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Abstract: Increasing the number of mobile network connections represented by humans and machines leads to a higher 

demand for resources, which have to be allocated for all User Equipment (UEs) with an acceptable level of fairness. 

However, the cost of allocating the required resources for a great number of connections may result in growing the 

computational complexity of scheduling algorithm and can delay the response of the Base Station (BS). In this paper, 

a new processing approach is proposed for Fifth Generation - Internet of Things (5G-IoT) networks. The computational 

complexity of the scheduling process is minimized in two folds. First, the Spark framework is used as a distributed 

and parallel processing paradigm, which can reduce the computational complexity from 𝑂(𝑁2) to 𝑂(𝑁/𝑀)2. Then, 

to minimize the scheduling latency of the scheduler itself. The second level of complexity minimization is presented 

by using a low computational scheduling algorithm via modifying the traditional proportional fair scheduling algorithm 

to further decrease the complexity from 𝑂(𝑁/𝑀)2 to 𝑂(𝑁/𝑀). Simulation results demonstrate the efficacy of the 

proposed scheduling approach by applying the concept of divide and conquer in achieving the scheduling process. 

Hence, the effectiveness of the new scheduling approach represented by scaling down the time of scheduling large 

number of UEs to the time of small sub-clusters of UEs. The desired percentage of gain in Scheduling Time (ST) 

depends on the size of sub-clusters such as deploying 250 UEs in form of clusters of (50, 30, or 10) UEs will reduce 

the ST compared to the classical Proportional Fair (PF) with a percentage of 85%, 89%, and 97% respectively. This 

property can be exploited to support network scalability at low scheduling latency in next-generation mobile networks. 

Keywords: 5G, IoT, Scheduling algorithms, Proportional fair algorithm, Spark framework, Scalability, Parallel 

processing. 

 

 

1. Introduction 

Mobile networks have been evolved dramatically in 

recent years. Hence, one million connections for each 

square kilometre at the one-millisecond end-to-end 

latency is anticipated with the deployment of the Fifth 

Generation - Internet of Things (5G-IoT) networks [1, 

2]. This is along with higher data rates mobile 

applications that are working on smartphones, for 

instance, media streaming, gaming applications, 

video conferencing, and other online applications. 

This is coming side by side with the massive number 

of sensor nodes in the IoT networks for the 

technologies of a smart city including smart homes, 

metering, security and surveillance, self-driving cars, 

eHealth, and smart grids, and other uncountable 

numbers of future applications. the point of interest 

here is that all of these applications would share the 

same infrastructure and always in high demand for 

resources for their operation [3]. All of the former 

aspects reveal how cellular networks are continually 

expanded exponentially. On the other hand, the 

available bandwidth is limited [4, 5], which requires 

to be partitioned and managed by efficient scheduling 

algorithms between the active users to ensure fairness 

and high spectral efficiency. In the next-generation 

cellular networks (5G), the network includes several 

characteristics such as scalability with reliable 

connectivity to the world, along with the high data- 

rate and low-latency. Fig. 1 shows the amount of 

reduction in the latency of 5G is almost 10 times  
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Figure. 1 The desired theoretical latencies in 4G and 5G 

 

 

smaller compared to the Fourth Generation (4G) 

network. All of these new superior features of 5G 

cellular networks can be utilized for fast real-time 

transfer of data [6]. Consequently, this enables many 

innovative applications and technologies to be 

deployed that have not been possible before 5G such 

as IoT technology. Hence, the burden of computation 

overhead in the networks will be increased 

accordingly. It is worth stating that 5G-IoT networks 

will not only include the general-purpose 

smartphones, tablets, or computers, but also, there are 

different other types of low power and cost User 

Equipment (UEs) connected to the network with 

almost fixed functionality, such as thermostats, 

security cameras, door locks, and even connected 

kitchen appliances. According to the most recent 

Ericsson mobility report in June 2020 [7], by the end 

of 2025, the massive IoT connections are expected to 

be 52 percent of all cellular connections. 

In this paper, the main contributions are presented 

as follows: 

1) Application of Spark framework as a 

distributed and parallel processing approach in the 

scheduling algorithm of cellular networks to 

minimize the scheduling delay of serving a dense 

number of contended UEs and then maintaining the 

network scalability. 

2) A modified low computational Proportional 

Fair (PF) scheduling algorithm is proposed.   

