DT to a list of rules by 

converting each path (i.e., subtree) from the root to 

the terminal leaf as a classification rule. The second 

type is known as rule induction algorithm [5], which 

has the ability to generate if–then rules directly from 

a given dataset by using various rules-based 

classifiers, such as conjunctive rule, decision table 

and one-attribute-rule algorithm. 

The rule induction  is considered as NP-hard 

problem. Thus, the optimal rule set cannot be ensured 

to be reached unless the classifier do a deeper search 

in the database, which is almost impossible at a 

reasonable time.  However, the conventional  rule 

induction algorithms face local optimazation 

problems to find the the set of global optima rules [6]. 

Conventional stochastic local search algorithms such 

as Tabu Search, Iterated Local Search, Simulated 

Annealing , and Ant colony optimazation which have 

been proven effective in settle this type of problems 

that have fickle search space with different local 

optima. They perform an exhaustive search via 

intelligent techniques (e.g., memory, and 

perturbation) [7-9]. In addition, conventional 

stochastic local search algorithms are inspired by 

natural phenomena. The inspiration is materialized in 

the characteristics and components of these 

algorithms. These features can be observed by using 

a population or single point of search. Another 

significant aspect involves using the memory to guide 
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the algorithm to discover the search space. Most 

algorithms employ a single-neighborhood structure 

which controls the movement in each candidate 

solution (e.g., Tabu Search, Simulated Annealing, 

and Ant colony optimization). By contrast, Iterated 

Local Search utilizes multiple-neighborhood 

structure search (i.e., local search and perturbation). 

First, the local search works on each candidate 

solution until the local optima are reached. Then, the 

perturbation procedure shifts the search to another 

point. While doing so, the algorithm exhibits a strong 

ability to discover the large search space and identify 

high-quality solutions for the problem at hand. 

Therefore, this research aims to develop Iterated-

Miner, an iterated local search-based rule induction. 

Iterated-Miner creates rules incrementally, thereby 

implementing a series of sequential steps to create a 

rule list that covers as many training instances as 

possible with the highest classification accuracy. The 

goal is to ascertain the global optima set of rules to 

the given datasets by using the concept and principles 

of the stochastic iterated local search algorithm. 

Consequently, the Iterated-Miner can be regarded as 

a hybrid classifier that uses a combination of a 

perturbation mechanism and subsidiary local search 

methods. 

The remaining of this research is prepared as 

follows. Section two discusses the iterated local 

search components and its applications. Section three 

explained the proposed Iterated-Miner rule induction 

algorithm. Section four explained the research 

method used in this research. Section five explained 

the computational results of the our proposed 

classifier. The final section highlighted the 

conclusions part and the future research directions. 

2. General iterated local search  

The importance of metaheuristics algorithm is to 

deal effectively with the problem of local optima in 

the iterative improvement methods. Different 

methods have been considered in the literature when 

designing a metaheuristic algorithm [10]. Those 

methods include forbidden areas in the feasible 

search region (e.g., tabu search), involving the 

acceptance of worsen solution during the search 

operations (e.g.,  simulated annealing), the active 

principle of populations-based solutions  (i.e., 

evolutionary algorithms), the application of penalties 

in the search operations as used in the dynamic local 

search methods, or the concept of swarm intelligent 

such as used in particle swarm optimization, and ant 

colony optimization approaches [11]. 

In like manner, one of the simplest ideas of 

metaheuristics methods called, iterative improvement 

local search style. The concept of these methods by 

producing a new beginning solutions uniformly 

applied at random from the search areas. Iterated 

local search (ILS) is stochastic metaheuristics 

algorithm abel to generate new starting solutions by 

perturbation of the formerly establish solutions. The 

basic idea of ILS has been performed in different 

optimization problem such as travelling salesman 

problem (TSP) [12], the problem of single machine 

with total weighted tardiness [13], Single and 

parallel-machine scheduling [14], Flow shop 

scheduling [15], Graph bipartitioning [16], MAX-

SAT, quadratic assignment problem [17], Job shop 

scheduling [18], and other optimization problems 

[19]. 

