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Abstract: This paper presents an improvement of the actual output trajectory tracking performance of a mobile robot 

based on convolutional neural network controller with off-line and on-line tuning Back-Propagation algorithms. The 

goals of this strategy are to find the optimal path to direct its movement and to design Convolutional Neural Network 

Trajectory Tracking (CNNTT) controller in order to control the nonlinear kinematics mobile robot system. Therefore, 

a hybrid swarm optimization algorithm uses for solving the two most important problems of path planning; the first is 

that the path must avoid collision with obstacles, and the second it must reduce the length of the path to a minimum. 

This paper will discuss the finding of the shortest path with the optimum cost function by using three optimizations’ 

algorithms; Chaotic Particle Swarm Optimization (CPSO) algorithm, A-star algorithm, and a hybrid swarm 

optimization algorithm (ACPSO). The task of the proposed feedback (CNNTT) controller is to obtain precisely and 

quickly the robust left and right wheels velocity which are used to control the position and orientation of the mobile 

robot system. These algorithms are simulated by MATLAB in a fixed obstacles environment to show the effectiveness 

of the hybrid swarm optimization algorithm in terms of the minimum number of an evaluation function and the shortest 

path length as well as the results of the proposed method showing that the (CNNTT) controller is accurate in terms of 

the mobile robot follows the desired paths quickly through fast obtaining the (CNNTT) controller’s parameters and a 

smooth linear wheels velocity actions are generated for mobile robot system with minimum number of cost-function 

evolutions that minimized the tracking error x-position around  4 cm and y-position around  2.5 cm and zero 

approximately orientation error as well as no oscillation in the responses. Finally, we confirm the effectiveness of the 

numerical simulation results of the proposed control strategy through comparison other types of controller simulation 

results. 

Keywords: Mobile robot, Path planning, Chaotic particle swarm optimization (CPSO) algorithm, A-star algorithm, 

Fixed obstacles, Trajectory tracking, Convolutional neural network. 

 

 

1. Introduction 

Many commercial robots are now available such 

as robotic vacuum cleaners and lawn mowers [1] as 

well as mobile robots serve many practical purposes 

in real world applications such as industry, weather 

forecasting, mining, science, education, 

entertainment, security, and the military [2, 3]. So, a 

number of challenges must be addressed in order to 

improve the path planning and tracking mobile robot 

such as simultaneously localizing and mapping [4], 

object detection and tracking [5], the convergence of 

static and mobile surveillance systems [6]. On the 

other hand, when we are focusing on path planning 

problem of mobile robot and how to find the optimal 

or shortest path between two points while avoiding 

collision with obstacles. Many researchers have been 

studied this issue and tried to solve it by using 

optimization algorithms such as: in [7] explained Ant 

Colony Optimization (ACO) was used in the search 

process for the globally optimal direction, pheromone 

diffusion and geometric local optimization are 

combined that led to the ant scanning process and the 

present path pheromone diffuses in the direction of 

the possible field power, so ants prefer to aim for a 

higher fitness subspace, and the search space of the 

test pattern becomes smaller. Also, firefly algorithm 

mailto:ce.19.08@


Received:  April 4, 2021.     Revised: April 20, 2021.                                                                                                       566 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.48 

 

is discussed in [8] as swarm intelligence in order to 

achieve detailed and effective solutions, the current 

MO-FA deals with three separate aims. These aims 

are as follows: protection of the road, length of the 

path and smoothness of the route (related to the 

energy consumption). Ant and Bee colony 

optimizations are presented in [9] as a local search 

technique to optimize the feasible path discovered by 

a series of local procedures that generated a route for 

mobile robot depending on different optimization 

algorithms inspired by the organism's attitudes, 

fitness functions, and various constraints in the 

workspace. However, in [10] developed an accurate 

mapping of the trajectory of a moving robot using 

Particle Swarm Optimization PSO with radial 

foundation functions that described the working area 

of the moving mobile robots. In addition, many 

researchers have been designed control algorithms of 

trajectory tracking for mobile robots in order to solve 

the motion control and the platform can follow the 

desired path with minimum tracking pose error such 

as: a cognitive path planning with nonlinear neural 

networks like a PID controller is presented in [11] to 

find and track the best desired path for the mobile 

robot based on Particle Swarm Optimization (PSO) 