The rest of the paper is structured as follows: In 

section 2, the related literature is discussed. Section 3 

presents a general explanation for the main 

theoretical components of this research as well as the 

problem of the research is defined and investigated 

from different aspects. In section 4, the proposed 

modified PF is explained. In section 5, the proposed 

Spark framework is illustrated. The performance 

evaluation and discussion are shown in section 6. 

Section 7 wraps up the paper with the concluding 

remarks. 

 

 

2. Related works 

Since the types of scheduling algorithms have not 

been specified in the standards of the Third 

Generation Partnership Project (3GPP), the design of 

the optimal scheduler for meeting the intended 

objectives is still an open research problem [8]. 

Hence, several research studies have been conducted 

to focus on developing an efficient scheduling 

algorithm. In general, after reviewing the existing 

contributions in this field, several routes have been 

followed by the researchers. The first one is to 

develop resource scheduling algorithms to improve 

spectral efficiency [9, 10]. An additional research 

field has been followed to design a scheduler for 

minimizing the inter-cell interference of cell edge 

UEs [11]. The third trend of studies has been mainly 

conducted to maintain the fairness requirements 

between UEs [12], while the fourth area of research 

has focused on the trade-off between the fairness and 

the spectral efficiency between UEs [13]. 

Furthermore, one of the key research directions that 

have been conducted is to design a low computation 

complexity scheduling algorithm or to minimize the 

latency that may be generated in the scheduling 

process where this route represents the point of 

interest in this paper. It is worth mentioning that the 

presence of latency in allocating resources can lead 

finally to degrade the performance of the entire 

network. Hence, the number of contributions within 

the field of computational complexity minimization 

for the resource allocation algorithms is discussed 

broadly as follows. The authors in [14] have designed 

a linearized model to simplify the optimization of a 

nonlinear problem into a simpler linear program for 

the problem of resource allocation to maximize the 

data rate. Likewise, in [15], based on the concepts of 

matching theory, the authors propose a schedule-

oriented optimization technique in mm-wave mobile 

networks. The technique is capable of solving the 

problem of maximum throughput-fair scheduling via 

a linear program. The authors in [16] have designed 

a suboptimal association approach for resource 

allocation between the network flying platforms such 

as unmanned aerial vehicles and small cells to 

maximize the data rate subject to the quality of 

service and the available bandwidth, where the 

complexity is minimized through the application of 

centralized and distributed algorithms. The near-

optimal resource management method is also 

investigated in [17] for the Multiple-Input and 

Multiple-Output (MIMO) systems, which has been 

focused on the sum rate and the fairness between 

users. In [18], a cross-layer algorithm is proposed to 
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attain high performance on lower feedback with low 

algorithmic complexity. In [19], The authors have 

developed an algorithm that can exploit the gains of 

multi-user scheduling frequency-selective whereas 

avoiding unnecessary segmentation of ultra-reliable 

low latency payloads for various transmissions. In 

[20], a resource allocation method in the Long-Term 

Evolution (LTE) network is used to maximize the 

data throughput via solving a low complexity 

optimization problem of a frame level. The authors in 

[21] suggest a low complexity scheduling algorithm 

using Federated machine learning via the so-called 

age of update as a metric for this purpose. In [22], a 

resource allocation approach has been developed, 

which considers a nature-inspired algorithm using 

slice characteristics for low computational 

complexity and resource utilization. The authors in 

[23], have designed an approach for assigning a sub-

channels bandwidth to several Device to Device 

(D2D) communication pairs and remote radio unit. In 

this way, pre-allocated sub-channels can be reused at 

low computational complexity. The resource 

allocation that has been proposed in [24] deployed an 

outer approximation algorithm to minimize the 

computational complexity that may be generated 

from the full search, which can be enlarged with the 

increasing number of users. In [25], a low complexity 

scheduling algorithm has been proposed based on a 

concept of delay outage minimization to support real-

time traffic with varied traffic classes in LTE/ LTE-

Advanced (LTE-A) networks. In the delay constraint 

solutions, the optimization problem becomes 

unfeasible in case that the number of UEs exceeds the 

existing resource units. Conversely, multi-objective 

optimization is computationally expensive. The 

authors in [26] have suggested a scheduling 

algorithm with two stages to meet the delay time limit, 

which is the time-domain packet and frequency-

domain packet scheduling. However, this can lead 

finally to a suboptimal solution [27]. The authors in 

[28], design a channel allocation technique named 

hyper-fraction for a vehicle-to-vehicle 

communication system. The method splits the road 

into several zones to allocate a channel to vehicles 

located within the zone for latency minimization. The 

Genetic Algorithm (GA) is used to solve optimization 

problems of resource allocation. The authors of this 

study are appreciated since they attempt to decrease 

latency between the Base Station (BS) and the UE by 

using the concept of splitting the task of resource 

allocation into small zones. However, they use an 

approach to attain this purpose, which inherently 

entails high computational complexity. Hence, the 

advantage of minimizing the latency may be 

degraded due to the complication of the suggested 

algorithm. The authors additionally do not examine 

how the latency is increased when the size of the 

network is scaled up. 