The general modular of the ILS framework is 

determined by four main algorithmic components 

(i.e., procedures) which they are, (Initial Solution, 

Perturbation, Local Search, and Acceptance 

Criterion). The algorithmic component of ILS 

framework is given in Fig. 1. 
The Initial solution procedure, responsible on 

determines a good beginning stage of the search 

process. It usually carried out by good constructive 

heuristic function to produce a better fittness of the 

initial solutions [16]. 

The perturbation procedure, responsible to create 

a new candidate solution from the current established 

solution. Its task to disturb the under construction 

solution by producing a new favorable starting one in 

orderd to escape from local optima. Then, the 

perturbation solution will be gone under next local 

search procedure. The perturbation modifications in 

the solution must be not the same as  the 

modifications that utilized by following local search 

procedure [20]. 

The local search is very importance for the ILS 

performance. The good implementations for this 

procedure will increased the performance of the 

solutions that generated by the algorithm.  In fact, the 

concept of local search is to balance between the 

solutions quality and the time consumption carries to  

build these solutions. Thus, a fast-local search 

 

 
Figure. 1 Iterated local search (ILS) pseudocode 
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applied probably will produce less quality solutions 

(i.e., premature solutions) than other solutions gained 

by a time-consuming local search method. However, 

the implementation of local search can problem-

dependent and has to be determines based upon 

experimental results [21]. 

The Acceptance criterion procedure is also 

problem-dependent, which aim to discover the 

quality of the constructed solutions. The balance 

between both exploration and exploitation can be 

considered for this procedure either to accept 

improved solutions only or based on intermediate 

choices between these extremes (e.g., worse solution 

can be accepted) . The proposed classifier will be 

discussed in the next section based on the ILS 

framework [20]. 

3. The proposed iterated-miner 

This section contained a new rule induction 

classifier called Iterated-Miner, Iterated Local 

Search-based rul induction. The prime concern  of 

this classifier to find classification rules from the 

datasets. The metaheuristic algorithm Iterated Local 

Search (ILS) [20] are used in the process of 

developing of the classifier. The classification 

algorithm generates solutions as a classification rule 

in the form of: 

 

IF < term-1 > And < term-2 > And …< term-N > 

Then <Class> 

Each term in the rule consists of triple of the 

following <attribute = value>. While the equal “=” 

operator is always used, preprocessing step must be 

used to discretize the continuous attributes (real-

valued). Furthermore, each attribute in the dataset 

allowed to use one time in the rule to avoid stumble 

such as “IF Gender = female) And (Gender = male)”. 

The high-level pseudocode is described in the 

following algorithm.  

The classifier in each iteration performing a 

sequential process by using the ILS ability to create a 

list of rules that covering training cases with as 

possible as high classification accuracy (i.e., optimal 

rules). The data in the Iterated-Miner classifier 

represent with integer numbers (e.g., Gender=0, or 1 

rather than Gender=male, Gender=female). The 

graph that represents the data is fully connected. The 

rule will be discovered while the classifier selects the 

path from the graph. 

The parameters used for the Iterated-Miner 

classifier are adopted from  [20] that introduced the 

default ILS parameter values. The classifier starts 

with all training cases in the data. Then, the 

parameters are initialized and for each iteration of the 

outer WHILE loop, the classifier is executed if and 

only if  the TainingCases > UncoveredCases, in the 

same manner the number of implementation of the 

inner repeat loop is runnig in orderd to construct 

 

Iterated-Miner algorithm 1 
1 Input: Data 

2 Output: Rule induction 

3 TainingCases = {all training cases in the data; 

4 RuleInduction List = [ ]; 

5 Initialize IterationNo, SimilarityNo, UncoveredCases; 

6 WHILE (TainingCases > UncoveredCases) 

7 IterationIndex =1; SimilarityTest =1; 

8 Repeat  

9 S0 = ConstructRule; 

10 Repeat  

11      S*=Perturbation (S0); 

12      S*’=LocalSearch (S*); 

13      S0=AcceptanceCriterion(S0, S*’); 

14 Until termination condition meet 

15 PruneRule(); 

16 IF(ConstructRule =PreviousRule) 

17 THEN SimilarityTest = SimilarityTest + 1; 

18 ELSE SimilarityTest = 1; 

19 END IF  

20 IterationIndex = IterationIndex + 1;  

21 UNTIL (IterationIndex >= IterationNo) OR (SimilarityTest >= SimilarityNo) 

22 Add ConstructRule to RuleInduction List; 

23 TainingCases = TainingCases -{CasesCoveredByRule}; 

24 END-WHILE 

Figure. 2 Iterated-Miner algorithm  
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one classification rule.  The UncoveredCases is a user 

enter parameter of the unclassified training cases so 

far, usually 10 cases from the dataset. 