algorithm. In [12] proposed a genetic algorithm that 

gives a particular form of solution to the complex 

motion preparation problems of mobile robots in 

uncertain dynamic conditions dependent on action 

dynamics. In [13] neural network with Q-learning is 

used to address route planning issues in the generated 

solution. Also, nonlinear predictive neural network 

controller is explained in [14] for achievement 

trajectory tracking for mobile robot based on posture 

identifier model. Moreover, a feedforward neural 

controller and feedback kinematics controller are 

used for wheeled mobile robot to track different types 

of the desired trajectories that illustrated in [15]. In 

[16] efficiency was compared with the current 

Wavelet Neural Network (WNN) architecture of 

smart controllers for mobile robot route planning in 

an uncertain area. In the paper [17] back-stepping 

controller with on-line slice genetic algorithm is 

proposed for development path-tracking for real 

mobile robot. The problems definition of this work 

can be divided into two problems: the first problem 

that will encounter our work is generated optimal or 

near optimal desired path with achievement the two 

conditions; the first is that the path must avoid 

collision with obstacles, and the second it must 

reduce the length of the path to a minimum. The 

second problem that will encounter our work is 

designed motion controller of trajectory tracking for 

mobile robot because the mobile robot platform has 

the highly nonlinear kinematic model and time 

variant outputs states as well as it has under-actuated 

system. Therefore, to accurate and precise track the 

desired path in terms of minimum position and 

orientation errors, without oscillation and no 

overshoot in the pose of mobile robot system, we 

need to solve the problems definition. So, the 

motivation of this work is taken from [1, 11, 14, 17, 

18]. The summarized contributions of this paper are 

to solve the problem statement through i) generated 

optimal or near optimal desired path with free 

collision and short path by using the proposed hybrid 

swarm algorithm (ACPSO) when compared to A-star 

algorithm and CPSO algorithm. ii) smooth with best 

values of two wheels velocities control actions that 

are generated using numerical simulation based on 

the proposed convolutional neural network trajectory 

tracking control algorithm. Therefore, the 

effectiveness of the proposed strategy leads to track 

and stabilize the mobile robot in the desired locations 

and orientations with minimum tracking error 

through control the pose of mobile robot system.  

This paper is organized as follows: Section 2 

explains the mathematical mobile robot kinematic 

model. Section 3 illustrates the proposed path-

planning and control strategy design. In section 4 

numerical simulation results are illustrated of the 

effectiveness and performance of the proposed (path 

planning algorithm and motion controller method). 

Finally, the conclusions for the proposed strategy are 

given in section 5. 

2. Mobile robot kinematics model 

The platform of the Wheeled Mobility Robot 

(WMR) is shown in Fig. 1, which has two wheels 

mounted on a parabolic shaft, and two multi-

directional wheels are installed in front and rear of the 

platform that are carried by the mechanical structure 

and keeps the body stable during the mobile robot is 

motion and orientation [11]. 

 

 

 

 

 

 

 

 

Figure. 1 Platform mobile robot 

Y - axis 

θpose 

VL 

X robot 

Y robot 

Om 

VR 

 

 
r 

L 

X - axis 
 



Received:  April 4, 2021.     Revised: April 20, 2021.                                                                                                       567 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.48 

 

 
Figure. 2 Proposed strategy diagram 

 

 
Figure. 3 The proposed path planning strategy 

 

Two independent analog Direct Current (DC) 

motors are actuated as the right and left wheel 

actuators of the wheeled robot for movement and 

platform steer. The point 𝑂𝑚  is the location of the 

WMR center mass, the two drive wheels are 

connected to the center of the axis [17]. The 

kinematics equation of the mobile robot platform has 

the highly nonlinear and time variant outputs states as 

well as it has under-actuated model because the 

mobile robot model is multi-input multi-output 

system and the number of the input states are two 

states (left and right wheels velocities) but the output 

states are three based on its position in the global 

coordinate frame [𝑂𝐴, 𝑋𝐴, 𝑌𝐴] and the pose surface are 

𝑥𝑝𝑜𝑠𝑒and  𝑦𝑝𝑜𝑠𝑒are the coordinates of a point 𝑂𝑚and 

𝜃𝑝𝑜𝑠𝑒 is the mobile robot’s direction angle measured 

from the 
AX axis. Therefore, these three generalized 

coordinates can describe the configuration of the 

mobile robot. So, the computer simulation equation 

can be represented as follows [15, 17]:  

 

𝑥𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑥𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) + 

((𝑉𝑅(𝑘𝑇) + 𝑉𝐿 (𝑘𝑇)) × 𝑐𝑜𝑠 (𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒 × 𝑇))

2
 

  (1) 

 

𝑦𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑦𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) + 

𝑉𝑅(𝑘𝑇) + 𝑉𝐿(𝑘𝑇)) × sin (𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒 × 𝑇)

2
 

  (2) 

 

 

𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒 = 𝜃((𝑘 − 1)𝑇)𝑝𝑜𝑠𝑒 + 

((𝑉𝑅(𝑘𝑇) − 𝑉𝐿  (𝑘𝑇))

𝐿
 

  (3) 

 

Where, 𝑉𝑅(𝑘𝑇) is denoted as right wheel velocity of 

the platform. 𝑉𝐿(𝑘𝑇) is denoted as left wheel velocity 

of the platform. L is denoted as the length between 

the driving wheels of the platform. T is denoted as the 

sampling time of the numerical calculation. 