In this paper, one of the most important scenarios 

of the 5G-IoT network that has been rarely studied is 

the impact of the computation overhead or the latency 

of the scheduling algorithm, particularly when 

scaling up the network to accommodate a huge 

number of UEs in the future networks. In other words, 

each UE will suffer from the burden of increasing the 

network size. Therefore, the Spark framework is 

proposed to serve the UEs but in the form of groups 

by shafting the Scheduling Time (ST) from the entire 

network to the specified size of a small group of UEs, 

which significantly improves the network scalability. 

Adopting of Spark framework in the mobile network 

can be considered as the key contribution in this 

paper since it can extend the scalability of the 

network to a massive number of UEs via its 

processing capabilities. To the best of the authors' 

knowledge, there is no former research that has used 

or proposed the Spark framework in the scheduling 

algorithm of the cellular networks. For further 

reduction in the computation complexity, a modified 

two-step pre-calculation proportional fair scheduling 

algorithm is also developed in this work.  

3. Preliminaries 

In this section, the essential components that are 

related to the proposed approach of this paper are 

discussed and explained briefly, including the most 

common scheduling algorithms and the Spark 

framework architecture. Also, the problem definition 

is illustrated concisely. 

3.1 Scheduling algorithms 

Three of the most common scheduling algorithms 

are explained briefly as follows:  

Round Robin (RR) scheduling is a channel 

unaware algorithm. RR is working based on the idea 

of allocating Physical Resource Blocks (PRBs) 

cyclically for all UEs without considering the channel 

conditions, which can be realized by the report of the 

Channel Quality Indicator (CQI) of the connected UE. 

In RR, same resources will be allocated for each user. 

Hence, the UEs are equally scheduled [29]. Although 

RR has low complexity, its major drawback is that it 

works without taking into account the CQI of UEs, 

which reflects the current quality of the link and this 

may lead to lower data throughput due to fact that the 

UE may not be served based on its real demand of 

resources. 
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 Proportional Fair (PF) scheduling is another 

common scheduling algorithm. Unlike the operation 

of the RR, in the PF scheduling algorithm, the UEs 

are assigned the PRBs based on the consideration of 

the channel quality as well as the fairness level. The 

key objective of the PF algorithm is to reach a balance 

between the data rate and the fairness to prevent UEs 

from starvation. In the PF scheduling algorithm, the 

method of resource allocation can be determined 

according to the following expression [30]: 

 

 𝑄(𝑖) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖 [
𝑅𝑖(𝑡)

�̄�𝑖(𝑡)
]     (1) 

 

where,  𝑅𝑖(𝑡) is the current transmission rate for 

UE 𝑖; �̄�𝑖(𝑡) is the average data transmission rate for 

user 𝑖, which represents the history of all previous 

data rates of ith UE; 𝑄 is the priority of scheduling; 

𝑖 = 1, 2, … 𝑁𝑈𝐸𝑠; 𝑁𝑈𝐸𝑠 is no. of active UEs. Based on 

Eq. (1), the PF algorithm is examined the average UE 

throughput to maintain the fairness level between the 

UEs throughout the process of scheduling [31].  

The third most comment scheduling algorithm is 

the Best-Channel Quality Indicator (BCQI). The 

basic operation concept of the BCQI scheduling 

algorithm is to allocate the available resource to the 

UEs that are experienced good channel conditions 

[31]. The UE that sends the best CQI value to the BS 

has the highest scheduling priority in this scheduler 

compared to other UEs. Hence, finding the BCQI is 

periodically determined in the BCQI scheduling 

algorithm as shown in Eq. (2). 

 

 𝑄(𝑖) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖 𝑅𝑖 (2) 

 

where, 𝑅i  is the recent transmission throughput 

for 𝑈𝐸i; 𝑄 is the priority of scheduling. 