The classifier in step number nine starts to 

generate classification rules by using constructive 

heuristic function (entropy function) to obtain a good 

quality of the initial classification rules. The heuristic 

function in our classifier is given by Eqs. (1) and (2) 

as following: 

 

ƞij  =
𝑙𝑜𝑔2 𝐶−𝐻(𝑈|𝐴𝑖= 𝑉𝑖𝑗)

  ∑ 𝐶𝑖 ∑ (𝑙𝑜𝑔2 𝐶−𝐻(𝑈|𝐴𝑖= 𝑉𝑖𝑗)
bi

j=1
) 

a

i=1

  

    (1) 

 

𝐻(𝑈|𝐴𝑖 =  𝑉𝑖𝑗) =

       − ∑ [
𝑃(𝑈|𝐴𝑖 =  𝑉𝑖𝑗)

𝑇𝑖𝑗
]𝐶

𝑈=1  𝑙𝑜𝑔2  [
𝑃(𝑈|𝐴𝑖 =  𝑉𝑖𝑗)

𝑇𝑖𝑗
]          

(2) 

where 

• U is the class of the data. 

• C is the classes number. 

• P (𝑈|𝐴𝑖 =  𝑉𝑖𝑗)  is the division consist of the 

specific cases where the feature data Ai has value 

Vij with particular class w. 

•  |Tij| is the full number of cases in partition Tij 

(cases where attribute Ai has specific value Vij). 

•  a explain the total number of features. 

• bi is the number of the possible values in the 

specific feature i. 

The classifier adds one term from the graph at a 

time to the rule until one of the two conditions 

appeared:  

• Any term from the data inserted to the 

construction rule will decrease the coverage of 

the classification rule. Thus, the rule will be 

covered number of instances smaller than a user 

specified determination, named, minimum 

number of cases that covered by the classification 

rule (NCC). 

• The terms number has equally reached to 

attributes value. 

Step number ten to step number fourteen 

represent the main searching procedures of the 

Iterated-Miner classifier, these procedures are 

Perturbation, and Local search. The perturbation task 

to convert the constructed rule into another rule. It 

modifies the classification rule and to transform a 

new, promising starting classification rule for the 

next local search procedure. The main objective of 

this procedure is to escape from the collapsing into 

local optima. This procdure is independent in style 

from the modifications that been utilized in the local 

search procedure. The size of the perturbation is 

measured by the number of changed tems in the 

constructed rule. This size is very critical, if the 

modification is too powerful, the rule quality may be 

lost. The classifier could perform as a random restart 

search in its behavior. Therefore, the size of the 

perturbation has been adapted using the basic 2-terms 

neighborhood. It changes the terms in the rule 

components by applying random perturbation 

replacement with other possible terms from its same 

attribute available in the data.  

In step twelve, the discovered rule goes to the  

local search procedure which is considered one of the 

most importance for the performance of the classifier. 

The local search is adopting of 3-Opt technique from 

travelling salesman problem [22]. The 3-terms 

removes three terms from the rule and replaces them 

with other 3 terms from same attributes. This 

procedure maintains the rule and improves its 

classification accuracy. Notice that we have used the 

term/s replacement from the same attribute which 

would avoid any kind of muddled rule for example 

“IF (Gender = female) and (Gender = male)”. 

However, to identify the most promising areas in the 

research, the quality of this rule will be determined 

by the acceptance criterion procedure. 

The acceptance criterion controls the search of 

the Iterated-Miner classifiers classifier to intensify 

the search in promising search space regions with 

high classification quality by Eqs. (3) and (4) adopted 

from [19]. 

 

The acceptance criterion =

             {

S ∗ ’, 𝑖𝑓 Quality (S ∗ ’) > Quality (S0)
 
 

S0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3) 

 

Quality (S ∗ ’) =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
+  

𝑇𝑁

𝐹𝑃+𝑇𝑁
      (4) 

 

where  

• TP is the total instances number represented by 

the discovered rule and covered by class classify 

by the rule.  

