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Abstract: Since local human movements can influence dengue spread, a network-based prediction model considers 

the dynamic relation between dengue case incidences and their location over time. Some approaches often generated 

the networks in a certain period with a single spanning time until several months or in one year, called static networks. 

However, one annual-based dengue spread model could have different simulations depending on the selected months 

to show different dynamicity. Other approaches do not involve any networks for generating the spread models but 

employ them for validating the models with simulations. Considering the evolution of dengue circumstances that could 

quickly change between periods, we proposed a Dengue Spread Dynamic Network (DSDN) model with some timespan 

and location boundaries variants. DSDN includes five network models with nodes representing localities and links 

showing dengue spread which varied every day depending on infections presence and environmental conditions in a 

certain period. With our proposed method, daily dengue spread from one location to another can be predicted based 

on the location-based incidence historical data as outbreaks prevention initiative. We also analyzed how dengue 

spreads differently in outbreak and non-outbreak periods using Dynamic Network Link Prediction (DNLP) method. 

From our experiments result, Neighbor Network which modeled that dengue only spreads between neighboring 

localities produced an accuracy of 92.54% for the entire period. When applied only to outbreak data, there was a 

performance increase of 3.39 points, which suggested that link prediction performs better when dengue is rapidly 

spreading. In addition to that, our experiments concluded that dengue potentially spreads to a location with no current 

infections if local incidence often occurred in the past. 

Keywords: Dengue spread dynamic network, Link prediction, Disease spread model, Long short-term memory. 

 

 

1. Introduction 

Dengue is a disease caused by an arthropod-borne 

dengue virus (DENV), which is transmitted between 

humans through the bit of female Aedes mosquitoes 

[1]. The disease is distinguished by its severity, 

including the classic dengue fever (DF), severe 

dengue with plasma leakage/ dengue hemorrhagic 

fever (DHF), and dengue with systemic shock/ 

dengue shock syndrome (DSS) [2]. During the past 

60 years, dengue has spread geographically, mostly 

in tropical and sub-tropical countries. It was 

responsible for 1.14 million disability-adjusted life-

years in 2013, with an estimation of 100 million cases 

per year in over 125 countries [3, 4]. Due to the 

burden posed by dengue fever infection, it is 

necessary to model its spread and analyze potential 

endemic areas characteristics, so that preventive and 

control measures can be carried out.  

Authors in [5] proposed dengue endemic areas 

stratification method as an early outbreak 

identification in a certain year. It provided area risk 

mapping to support the Ministry of Health in 

initiating prevention measures before the outbreak. 

However, the work did not address how dengue 



Received:  February 5, 2021.     Revised: March 15, 2021.                                                                                               347 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.29 

 

spreads between areas, and how the spread pattern 

differed during outbreak and non-outbreak periods. 

Since the movements of the mosquito vector are 

very restricted, human mobilities play a key role in 

confirming infection risk and modelling the patterns 

of virus spread [6]. The spread between entities, 

which can either be humans or locations, creates a 

relationship that forms a network. Previous works on 

disease spread network modelling includes 

simulating the implementation of standard 

compartmental models, such as susceptible-

infectious-recovered (SIR) [7], improved SIR (ISIR) 

[8], as well as susceptible-exposed-infectious-

recovered (SEIR) model [9]  on existing contact 

network data. These approaches could estimate how 

a disease progresses in a network based on a 

predefined formula, and examine the appropriate 

immunization strategies. By understanding disease 

transmission through a  network structure, it helps 

decision makers  to determine infection distribution 

and disease control properly [10].   

Those simulations were used as the foundation 

for developing epidemic control strategies. However, 

it requires knowledge of epidemiology to calculate 

the model formula, which health agencies do not 

always have, especially in developing locations. 

Moreover, in areas where dengue rapidly spreads, it 

is necessary to have an approach that can quickly 

identify the spread pattern only from the historical 

data. 