3.2 Background to spark framework 

Spark represents an open-source framework that 

has been used to process efficiently a great amount of, 

structured, semi-structured, and unstructured data 

[32]. The architecture of Spark is considered as an 

alternative to Hadoop and map-reduce architecture 

for the processing of big data due to its superior 

features. Spark architecture is associated with 

Resilient Distributed Datasets (RDD) besides the 

Directed Acyclic Graph (DAG) for data storage and 

processing [33]. It consists of four components that 

are part of the architecture as shown in Fig. 2 

including i) Spark driver (master node), which is in 

charge of translating the input code into real spark 

tasks to be run in the cluster. The driver program is 

also negotiated with the cluster manager during the 

operation; ii) Executors are distributed agents in 

control of the execution of the tasks in the Spark, 

perform all the data processing, and saves the 

produced results in the storage unit. Every spark 

application has its executor process; iii) Cluster 

manager can be considered as a bridge that acquires 

resources on the Spark clusters then allocates them to 

the spark job, the cluster manager manages and 

allocates the required system resources to the Spark 

jobs. Furthermore, it manages and follows the track 

to the live/dead nodes in a cluster. It enables the 

execution of jobs submitted by the driver on the 

worker nodes (also called Spark workers) and finally 

tracks and shows the status of various jobs running 

by the worker nodes; iv) Worker nodes are executing 

the business logic submitted by the Spark driver. 

Spark workers are abstracted and are allocated 

dynamically by the cluster manager to the Spark 

driver for the execution of submitted jobs. Spark 

utilizes the dataset and data frames as the primary 

data storage component that helps to optimize the 

Spark process and the big data computation. The 

common features [34] of the Spark framework are 

illustrated in Fig. 3. 

3.3 Problem definition 

In fact, there is no ideal scheduling algorithm that 

can maintain all UEs' requirements particularly in 

networks like the 5G-IoT. This means that improving 

 

 
Figure. 2 General diagram of Spark architecture 

 

 
Figure. 3 Common features of Spark framework 
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data flow will be at the expense of fairness between 

UEs and vice versa. Another aspect is the amount of 

computation overhead of the scheduling algorithms 

when the number of connections increased in the 

network. Hence, to explore the characteristics of the 

RR, PF, and BCQI algorithm, simple simulation tests 

are conducted. The results depicted in Fig. 4 

demonstrate the overall cell throughput of the 

scheduling algorithms with 5 UEs at 1 km/hr. The 

best CQI scheduler as illustrated has the highest 

performance in terms of data rate whereas the RR has 

the lowest performance and the PF is located between 

the BCQI and RR. This is because BCQI is a channel-

aware scheduler which means it responds to the real 

conditions of the UEs, unlike the RR algorithm. 

Fig.5 illustrates the fairness measurement, which 

is quantified using Jain's Fairness Index (JFI) as 

expressed in Eq. (3) of each scheduling algorithm. 

The results show that the RR has the best fairness 

then followed by PF and finally the worst fairness is 

presented by the BCQI due to allocating resources to 

UEs of the highest channel conditions without 

considering the other low channel condition UEs. 

Hence, BCQI is better in providing data throughput 

but it has a problem in fairness provision and vice 

versa for the RR scheduling algorithm, whereas PF 

performance is in between the characteristics of both 

the BCQI and the RR algorithms. 

 

 𝐽𝐹𝐼(𝑡𝑝) =
(∑ 𝑡𝑝𝒾)2

𝑁𝑈𝐸𝑠  .  ∑ 𝑡𝑝𝒾
2 (3) 

 

where, 𝐽𝐹𝐼 is the fairness index, tp is a vector of 

UE measured throughputs. The average throughput 

of user i,  NUEsis no. of active contending users. 

The test in Fig. 6 illustrates the ST of RR, PF, and 

BCQI for 1UE, where, the RR has the lowest 

scheduling time compared to PF and BCQI since RR 

is an unaware channel scheduling algorithm as 

mentioned earlier. On the contrary, BCQI has the 

largest time due to the extra processing procedure 

represented by finding the UE of the best CQI among 

all active UEs. 