• TN is the instances not covered by the 

constructed rule and does not covered by the 

class label classify by the rule. 

• FP is the instances number not represented by the 

discovered rule and has the class label predicted 

by the classification rule.  

• FN is the instances number represented by the 
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classification rule and it has class different from 

the class classify by the rule.  

Once the neighborhood search is completed, the 

rule implements the pruning procedure. The pruning 

procedure is responsible for excluding terms that 

decrease its accuracy and adds to the rule during the 

construction operation. Pruning deletes one term at 

times while the accuracy of the rule improves, and the 

quality is computed according to Eq. (4). An example 

showing the effective of the pruning procedure on a 

classification rule constructed from a Lymphography 

dataset before and after pruning is presented below: 

 

The classification rule from Lymphography 

dataset before pruned rule: 

 

IF block_of_affere = 'yes' AND changes_in_node = 

'lac_margin' AND no_of_nodes_in = '\(-inf-3.5]\' 

THEN 'metastases' 

 

The classification rule from Lymphography 

dataset after pruned rule: 

 

IF block_of_affere = 'yes' THEN 'metastases' 

 

The pruning procedure decrease the size terms in 

the rule, increases it generalization (i.s., the pruning 

rule covered more training cases), and finally 

increases it classification accuracy. After the pruning 

procedure is completed, the current rule is listed to 

the construction rules list, and the instances covering 

by the rule are deleted from the training cases. These 

procedures are iteratively implemented while the 

number of training cases is greater than uncovered 

cases. The classifier keeps adding rules to list of 

discovered rules until one of the following conditions 

is met: 

1- IterationNo reached to the upper limit, the 

IterationNo is a user-specified threshold. 

2- The classifier is convergence to specific rule, 

the rule constructed rule as exactly same as the 

previous constructed rule. Therefore, the 

SimilarityNo is reached to its border, the classifier 

will then do random restart. 

4. Research method 

In this experiments the well knowing 10-fold 

cross-validation is used, and the dataset is divided 

into equally size subsets. In this method, nine subsets 

will be used in stage of the training, while the 

remaining one subset will be used for the testing 

operation. The process of this cross-validation will be 

repeated 10 times to make sure that all data are 

utilized for both training and testing stages. Thefere, 

the average accuracy of all folds is calculated to 

indicate the performance of the proposed classifier. 

The 10-fold cross-validation procedure is adapting 

and adopting as well in other rule induction studies 

[23]. 

The implementation of the proposed classifier 

Iterated-Miner, is evaluated with other five rule 

induction classifiers, namely, Ant-Miner [24], 

ACO/PSO2 [25], PART [26] FURIA [27] and 

ACO/GA [28]. These classifiers are considered the 

state of art rule induction algorithm. The Ant-Miner 

introduced by Parpinelli, Lopes and Afreitas (2002) 

[24] is inspired by the foraging behaviour of a real ant 

colony. Ant-Miner is a metaheuristic, swarm-based, 

stochastic and separate-and-conquer approach. This 

approach has of three main procedure, named, 

construction rule, pruning rule and updating the 

pheromone. Ant-Miner has become an effective 

method for extracting useful and interesting 

classification rules from data. Artificial ants can find 

solutions to large and complex search spaces in the 

context of rule discovery. The strategy of searching 

space combines exploration and exploitation. The 

ACO/PSO2 is a hybrid classifier used the search 

behaviour of metaheuristic swarm intelligence 

algorithms to find the rule induction model from the 

data. This classifier used the capabilities of ant 

colony optimization to deal with discrete attribute, 

meanwhile it used particle swarm optimization power 

to cope with continuous features in the data. In this 

classifier new pruning procedure has been proposed 

to o delete the unimportant terms from the discovered 

classification rule. The performance of this classifier 

was stable, and the results are promising [25]. The 

PART is a state of the art classification algorithm, 

firstly, introduced by Frank and Witten (1998). This 

classifier constructs a partial DT by using C4.5 and 

converts the subtrees that have the best classification 

performance into a list of classification rules. These 

rules represent the discovered patterns in the 

classification model [26]. The Fuzzy Unordered Rule 

Induction Algorithm (FURIA) is a modification 

version of the RIPPER classification algorithm that 

uses fuzzy logic instead of conventional rules. This 

classifier has abilities to introduce a classification 

model that considered a simple and comprehensible. 