3. Path planning and control strategy design 

In this work, the proposed strategy consists of two 

levels as shown in Fig. 2. 

The first level is path planning for the mobile 

robot based on swarm optimization algorithm. The 

second level is motion control design for the mobile 

robot based on convolutional neural network.  

3.1 Path planning swarm optimization 

algorithms 

When we want to move a mobile robot between 

two points, the first problem that will encounter our 

work, the generated optimal or near optimal desired 

path with two conditions must be solved; the first 

condition is that the path must avoid collision with 

obstacles, and the second condition must reduce the 

length of the path to a minimum. In this work, this 

issue can be solved by using the proposed path 

planning strategy that consists of three steps, as 

shown in Fig. 3 and using three optimization 

algorithms; Chaotic Particle Swarm Optimization 

CPSO algorithm, A-star algorithm, and proposed 

hybrid swarm optimization algorithm ACPSO based 

on A-star algorithms and CPSO algorithm. 

3.1.1. A-star path-planning algorithm 

The A-star Algorithm knowns as a heuristic 

search algorithm, finds the optimal path by checking 

among all possible routes of a solution to problems 

with the minimal cost. It visits the nodes in the graph 

from the starting node to the target node. The 

prescriptive information about the properties of the 

issue is applied to guide its performance [19]. It is 

based on two standards algorithms, the first is the 

Dijkstra’s algorithm, and the second is Greedy Best-

First-Search’s algorithm. Dijkstra’s algorithm is 

designed to find the shortest path in a graph between 

two nodes. The algorithm visits the nodes in a graph 

one by one beginning from the starting point of the 

object [20]. The Greedy Best-First-Search’s 

algorithm also keeps track of a frontier to locate the 
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Figure. 4 Flowchart of A-star algorithm 

 

target. This algorithm makes use of a heuristic 

function which determines approximately how far 

from the goal a particular node is. The Dijkstra’s 

algorithm selects the node nearest to the starting point, 

while here the node closest to the goal is selected and 

given higher priority than those nodes which are far 

away. A-STAR balances between Dijkstra's 

algorithm by finding the shortest path without fail, 

g(n) and the Best-First-Search’s algorithm by 

estimate the distance to the target, ℎ(𝑛). In the main 

loop, the algorithm repeatedly checks which (𝑛) 

vertex has the lowest value of 𝑓(𝑛)  as in the 

evaluation Eqs. (4) and (5).  

Fig. 4 demonstrates the flowchart of the A-star 

algorithm. Dijkstra's algorithm consumes time and 

resources to explore unsafe directions, while Greedy 

Best-First-Search always fails to find the shortest 

path to reach a goal.  Therefore, Algorithm A-star 

uses both distances from the starting point and 

approximate distance to the target point to remove the 

limitations of these traditional algorithms by 

combining these two algorithms [21, 22].  

 

 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (4) 

 

 ℎ(𝑛) = √(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2 (5) 

 

Where, n is denoted by the current node, 𝑔(𝑛)  is 

denoted by the cost distance function from starting 

point to the current node n, and ℎ(𝑛) is denoted by 

the estimation minimum cost distance function from 

the current node to end point that is calculated by Eq. 

(5). 

3.1.2. Chaotic particle swarm optimization path-

planning algorithm 

In general, PSO is an experimental community 

based on multi-point research technology that 

simulates the social behavior of a flock of birds, a 

school of fish, etc. [23]. Research begins with a set of 

research points called molecules because particles 

have a memory and they save part of their previous 

condition. The particles maintain their individuality 

in all cases, although they share the same point in the 

belief of space without limitations. The individuality 

and sociality are two randomly weighted factors that 

influenced the particle’s movement. The definition of 

individuality is "the tendency to return to the particles 

best past situation" while sociality is defined as "the 

tendency to move towards the neighborhood’s best 

previous situation". Each particle is encoded by a 

location vector (initially randomly chosen) and the 

position is updated using its velocity (randomly 

chosen at the beginning) in successive iterations. At 

each time step, PSO changes the speed of each 

particle to its optimum positions. Acceleration is 

measured in random terms, with separate random 

numbers are generated to accelerate to the best 

positions. The search by PSO algorithm is subject to 

stagnation due to early convergence so the search 

process should be diversified [24]. Chaos is 

introduced into the PSO to induce more randomness 

in the search for PSO [25]. A small error in particle 

position may make a big difference to their behavior 

for a long time and prevent them from getting trapped 

in some local optimal solution. After applying 

chaotic, Eq. (6), (7) and (8), each particle updates its 

velocity and position by using the Eq. (9) and (10) 

[11, 25]. 