Hence, based on the previous results, the PF 

scheduler can be nominated to be used with the 

proposed Spark framework since its performance 

represents a compromise between fairness, data 

throughput, and the computation overhead of the RR 

and BCQI schedulers. The next test shown in Fig.7 is 

focused on the latency that can be added to the system 

by scaling up the number of UEs in the network by 

using only the PF scheduling algorithm. The result 

shows that the latency of the scheduling task begins  

 

 
Figure. 4 The cell throughput with the RR, Best CQI, and 

PF scheduling algorithms (5 UEs, 1.4 MHz 𝑩𝑾, 1.9 

GHz, and 1x1 antenna system) 

 

 

Figure. 5 The fairness of RR, Best CQI, and PF 

algorithms (5 UEs, 1.4 MHz 𝑩𝑾,1.9 GHz, and 1x1 

antenna system) 

 

 
Figure. 6 Comparison of the applied scheduling 

algorithms in terms of average ST per UE 

 

 
Figure. 7 Growing scheduling time with increasing 

number of UEs using PF 
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to rise with increasing the UEs' number. It can be 

logically noticed that the produced latency will 

finally limit the scalability of the network particularly 

the latency is one of the key metrics and essential 

requirements of the 5G-IoT networks.  

4. The proposed modified proportional fair 

scheduling algorithm  

The complexity of PF algorithm is generated 

from extra calculation for maintaining the fairness 

between the contenders UEs. As shown in Eq. (1), the 

pervious history of all data transmission rates of 

certain UE has to be determined simultaneously at the 

time of calculating the priority 𝑄 for that UE. Then 

based on the value of 𝑄 , the UE will be either 

scheduled and received resources or not. The burden 

of computation time for finding the priority can be 

lessen or relaxed in the PF scheduling algorithm by 

using two steps pre-calculation for the average data 

rate per UE as shown in Fig. 8. 

The basis of priority calculation in the proposed 

Modified-PF (MPF) algorithm depends on the 

equation of a straight-line 𝑦 = 𝑚𝑥 + 𝑐  and this is 

explained in the following equations. To scale down 

data rates (x-axis) of UEs to normalized values 

between 0 to 1 as illustrated in Fig. 8, the following 

expression is used: 

 

 𝑅𝑛𝑖 =
𝑅𝑖 − 𝑅𝑚𝑖𝑛𝑖

𝑅𝑚𝑎𝑥𝑖 − 𝑅𝑚𝑖𝑛𝑖
  (4) 

 

𝑅𝑚𝑎𝑥𝑖  is maximum expected data rate per UE, 

𝑅𝑚𝑖𝑛𝑖  is minimum data rate per UE with 0 initial 

value, 𝑅𝑖  is the current data rate of the UE, 𝑅𝑛𝑖 is the 

normalized value of data rate between 0 to 1. 

Now calculating the priority is achieved by 

determining the mapping value of data rate on the y-

axis for two successive values as illustrated in Eq. (5), 

where this calculation is similar or mimic the way of 

 

Figure. 8 Priority calculation based on the straight-line 

equation for the modified PF 

finding the degree of membership between [0,1] 

of fuzzy logic set system, which is described as 

follows.  

 

 𝜇(𝑅𝑛𝑖,𝑗) =
𝑅𝑛𝑖,𝑗−𝑅𝑛𝑖 𝑚𝑖𝑛

𝑅𝑛𝑖 𝑚𝑎𝑥−𝑅𝑛𝑖 𝑚𝑖𝑛
 ,   

   

 𝜇(𝑅𝑛𝑖,𝑗−1) =
𝑅𝑛𝑖,𝑗−1−𝑅𝑛𝑖 𝑚𝑖𝑛

𝑅𝑛𝑖 𝑚𝑎𝑥−𝑅𝑛𝑖 𝑚𝑖𝑛
  (5) 

 

where, 𝜇(𝑅𝑛i,j) refers to the mapping value of the 

current data rate of the 𝑖𝑡ℎ UE on the y-axis, which is 

added to the mapping value 𝜇(𝑅𝑛i,j−1) of the former 

data throughput of the same UE, 𝑖 = 1,2, …, NUEs, 𝑗 =
2. 