In addition, FURIA employs an active rule-stretching 

technique to handle uncovered instances from the 

data. Experimental results display that the accuracy 

of the FURIA classifier significantly better than the 

original RIPPER classifier [27]. The ACO/GA is rule 

based classification algorithm. It used the 
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Table 1. The datasets description 

Dataset 
Description 

Instances 

# 

Attributes 

#  

Classes 

# 

Balance dataset 625 4 3 

Ljubljana dataset 

(Breast Cancer)  
286 9 2 

Wisconsin dataset 

(Breast Cancer)  
699 9 2 

Dataset  of Credit-a  690 15 2 

Cleveland Heart 

dataset 
303 13 5 

Statlog Heart 

dataset 
270 13 2 

Hepatitis dataset 155 19 2 

Iris dataset 150 4 3 

Lymphography 

dataset 
148 18 4 

Sonar dataset 208 60 2 

 
Table 2. The Iterated-Miner parameters 

Parameter Description Value 

IN Iteration Number  10 

NCC The number of cases that 

cover by each rule. 

5 

UncoveredCases The number of uncovered 

cases by the classification 

model. 

 

10 

SimilarityNo Number of rules 

similarity. 

10 

 

combination of two algorithms Ant colony 

optimization and Genetic algorithm to solve the local 

optimization problem of Ant-Miner classifier and 

increase it performance. In this classification 

algorithm, The ACO responsible for generating 

candidate rules, while the Genetic algorithm 

improved these rules by using mutation and crossover 

operators. Experimental results display this 

hybridization improve in the classification accuracy 

[28]. 

The performance evaluation for this research is 

carried out using three evaluation criterias. The first 

one is the correct classification rate which shows the 

classification performance for the construction 

classification model. The second criteria is the 

classification model size that shown by the full 

amount of terms number in the discovered rule. The 

number of antecedents (terms) always refer to the 

number of antecedents taken from the constructed 

rule. The experiments of this study are implemented 

by using 10 secondary datasets from UCI repository 

to test the quality of the proposed classifier [30]. 

These datasets are widely used for the literature of 

rule induction studies and explain the different type 

of feature's numbers, which lie between 4 to 60. The 

features have two types which they are categorical 

and continuous types. These 10 datasets has different 

size of cases number between 148-699 cases. Finally, 

the class label numbers are also varied. The 

descriptions of these datasets are displayed on the 

table below. 

The list of parameter values that used in the 

propsed Iterated-Miner classifier are listed in Table 2. 

5. Computational result and discussion 

The results of the implemented Iterated-Miner 

classifier are compared with those of four different 

state of art rule induction classifiers, namely Ant-

Miner, ACO/PSO2, PART, FURIA, and ACO/GA. 

These classification algorithms are considered to be 

the most-related classification algorithms in the 

literature. The classification performance of the five 

classifieres is analysed in detail by using 10 datasets 

from UCI. Several benchmark scenarios are used for 

analysing the Iterated-Miner performance. In the first 

and second scenario’s, Tables 3 and 4 show the 

experimental results of the average classification 

accuracy, and model size, respectively, by using the 

10-fold cross-validation procedure. In each table, the 

result shows the classification accuracy and, the 

model size. Meanwhile, the symbol next the result 

“+/−”are present the number of standard deviations. 

The best result for each particular data is written in 

bold text. The results in Tables 3 and 4 are used to 

determine the best classifiers.  

Table 3 shows that the Iterated-Miner 

outperforms the Ant-Miner, ACO/PSO2, and 

ACO/GA classifiers in all datasets in terms of 

classification accuracy, which is the relation between 

the numbers of instances classified correctly with the 

dataset size. The Iterated-Miner also achieves 7 out 

of 10 datasets compared with PART, and FURIA 

classifiers. The experimental results show that the 

Iterated-Miner obtains the best classification 

performance in 6 datasets compared with the all 

classifiers. Furthermore, the Iterated-Miner obtains 

the second best results in four datasets, namely Breast 

Cancer (Wisconsin), Heart (Cleveland), Hepatitis, 

and Sonar. However, the second best classifiers are 

PART and FURIA, which acquires the best results in 

three datasets. 