 

 𝛽𝑏+1 = µ × 𝛽𝑏(1 − 𝛽𝑏)   0 ≤ 𝛽1 ≤ 1 (6) 

 

𝑊 = 𝑊𝑚𝑎𝑥 − [(𝑊𝑚𝑎𝑥 −  𝑊𝑚𝑖𝑛) × (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)] 

  (7) 

 

 𝑊𝑛𝑒𝑤 = 𝑊 × 𝛽𝑏+1 (8) 
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𝑣(𝑖, 𝑗)𝑎
𝑏+1 = 𝑊𝑛𝑒𝑤 × 𝑣(𝑖, 𝑗)𝑎

𝑏 +

𝑐1𝑟(𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑗)𝑎
𝑏 − 𝑥𝑦(𝑖, 𝑗)𝑎

𝑏)

+𝑐2𝑟(𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑗)𝑏 − 𝑥𝑦(𝑖, 𝑗)𝑎
𝑏)

 

  (9) 

 

𝑥𝑦(𝑖, 𝑗)𝑎
𝑏+1 = 𝑥𝑦(𝑖, 𝑗)𝑎

𝑏 + 𝑣(𝑖, 𝑗)𝑎
𝑏+1 

  (10) 

 

Where, a is denoted as the particle number in the total 

population, b is denoted as the iteration number, and 

(i, j) is denoted as coordinates number in x and y axis, 

respectively. 

Table 1 shows the parameters of CPSO that will 

be used in the simulation results. 

 
Table 1. The choice of a parameter was considered to be 

the optimal choice. 

Parameter Definition with value 

𝛽0 The initial value of deterministic β = 0.3 

µ 
The control parameter with a real value µ 

= 4 

W Inertia Weight 

𝑊𝑚𝑖𝑛 Minimum W = 0.3 

𝑊𝑚𝑎𝑥  Maximum W = 0.9 

𝑖𝑡𝑒𝑟 Current iteration number (b) 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations 

𝑐1, 𝑐2 Coefficient of acceleration (1.25, 1.25) 

𝑉𝑎
𝑏 The velocity of particle ath in iteration bth 

(𝑥𝑦)𝑎
𝑏  The position of particle ath in iteration bth 

pbest𝑎 Best fitness values for particle ath 

Gbest Best fitness values for the whole swarm 

 

 
Figure 5. The proposed pseudocode of the CPSO 

algorithm. 

3.1.3. Hybrid swarm optimization algorithm 

In this work, the proposed hybrid swarm 

optimization algorithm is used to find the optimal or 

near optimal desired path for the mobile robot. It 

combined A-star algorithm with CPSO algorithm in 

order to find the shortest path to reach the target point 
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Figure. 6 The proposed hybrid ACPSO flowchart 

 

Basic CPSO Procedure:  

Step 1: Maximum iterations.   

Step 2: Initialize particle. 

Step 3: Each particle, checking fitness value, if the 

fitness value is better than the best fitness value (pbest) 

then set current value as new pbest.  

Step 4: Each particle 

- Find the particle with the best fitness (gbest) 

in the particle neighbourhood.  

- Apply chaotic optimization algorithm eq. (6, 

7, and 8). 

- According to the velocity equation (9) 

calculate particle velocity 𝑣(𝑖, 𝑗).  

- Apply the new velocity. 

- According to the position equation (10), 

update the particle position 𝑥𝑦(𝑖, 𝑗).  

- Apply the new position. 

Step 5: Repeat Step 3 until reach maximum iterations.  
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in less time. The proposed hybrid flowchart 

algorithm is shown in Fig. 6. So, the steps of 

proposed hybrid ACPSO algorithm as follows: 

 

Step1: Initialization step: generate random nodes (n) 

and find all possible routes (r) from source to 

destination point, then calculate the cost distance 

function for each route with A-star cost distance 

function as shows in Eq. (11) and (12). 

 

 𝐻(𝑛) = 𝐸𝑓(𝑛) × ℎ(𝑛) (11) 

 

 𝑓(𝑛) = 𝑔(𝑛) + 𝐻(𝑛) (12) 

 

Where, 𝐻(𝑛) is denoted the enhancement heuristic 

function. 𝐸𝑓(𝑛) is denoted the enhancement random 

factor < 1. 

 

Step2: Proposed a dynamic weight that is called 

enhanced factor (Ef) in the heuristic function which 

can minimize area search, where Ef is a random 

number less than 1, then save the routes cost into 

matrix called (Rc), after that sorting the matrix (Rc) 

to find the lowest cost and obtain its index; Finally, 

the costs of the (Rc) will be saved into the initialized 

particles and will evaluate the local and global cost 

distance function for best solution in the CPSO 

algorithm. 

 

Step3: Iteration step: after getting the minimum 

global cost distance function, the main iteration starts 

and enforce all particles to update their velocity and 

position according to global cost distance function till 

end of the iteration. 