Then, to attain an accurate decision to the priority 

of scheduling and to check the amount of fairness 

between the 𝑖𝑡ℎ  UE and others, the average of two 

mapping points (current and last data rates)  𝜇𝐴𝑉  of 

the UE can be calculated as follows: 

 

 𝜇𝐴𝑉𝑖 =
𝜇(𝑅𝑛𝑖,𝑗) + 𝜇(𝑅𝑛𝑖,𝑗−1)

2
 (6) 

 

Now the priority of scheduling 𝑖𝑡ℎ UE 𝑄(𝑖) can 

be determined as follows: 
 

 𝑄(𝑖) = 𝑎𝑟𝑔(1 − 𝜇𝐴𝑉𝑖) (7) 

 
Unlike the traditional PF algorithm, in the MPF as 

demonstrated in above, the saving in the 

computational complexity is represented by reducing 

steps of calculating the average data rates of UE from 

𝑗 = 𝐾 to 𝑗 = 2, where 𝐾 is all the previous data rates 

of a particular UE. It is worth stating that the saving 

in the computational latency will be clearly 

observable when there are massive number of active 

connected UEs similar to the IoT scenario as will be 

shown in the section of results and discussion. The 

complexity analysis of the modified PF is as follows:  

In the traditional PF there are two nested loops to find 

the scheduling priority. The outer loop executes 

𝑁 times (no. of UEs) and at each time the outer loop 

executes, the inner loop executes 𝐾  times (no. of 

previous data rates). As a result, the statements in the 

inner loop execute a total of 𝑁 𝑥 𝐾 times. Hence, the 

total complexity for the two loops is 𝑂(𝑁2) in the 

traditional. Whereas with the Modified-PF the value 

of 𝐾 is constant equals 2. Hence the total complexity 

is 2𝑁 times, therefore the total complexity is 𝑂(𝑁).  
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5. The proposed spark framework for 

scalable parallel processing   

Spark framework is proposed to keep the 

computing complexity of the scheduling algorithm 

dominated by the size of the clusters of the set of UEs 

instead of the entire active UEs in the mobile network. 

The burden of the scheduling task will be minimized 

via allocating a predefined cluster of UEs instead of 

the entire number of UEs. Application of the 

proposed Spark framework necessitates two parts, the 

first part is to group the connected UEs into clusters 

of pre-defined numbers before assigning them into 

the scheduling algorithm, which is set inside the 

Spark framework technology as explained and 

demonstrated in Algorithms (1 and 2). The second 

part of the proposed approach is represented by 

applying the parallel processing to these small groups 

of UEs to minimize the computational overhead that 

could be generated from increasing the number of 

UEs. Also, to avoid the potential queueing delay that 

can be produced from serving a large number of UEs 

in the traditional system before the application of the 

Spark framework. Algorithm 3 illustrates the pseudo-

code of the operation in the Spark framework with the 

MPF of the scheduling algorithm. Fig. 9 depicts the 

structure of the proposed Spark framework with the 

MPF scheduling algorithm.     

A prerequisite requirement to the operation of the 

Spark framework is to prepare groups of the input 

data to be processed in the form of batches, where, 

batch processing refers to the process of the request 

of sets of UEs over some time. Hence, the scheduling 

of a large number of UEs can be completed by 

handing out a sparsified set of UEs instead of the full 

number of UEs. Through the proposed Spark 

framework, the computational complexity is further 

minimized from 𝑂(𝑁) to 𝑂(𝑁/𝑀), where, 𝑀 is the 

number of UEs per cluster in the Spark framework as 

shown in Algorithm 1.   

It is worth stating that the active connected UEs 

in the cell can be calculated according to [35], where 

 

 
Figure. 9 The structure of the proposed Spark framework 

the number of active UEs per cell follows the Poisson 

distribution and can be determined by Eq. (8). 

 

 𝑀𝑈𝐸𝑠~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜑𝑀) (8) 

 

where, ∅𝑀 = 0.0031 𝑒1.095 𝑙𝑜𝑔10(𝛽𝑐𝑒𝑙𝑙 ) ,  βcell  is 

the mean of cell throughput (bits/s), which can be 

obtained by the summation of overall UEs throughput 

as follows:  

 

 𝛽𝑐𝑒𝑙𝑙 = 𝑆𝑢𝑚 (𝛽𝑈𝐸) (9) 

 

The throughput per UE (𝛽𝑈𝐸) can be found using 

as follows:  

 

 𝛽𝑈𝐸 = 𝐵𝑊 𝑙𝑜𝑔( 1 + 𝑆𝑁𝑅) (10) 

 

where 𝐵𝑊 is the system bandwidth; 𝑆𝑁𝑅 is the 

signal-to-noise ratio.  