Table 4 demonstrates that the Iterated-Miner 

obtained the best classification performance in model 

size for 9 datasets compared with the PART and 

ACO/GA classifiers. In the same fashion, the Iterated-

Miner obtains the best results in 8, and 7 datasets 
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Table 3. The classifier results based on average classification accuracy 

Dataset Ant-Miner 
ACO/PS

O 2 
PART FURIA Iterated-Miner ACO/GA 

Balance dataset 
69.73%  +/- 

1.58%  

68.66 ± 

4.97 

 69.92 ±  

0.25 

70.24   % +/-

0.37 

    71.04%  +/- 

1.22% 

71.00%+/-

2.31% 

Ljubljana dataset 

(Breast Cancer)  

 72.32%  +/- 

1.73%     

70.94 ± 

5.37 

71.32 ± 

0.36 

73.076 % +/- 

0.49 

74.32%  +/- 

2.87% 

73.06%+/-

2.01%  

Wisconsin dataset 

(Breast Cancer)  

94.43%  +/- 

1.17% 

93.86 ± 

4.56 

94.70 ±  

0.06 

96.28 % +/- 

0.19 

95.57%  +/- 

0.62% 

95.50%+/-

0.80% 

Dataset  of Credit-a  
   84.49%  +/- 

1.04% 

 84.69 ± 

4.39 

86.37 ±  

0.19 

86.52 % +/-

0.36  

 87.1%  +/- 

1.49% 

86.52%+/-

1.22% 

Cleveland Heart dataset 
76.17%  +/- 

2.85% 

78.51 ± 

6.16 

78.8 ±  

0.09 

83.1683 % 

+/- 0.24 

81.93%  +/- 

2.44% 

81.34%+/-

2.1% 

Statlog Heart dataset 
77.78%  +/- 

2.41% 

78.89 ± 

7.78 

81.85 ± 

0.23 

 81.85 % +/-

0.39 

 81.85%  +/- 

2.17%  

81.48%+/-

1.56% 

Hepatitis dataset 
 80.03%  +/- 

3.68% 

76.13 ± 

8.34 

82.58 ± 

0.21 

 79.35 % +/-

0.4 

80.21%  +/- 

3.29% 

 79.75 % 

+/-0.4 

Iris dataset 
 94%  +/- 

1.85% 

94.0 ± 

8.14 

95.33 ±  

0.04 

95.33 % +/- 

0.18 

96%  +/- 

1.47% 

96%+/-

1.09% 

Lymphography dataset 
 71.37%  +/- 

1.87% 

77.19 ± 

12.59 

79.72 ± 

0.11 

79.05 % +/- 

0.2  

80.36%  +/- 

5.12%  

80.26%+/-

3.03% 

Sonar dataset 
  75.61%  +/- 

2.64% 

54.86 ± 

3.87 

81.25 ± 

0.19 

 77.884 % +/- 

0.4  

80.23%  +/- 

2.66% 

 77.80 % 

+/- 1.2 

 

Table 4. The classifier results based on average classification model size 

Dataset Ant-Miner ACO/PSO 2 PART FURIA Iterated-Miner ACO/GA 

Balance dataset  11  +/- 0 52 ± 0 7.4  ± 1.77 24 8.9  +/- 0.38 13.4+/-0.16 

Ljubljana dataset 

(Breast Cancer) 
7.8  +/- 0.29 26.8 ± 6.196 38.5 ±  12.9 11 12.5  +/- 0.31 16.1+/-0.81 

Wisconsin dataset 

(Breast Cancer) 
8.4  +/- 0.22 17.1 ± 2.42 13.6 ± 2.67 55 10.1  +/- 0.6 10.2+/-0.7 

Dataset  of Credit-a  10.6  +/- 0.4 70.6 ± 7.6 41.9 ± 8.79 12 22.8  +/- 0.8 26.5+/-2.11 

Cleveland Heart dataset  9.6  +/- 0.69 28.3 ± 4.347 33.8 ±  9.48 29 19.2  +/- 1.13 20.5+/-1.34 