3.2 Control strategy design 

The proposed control strategy in this work is to 

solve the second problem that will encounter in the 

designed motion controller of trajectory tracking for 

mobile robot because the mobile robot platform has 

the highly nonlinear kinematics model and time 

variant outputs states as well as it has under-actuated 

system. Therefore, the proposed controller has ability 

for generating precisely and quickly the optimal left 

and right wheels velocities in order to track the 

desired paths equations with minimum tracking 

position error and without oscillation. The general 

structure of the on-line tuning control strategy of 

trajectory tracking for mobile robot is shown in Fig. 

7.  

So, the proposed structure of the Convolutional 

Neural Networks Trajectory Tracking (CNNTT) 

Controller for mobile robot is shown in Fig. 8.  

 
Figure. 7 General structure of on-line tuning control 

strategy 

 

In this work, the control strategy is based on 

convolutional neural networks with back propagation 

algorithm that is used to learn the proposed trajectory 

tracking controller for mobile robot. Moreover, the 

off-line learning steps of proposed CNNTT controller 

can be described as follows: 

 

Step1: Input Layer; the input layer of the CNNTT 

controller takes the extracted matrix from the optimal 

path equation (xr, yr, θr) and takes the values of the 

(VLref, VRref) from numerical reference velocities 

equation. So, the size of the data set can be described 

as two-dimensional matrix (I, J). Then the data set are 

divided into two sets, the first set is call learning set, 

and the second is called testing set.  

 

Step2: Convolution Layer: a series of learnable 

filters make up the convolutional layer. These filters 

have a limited spatial size. The user selects the 

number of filters, with each filter learning to scan for 

a specific function in the current receptive region. We 

suggested a set of (F) number of filters that slide over 

the input matrix and produce 2D matrix as (I, F). To 

minimize the number of weights that will use to 

detect a pose of the mobile robot. 

 

Step3: Bipolar Sigmoid Layer: The convolution 

layer's output is transferred through the sigmoid layer, 

which adds a non-linearity equation into the network 

and produces a stack of 2D activation arrays (I, F) 

with the relevant features in the original path matrix. 

 

Step4: Pooling Layer: The pooling layer is used to 

minimize the number of weights in the model and can 

also assist with overfitting. The pooling process is 

carried out on each of the depth slices individually. In 

this work, we use the S that denoted to the length of 

the vectors so the new matrix will generate as (S, F).  

Step5: Fully Connected Layer: after pooling layer,  

the matrix (S, F) will collect in one flat vector (S×F, 

1) that is called fully connected network data set in 

order to learn the neural networks which consists of 

three layers (input layer, hidden layer and output 

layer) and it is used sigmoid activation function in the 
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Figure. 8 The proposed structure of the (CNNTT) 

Controller for mobile robot 

 

hidden layer and linear activation function in the 

output layer. 

 

Step6: Back propagation algorithm is used for 

learning the neural network with mean square error 

cost function is used to determine the outputs neural 

network (left and right wheels velocities) are 

approximated equal to the reference velocity or not in 

order to update the weights of the CNNTT controller 

and increasing the number of epochs. 

 

Step7:  To investigate the neural network are 

excellent learned, a testing set is used and show the 

difference between the reference velocities and the 

left and right wheels velocities for the mobile robot. 

4. Simulation results 

The path-planning and control strategy are shown 

in Fig. 2 which are consisted of two steps, the first 

step is generated desired path with short length and 

free-navigation. The second step is generated best 

control action for the kinematics mobile robot model 

that is considered as under-actuated system with two 

inputs (left and right wheels velocities) and three 

states outputs (position (x,y) and orientation θ) with 

highly nonlinear and time variant behaviour system. 

The cart specification of the mobile robot has radius 

of wheel is 0.075 m and distance between wheels is 

0.39 m wheel diameter.   MATLAB (file.m) package 

is used to carry out the proposed strategy and solve 

numerical simulation kinematics mobile robot model 

as in Eq. (1) to Eq. (3) with sampling time is equal to 

0. 1 sec. To investigate the efficiency of the proposed 

strategy at fixed obstacles environment with 

workspace [500 by 500] cm, as shown in Fig. 9 and 

to solve the problem definition of the free-navigation 

mobile robot as well as swiftly track the desired path 

with minimum position and orientation errors, and no 

oscillation in the output states of the mobile robot.  

Different cases are used to confirm the mobile 

robot in both desired (position and orientation) are 

followed. The environment is populated by static 

obstacles and full information about the positions of 

all objects in the workspace are available. The task of 

finding this collision-free path is the responsibility of 

a path-generating algorithm, that we apply three 

 

 
Figure. 9 The proposed environment with static obstacles 
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algorithms (A-star, CPSO, and Hybrid ACPSO) and 

compares them to find the optimum path with the best 

cost distance function and using computer which has 

specification as Intel Core i5 – 2450 M CPU 2.5 GHz 

with 8.00 GB RAM. 