 

Algorithm 1: UEs_Clustering 

Input:  

- UEs-Data     

- Desired-Cluster-size of UEs (M) 

Output:  

- Set of UEs_clusters (V) 

- No. of required workers (W) 

1: Function UEs_Clustering (M, UEs) 

2: { NUEs = Count_Active_UEs ( ) 

3: 
UEs_Array [NUEs]          // an array of all 

active UEs 

4: 
V [r, s] = 0  // r is no. of clusters; s= no. of 

UEs per cluster 

5: Set G = [NUEs /M] 

6: F=1 

7: For i=1: NUEs do 

8: V [f, i]  = UEs_Array [NUEs (i)]  

9: If (i % G= =0) 

10: F = F+1         // moving to next cluster 

11: End if 

12: End for 

13: 
W=V   }      // no. of clusters equals to no. of 

workers 

14: End function 

   Algorithm 2: Count_Active_UEs 

Input:  

- Mean the desired throughput per cell in bit/s 

(βcell) 

- Poisson parameter (ΦM) 

Output: Number of active UEs 

1: Function Count_Active_UEs ( )  

2: 𝛽𝑈𝐸 = 𝐵𝑊 ∗ 𝑙𝑜𝑔( 1 + 𝑆𝑁𝑅) 

3: 𝛽𝑐𝑒𝑙𝑙 = 𝑆𝑢𝑚(𝛽𝑈𝐸)   

4: eM
cell )(

10
log.095.1.0031.0  =  
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5: MUEs~Poisson(φ
M

)       // Eq. (8) 

6: Return (MUEs) }  

7: End function 

 
 
Algorithm 3: Scalable Scheduling Using Spark 

Framework  

Input: UEs-Data 

Output:  

-  Resources allocation for clusters of UEs 

1: Initialization 

2: M = desired cluster size 

3: (Wr, M) = UEs_Clustering (M, UEs-Data) 

4: 

- Set up Cluster Manager for monitoring the 

Worker nodes  

- Perform copies of the user program (the PF 

scheduler) for (Wr) Workers / Executors; 

5: 
For worker_id = 1 to W       // W: no. of 

workers= no. of Executors 

6: Worker (worker_id). Read (data) // call for read 

7: End for 

8: 
result = Spark (Read, @worker, @ MPF);  //Call 

Spark function 

9: Repeat from step 1 

10

: 

End 

11

: 

 //Call function of workers (1) to the worker (W) 

simultaneously for parallel processing 

12

: 

object worker (data) 

13

: 

{  MPF scheduling   // Eq. (7)           

14 assign resources   

15

: 

Return (resource blocks) 

16

: 

} 

17

: 

 End  

6. Results and discussion 

In this section, the performance of the proposed 

Spark framework and the MPF algorithm are 

evaluated and discussed. The simulation tests are 

conducted using a laptop with Intel(R) Core i7-

4500U CPU / RAM 8 GB. The setting of parameters 

in the simulation is shown in Table 1. The channel 

estimation is assumed to be perfectly measured with 

errorless channel feedback information. Another 

aspect is that the architecture of 5G virtualized Fog 

cloud radio access networks is considered [36], which 

relies on the cloud computing capabilities for 

baseband resources provision. 

 

Table 1. Simulation parameters  

Transmission  Uplink 

Transmission mode CLSM  

Network size  1 BS and variable 

numbers of UEs per BS 

Carrier frequency  1.9 GHz 

Bandwidth  1.4 MHz 

UE mobility speed  1 Km/hr 

Estimation  Perfect estimation  

Scheduling Algorithm Proposed MPF 

Antenna’s system 1x1 

 

First of all, the amount of saving in the ST with 

the modified-PF is examined. The result in Fig.10 

illustrates a comparison between the traditional PF 

with the proposed MPF. It can be noticed that there is 

an improvement in the scheduling time with the MPF. 

This is due to the reduction in the number of steps 

required in calculating the average data throughput 

per UE. It is worth stating that although the time 

complexity of the proposed MPF scheduling 

algorithm is decreased, it can be noticed that the ST 

of MPF is also starting to grow up with increasing the 

size of the network represented by the number of the 

UEs. Hence, scaling up the network size can diminish 

the gain that has been achieved with MPF. This 

aspect can be applied to all former research studies 

demonstrated in section 2, which are tried to reduce 

the computational complexity of the algorithm itself 

without considering the network scalability. This 

leads to the idea of using the Spark framework as a 

scalable and parallel processing framework.  