Statlog Heart dataset 9.6  +/- 0.58 25.9 ± 4.30 30.3 ± 9.68 23 19.8  +/- 1.33 18.4+/-1.59 

Hepatitis dataset 8.1  +/- 0.48 11.6 ± 2.31 14.9 ± 3.31 31 14.5  +/- 0.93 16.2  +/- 1.22 

Iris dataset 3.4  +/- 0.27 3.3 ± 0.94 3.7  ± 0.94 5  3.6  +/- 0.43 3.8+/-0.44 

Lymphography dataset 9.1  +/- 0.5 42.8 ± 6.48 26.2 ± 3.96 25 16.3  +/- 0.26 17.7+/-0.87 

Sonar dataset 10  +/- 0.49 0.9 ± 1.97 31.9 ±  5.95 26 16.4  +/- 0.45 19.2 +/- 1.96 

 

compared to FURIA and ACO/PSO2 classifiers 

respectively. The Ant-Miner gains over 9 datasets 

compared with Iterated-Miner. 

Table 5 and Fig. 3 show the evaluation of the 

performance based on the nonparametric Holm’s 

post-hoc with Friedman test. This test aims to find the 

dominant classifier among the 10 datasets. As shown 

in Table 5, in all cases, the low rank shows the best 

performance. Thus, Iterated-Miner obtains the best 

average rank in classification accuracy, and the 

second best average rank in model size. Fig. 3 

indicates the results of the model size rank average 

versus the classification accuracy rank. The Iterated-

Miner classifier achieves the best classifier that 

balance between the two criterias (i.e., classification 

accuracy and model siz). Under these circumstances, 

the Iterated-Miner dominates the other classifiers 

when considered the both criteria. Thus, the balance 

between accuracy and comprehensibility is clearly 

shown in our results: the most accurate results needs 

to determine the optimal size of classification model 

to outperform the other classifiers.
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Table 5. Rank the classification results based on the performance of all datasets 

Ant-Miner ACO/PSO 2 PART FURIA Iterated-Miner ACO/GA 

5.15 5.55 3.15 2.7 1.55 2.9 

1.4 4.1 4.7 4.5 2.6 3.7 

 

 
Figure. 3 The classification results based on accuracy rank vs. model size rank 

6. Conclusion and future work 

This research has introduced rules-based 

classification called Iterated-Miner. The classifier is 

based on concept and principles of iterated local 

search, metaheuristic, an optimization algorithms. 

Extensive experimentation has been conducted on a 

newly proposed classification algorithm with five 

states-of-the-art classification algorithms, namely, 

Ant-Miner, ACO/PSO2, PART, FURIA, and 

ACO/GA. Our classifier called the Iterated-Miner 

outperformed the other classifiers in terms of 

classification accuracy. Despite its convenience as 

regards classification accuracy, the Iterated-Miner 

classifier may not achieve the best result to model 

complexity. The proposed classifier obtained 

competitive and often better results than the other 

classifiers. Furthermore, comparison of the Iterated-

Miner to a lower model size (i.e., Ant-Miner) made 

available by Parpinelli et al. (2002) [29] revealed that 

the former can find all the optimal classification 

models that are as small as possible and have the 

highest classification accuracies. The performance 

evaluation is also conducted with another statistical 

metric for evaluation, specifically the nonparametric 

Holm’s post-hoc with the Friedman test. This 

statistical test aims to identify the dominant classifier 

among all datasets. Thus, the results indicated that the 

Iterated-Miner classifier acquires the best results that 

show the balance between the two criteria (i.e., 

classification accuracy and model size). As future 

challenges in Iterated local search based rule 

classifications are: to cope with continuous attributes, 

the current version of Iterated-Miner is not able to 

deal with continuous types of attributes and required 

a pre-processing step. The hybridization with other 

swarm optimization algorithms such as PSO 

algorithm is considered an open research direction. 

Another research direction is to adapt the method that 

used in evolutionary algorithms to control the size of 

the perturbation factor to control variation during rule 

production operation. Finally, the Iterated-Miner 

classifier could be applied to real-world classification 

problems such as medical diagnosis and fraud 

detection. 
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