 

Case 1: 

The initial position (50, 250) cm (red point) to the 

destination point (400, 200) cm (yellow point) as 

shown in Fig. 10-a when it applies A-star algorithm 

and obtained the distance cost function is equal to 374 

cm as shows in Fig. 10 (b).  

Secondly, applying CPSO algorithm to find the 

shortest path in known environments and using the 

number of iterations is 30 as shown in Fig. 11 (a). 

Then the cost distance function based on CPSO 

algorithm is obtained 363 cm as shown in Fig. 11 (b).  

Thirdly, applying the proposed hybrid ACPSO 

algorithm to find the shortest path in known 

environments as shown in Fig. 9 with the number of 

iterations is equal to 15 as shown in Fig. 12 (a). The 

value of the proposed hybrid ACPSO cost distance 

function is equal to 357 cm as shown in Fig. 12 (b). 

 

 
(a) 

 
(b) 

Figure. 10 The A-star algorithm for case 1: (a) path 

planning and (b) best distance cost function 

 
(a) 

 
(b) 

Figure. 11 The CPSO algorithm for case 1: (a) path 

planning and (b) best distance cost function 

 

 
(a) 

 
(b) 

Figure. 12 The proposed hybrid ACPSO algorithm case 

1: (a) path planning and (b) best distance cost function 
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Figure. 13 All path planning in case 1 

 

Table 2. A-star algorithm results 

No. of 

Nodes 

Nodes of 

the Route 

Cost 

(cm) 

Spent time 

(sec) 

20 4 498 0.956 

30 4 470 1.359 

40 4 436 1.794 

50 3 397 3.951 

60 3 384 5.578 

70 3 374 7.782 

 

Table 3. CPSO algorithm results 

Iteration Cost (cm) 
Spent time 

(sec) 

5 495 1.502 

10 453 2.608 

15 377 3.775 

20 373 5.070 

25 370 6.272 

30 363 7.377 

 

Table 4. ACPSO algorithm results 

Iteration 
Nodes of 

the Route 

Cost 

(cm) 

Spent 

time 

(sec) 

5 3 470 2.747 

10 3 406 3.829 

15 3 357 4.985 

20 3 357 - 

25 3 357 - 

30 3 357 - 

 

In addition, when comparing between A-star, 

CPSO and ACPSO algorithms as in Fig. 13 and 

Tables 2, 3 and 4 respectivtly. 

We show the hybrid ACPSO algorithm is much 

better than A-star and CPSO Algorithms in terms of 

the number of nodes is only three, the number of the 

iterations is fifteen, path length is 357 cm and the 

execution time is 4.98 sec because of the hybrid 

ACPSO algorithm is used the best nodes that are 

generated from A-star algorithm and used these 

nodes as initial values of the particles in the CPSO 

algorithm with Spline interpolation technique is used 

to find the short and smooth desired path. 

 

Case 2:  

The initial position of the mobile robot at (50, 

425) cm (red point) to the destination point (400, 225) 

cm (yellow point) as shown in Fig. 14 (a). Applying 

A-star algorithm and the value of the cost distance 

function is 459 cm, as shows in Fig. 14 (b).  

Secondly, Fig. 15 (a) shows the path planning of 

the mobile robot after applying CPSO algorithm. We 

found CPSO cost distance function is equal to 443 cm, 

as shown in Fig. 15 (b). 

Finally, applying hybrid ACPSO algorithm to the 

same environment in case 2, the path planning is 

generated as shown in Fig. 16 (a) with cost distance 

function is equal to 387 cm, as shown in Fig. 16 (b). 

In order to invistigate the effectiveness of the 

hybrid swarm algorithm, the three algorithms (A-star, 

CPSO and ACPSO) are applied to the environment 

case 2 as shown in the Fig. 17. The path planning that 

is generated from the proposed hybrid algorithm was 

smooth and the shortest path from strating point to 

target point when we comparted with A-star and 

CPSO algorthims. 

 
(a) 

 
(b) 

Figure. 14 The A-star algorithm for case 2: (a) path 

planning and (b) best distance cost function 



Received:  April 4, 2021.     Revised: April 20, 2021.                                                                                                       574 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.48 

 

 
(a) 

 
(b) 

Figure. 15 The CPSO algorithm for case 2: (a) path 

planning and (b) best distance cost function 

 
(a) 

 
(b) 

Figure. 16 The proposed hybrid ACPSO algorithm case 

2: (a) path planning and (b) best distance cost function 

 
Figure. 17 All path planning in case 2. 