Regarding the result of the network with the proposed 

Spark framework, it is unlike the conventional 

scheduling strategies, which accommodate the 

requests of entire UEs and produces high latency 

from the scheduling process that can finally limit the 

network scalability, in the Spark framework, the 

scheduling algorithm is copied into several workers 

of the Spark to serve a small set of UEs in the form 

of clusters in a parallel manner as shown earlier in Fig. 

9. Hence, the results in Fig. 11 and Table 2 

demonstrate the ST with the proposed Spark 

framework. It can be noticed that the ST is minimized 

with the proposed Spark framework. This is due to 

the fact that the ST is dependent now on the size of 

the cluster instead of the total number of UEs in the 

network. Hence, it can scale up the size of the 

network with the proposed design without the barrier 

of high scheduling latency, where the resources are 

allocated in this test by the MPF scheduler. 
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Figure. 10 comparison between the traditional PF and the 

modified PF in terms of ST 

 

 

Figure. 11 Scheduling time of the MPF algorithm 

with the application of Spark framework for clusters of 

10, 30, 50 UEs 

 
Table 2. Comparison of ST with two levels of complexity 

reduction using two sizes of UEs clusters (50, 10), 

besides the percentage of saving in ST compared to PF 

No. of 

UEs  

(250) 

ST 

without 

Spark 

(sec) 

using 

PF 250 

UEs 

ST 

without 

Spark 

(sec) 

using 

MPF 

250 

UEs 

ST with 

Spark 

(sec) 

using 

MPF 5 

clusters 

of (50 

UEs) 

ST with 

Spark 

(sec) 

using 

MPF 25 

clusters 

of (10 

UEs) 

2.419 1.423 0.343  0.036 

Percentage of saving 

in ST compared to PF 
41% 85% 97% 

 

 

The power of applying the proposed Spark 

framework is represented by the scalability and the 

parallel properties. In other words, it can schedule the 

requests of for instance 1000 UEs in the form of 

clusters of a predefined number of UEs such as 10 

UEs or 30 UEs or 50 UEs, where this scenario is not 

applicable or possible to achieve with the  

 

 

Figure. 12 Percentage of Saving in ST of the PF 

algorithm with the application of Spark framework for 

clusters of 10, 30, 50 UEs 

 

Figure. 13 The correlation between the scheduling time 

and no. of servers/ workers 

 

conventional scheduling paradigm. The results in 

Fig.12 show the percentage of saving in the ST for 

the MPF scheduling algorithm for different UEs 

cluster sizes. Definitely, in case of increasing the 

cluster size, the ST also starts to increase too but now 

the upsurge will be controlled. Therefore, a high gain 

in the percentage of ST saving is observed at a 

smaller cluster of (10 UEs), which almost 97% saving 

in the ST of 250 UEs as shown in Fig.12, whereas this 

percentage begins to decline when increasing the 

cluster size. Table 2 illustrates a summary of the 

amount of saving in the scheduling time with the 

proposed approaches of this research. 

Finally, the obtained result in Fig. 13 illustrates a 

comparison between the theoretical calculations and 

simulation results of the overall scheduling time. The 

results show that as the number of servers or workers 

increases the scheduling time declines proportionally. 

7. Conclusions 

Resource allocation via the scheduling algorithm 

is one of the central aspects of the dense 5G-IoT 

networks. The scheduling time can be considered as 

a critical time due to the dynamic nature of the mobile 

networks that lead to continuous variation in the 

instantaneous channel conditions. However, scaling 
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up the network can lead to an increase in the 

scheduling time accordingly. In this paper, two levels 

of complexity minimization are achieved in the 

process of scheduling. The proposed Spark 

framework is accelerated the scheduling process by 

shifting the scheduling time complexity from the size 

of the entire network into the processing of small 

predefined clusters of UEs, which minimizes the 

complexity from 𝑂(𝑁2) to 𝑂(𝑁/𝑀)2.  Additionally, 

the proposed MPF is reduced the computational 

complexity of the traditional PF algorithm from 

𝑂(𝑁/𝑀)2to𝑂(𝑁/𝑀).Table 2 verifies the amount of 

reduction in the ST with the deployment of both the 

MPF and the Spark framework. As demonstrated in 

section 3.3, the PF algorithm is used due to its 

performance which represents a trade-off between 

fairness and the data rate. The results reveal that the 

proposed Spark framework and the MPF can provide 

a significant improvement in the scheduling process 

of the cellular network via minimizing the scheduling 

time that can support network scalability. 
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