 

Table 5. A-star algorithm results 

No. of 

Nodes 

Nodes of 

the Route 

Cost 

(cm) 
Spent time (sec) 

20 5 590 1.453 

30 4 483 1.879 

40 4 476 3.458 

50 4 471 5.781 

60 4 468 6.673 

70 4 459 8.256 

 

Table 6. CPSO algorithm results 

Iteration Cost (cm) Spent time (sec) 

5 2504 1.482 

10 977 2.616 

15 847 3.790 

20 760 4.911 

25 550 6.335 

30 443 7.82001 

 

Table 7. ACPSO algorithm results 

Iteration 
Nodes of the 

Route 

Cost 

(cm) 

Spent time 

(sec) 

5 4 530 2.364 

10 4 420 3.516 

15 4 389 5.050 

20 4 387 6.230 

25 4 387 - 

30 4 387 - 

 

In addition, when comparing between A-star, 

CPSO and ACPSO algorithms as in Fig. 17 and 

Tables 5, 6 and 7 respectivtly, we show the hybrid 

ACPSO algorithm is much better than A-star and 

CPSO Algorithms in terms of the number of nodes is 

only four, the number of the iterations is twenty, path 

length is 387 cm and the execution time is 6.23 sec. 

Based on the fitting function, we obtained the 

reference path equation as in Eq. (13) and (14) for the 

case 1 and case 2 respectivitly, as the optimal path 

that depends on the hybrid ACPSO algorithm. 
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y(x)  =  2.085e − 10 ×  x5 −  2.373e
− 07 ×  𝑥4 +  9.516e
− 05 × 𝑥3  −  0.014 × 𝑥2

+  0.198 ×  x +  266.410 

  (13) 
 

y(x)  =  −3.115e − 10 ×  x5 +  2.697e
− 07 × 𝑥4  −  9.276e
− 05 × 𝑥3  +  0.018 ×  𝑥2  
−  2.455 ×  x +  510.797 

  (14) 
 

Then applying the proposed structure as in Fig. 8 

on the maps based on desired paths as in Eq. (13) and 

(14), the two-dimensional matrix (I, J) is equal to 

(160, 5) respectively, with sixteen proposed filters 

(F=16) for obtaining the data set matrix is (160, 16) 

in the convolution layer then divided into two sets; 

learning set matrix is (80, 16) and testing set matrix 

is also (80, 16). In the pooling layer where S is equal 

to 5 (using only five maximum values in the matrix 

(80, 16)) so it becomes data matrix (5, 16) than in the 

fully connected layer the data set becomes as only 

one vector (5×16, 1) then carrying out the proposed 

CNNTT controller as in Fig. 7 that consists of 

[5:11:2] nodes as follows: five nodes in the input 

layer and one hidden layer that has eleven nodes with 

nonlinear activation function, and the output layer has 

two nodes with linear activation function. Based on 

Back Propagation Algorithm (BPA) and after 1000 

epoch, the model CNNTT controller has ability to 

generate left and right wheels velocities as the same 

reference velocity as shown in Fig. 18-a and b.   
 

 
(a) 

 
(b) 

Figure. 18 Learning set: (a) righ wheel velocity and (b) 

left wheel velocity 
 

 
Figure. 19 best response of performance index for the 

CNNTT controller in the learning cycle. 

 

 
Figure. 20 The accuracy of the CNNTT controller 

learned. 

 

Figure 19 shows the response of the performance 

index of the learning of the CNNTT controller during 

1000 epoch which it reaches to small value that it is 

less than 0.005.  

To show the accuracy of the learning the CNNTT 

controller that reaches to over 99.5% at 1000 epoch 

an in Fig. 20. 

To confirm the proposed controller has excellent 

learning in the all regions based on the desired paths 

in the two cases. Another set of the data (testing set) 

 

 
(a) 

 
(b) 

Figure. 21 Testing set: (a) righ wheel velocity (b) left 

wheel velocity 
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Figure. 22 The 2D simulation desired path case 1 where 

(red line) and actual mobile robot path (dash blue line) 

 

one vector (80,1) is applied to the CNNTT controller 

model to demonstrate the left and right wheels 

velocities set as in Fig. 21 a and b, respectively. These 

responses of left and right wheels velocities of the 

CNNTT controller outputs have very small error w.r.t 

the reference velocities that means the learning set 

has rich input signal to excite all regions of the 

proposed controller model and did not occur the over-

learning problem during 1000 epoch then the  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure. 23 The response of the tracking error during 350 

sample in case 1: (a) in the x-axis, (b) in the y-axis, and 

(c) orientation error 

 

proposed controller is ready to track the different 

types of the desired paths. 

In case I, the mobile robot has initial position (xo, 

yo) = (50, 250) cm respectively. Fig. 22 shows 2D 

simulation desired path based on Eq. (12) as in red 

colour with the output of the kinematics mobile robot 

model outputs (x, y) at blue colour.  

The actual output of the mobile robot (x, y) has 

fast and without oscillation during 350 sample for 

tracking the desired path with minimum errors in the 

x-position 4 cm and y-position 1.5 cm in Figs. 23 (a) 

and (b) as well as the orientation error of the mobile 

robot as in Fig. 23 (c). 

The output response of the proposed CNNTT 

controller is shown in Fig. 24 that represents the fast 

and smooth control action responses of left and right 

wheels linear velocities of the mobile robot and did 

not exceed 1 m/sec and no saturation state that makes 

swiftly and successfully desired path tracking. Fig. 25 

shows the best response of the linear velocity and 

angular velocity of the platform mobile robot. 

 

 
Figure. 24 Left and right wheels linear velocities that are 

generated from the proposed CNNTT controller in case 1 

 

 
Figure. 25 linear velocity and angular velocity of the 

platform mobile robot in case 1 

 

 
Figure. 26 The 2D simulation desired path case 2 where 

(red line) and actual mobile robot path (dash blue line) 
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The actual output of the mobile robot (x, y) has 

fast and without oscillation during 350 sample for 

tracking the desired path with minimum errors in the 

x-position and y-position are equal 1.5 cm and 3 cm 

respectively as in Fig. 27 (a) and b. As well as the 

orientation of the mobile robot as in Fig. 27 (c). 

Fig. 28 shows the fast and smooth control action 

responses that generated from the proposed CNNTT 

controller as the left and right wheels linear velocities 

of the mobile robot. As well as the maximum value 

of the linear wheel velocity did not exceed 1 m/sec 

and no saturation state that makes pure-rolling and 

non-slipping for tracking the desired path. The swift 

response of linear and angular velocity of the 

platform mobile robot during 350 sample is shown in 

Fig. 29. 

To confirm the effectiveness of this proposed 

work, we are compared the numerical simulation 

results of the proposed CNNTT controller with other 

types of controller results that are taken from [11, 14, 

16] as shown in Table 8 in terms of the maximum 

tracking error in the position (x-axis and y-axis) of  
 

 
(a) 

 
(b) 

 
(c) 

 

Figure. 27 The response of the tracking error during 350 

sample in case 2: (a) in the x-axis, (b) in the y-axis, and 

(c) orientation error. 

 
Figure. 28 Left and right wheels linear velocities that are 

generated from the proposed CNNTT controller in case 2 

 

 
Figure. 29 linear velocity and angular velocity of the 

platform mobile robot in case 2 

 

Table 8. Comparison simulation results between the 

proposed CNNTT controller and other controller types 

 

the path tracking for mobile robot was obtained as 

well as the minimum value of the MSE performance 

index was obtained for learning these controllers. 

5. Conclusions 

In this paper, an off-line and on-line tuning 

CNNTT controller has been designed and simulated 

for mobile robot system and tracking desired path 

equation that generated from proposed hybrid swarm 

Type of 

Controller 

Type of 

Performance 

Index with 

minimum 

value 

obtained 

Maximum 

Error in 

x-axis 

obtained 

Maximum 

Error in 

y-axis 

obtained 

[11] 

Nonlinear 

NN like 

PID 

controller 

On-Line 

MSE=0.009 
6 cm 2.5 cm 

[14] 

Nonlinear 

Predictive 

Controller  

Off-Line 

MSE=0.035 
5 cm 4 cm 

[16] 

Nonlinear 

Back 

Stepping 

Controller  

On-Line 

MSE=14 
5 cm ± 2.5 cm 

Proposed 

Controller 

Off-Line  

MSE= 0.005 
4 cm 2.5 cm 
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optimization ACPSO algorithm using MATLAB 

simulation package. The mobile robot platform has 

highly nonlinear multi-input multi-output system, 

therefore, the proposed path planning and control 

strategy has excellent ability for solving the problem 

statement of the path planning and trajectory tracking 

for mobile robot in term of the following: 

• Optimal or near optimal smooth desried path 

equation is generated based on hybrid swarm 

ACPSO algorithm. 

• Reducing the path length, the number of the 

iterations, the evaluation function and the 

execution time of the processor unit during 

generated the desired path. 

• Best and smooth value of left and right wheel’s 

velocities control actions that were generated for 

under-actuated system states and nonlinear 

kinematics behaviour of the mobile robot platform 

model. 

• The mobile robot is excellent tracking the desired 

path and reached the target point successful 

without oscillation. 

• The maximum span tracking pose error reached 

approximately 4 cm in x-axis and 2.5 cm in y-axis. 
• The on-line tuning weights of the proposed 

CNNTT controller based on BPA leads to 

generate smooth velocity actions without spikes 

and no saturation state in each wheels or platform 

velocities that make precision tracking of the 

desired path equation. 

So, we hope the experimental works of the 

proposed path planning algorithm and control 

strategy for mobile robot system and will be 

implemented in the future work. 
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