Researches [11, 12] proposed a dengue spread 

network model, where a neighborhood was 

represented as a node, with links representing people 

who moves from their residences to their place of 

daily activities. These works analyzed which 

movements impact the dynamics of dengue, and 

which nodes that become the most important 

outbreak drivers. Meanwhile, authors in [13] used 

two-mode network for modelling dengue epidemic 

behaviour from the perspective of complex network. 

In the projected one-mode network, two locations 

were connected if both share the same week of 

incidents. 

These studies were able to identify which nodes 

or locations that have higher infection rates, thus may 

help health agencies to establish a disease control 

management when an outbreak occurs. However, the 

works did not discuss how the network model 

evolved, and how nodes interacted with each other. 

Considering that dengue circumstances can change 

from time to time, it can have an impact on the 

relationship between locations. Therefore, it is 

necessary to analyze dengue progression in the form 

of dynamic model, so that it can help the decision 

makers to infer disease characteristics and predict the 

spread.  

Our research proposes Dengue Spread Dynamic 

Network (DSDN) model with nodes representing 

locations, and links representing virus spread. In 

determining the links, we compiled five different 

scenarios to generate networks with different 

timespan and nodes grouping or clustering. Then, we 

predict how dengue infection will develop, both 

during the outbreak and non-outbreak periods using 

dynamic network link prediction (DNLP) method. 

From the link prediction results, we analyzed how 

dengue spreads between localities in a predetermined 

period.  

The remainder of this article is organized as 

follows. Section 2 reviews the related studies in 

network representation and dynamic network link 

prediction. Section 3 describes the methodology of 

this research, including how to construct the dataset, 

infer dynamic network from the dataset, and predict 

dengue spread using link prediction approach. 

Section 4 explains the experimental results and 

discussion. Section 5 describes the conclusion of this 

research, as well as direction for future works. 

2. Related works 

2.1 Network representation for modelling the 

spread of infectious diseases 

There are various network structures that have 

been used in modelling the spread of infectious 

diseases. Previous studies mostly used standard 

compartmental model to simulate disease spread in a 

general network data. Authors in [7] applied SIR on 

human contact networks in several environments, 

such as conference, hospital, school, and gallery. 

Meanwhile, authors in [8] applied the Improved SIR 

(ISIR) model on an artificial social contact network 

generated by BA generator, and authors in [9] applied 

SEIR model on high-resolution human contact 

network between conference attendees. Other than 

that, authors in [14] proposed SIR-network model 

with city’s neighborhoods being the nodes, and 

fractions of people moving between neighborhoods 

as the directed edges. 

Other studies used historical disease incidences 

data to quickly analyze the spread, without 

formulating the epidemic model beforehand. Authors 

in [13] generated a location-based network structure, 

where the spread of dengue is modelled by 

establishing weekly dengue cases in different 

locations as a complex two-mode network. In this 

type of two-mode network, nodes are separated into 

primary and secondary sets, where links are only 
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specified between nodes in different sets. The two-

mode network was then projected into one-

modenetwork, where locations were connected 

through edges which represented co-occurring 

dengue incidences in one week. By modelling the 

spread of dengue from a location perspective, it was 

possible to identify which localities were only 

slightly affected by the virus. It could help 

investigators to identify the precautions which were 

taken to suppress the virus spread. 

The network used in the previous study is a static 

network that describes the spread in only one period. 

The work did not discuss how the network evolved, 

and how nodes interacted with each other. In order to 

understand how dengue progresses, it is necessary to 

know how it spreads over time, so that its 

characteristics can be inferred. By understanding the 

dynamics of dengue, it is also possible to make 

predictions on how dengue circumstances will 

develop. The proposed method models dengue spread 

in the form of dynamic networks which consists of  

graph snapshots, each represents dengue relationship 

between locations in one day. 

2.2 Link Prediction in dynamic networks 

Dengue epidemic is a dynamic phenomenon, 

which can be represented in the form of dynamic 

networks. Link prediction of a dynamic network tries 

to predict how its structure evolves, thus explaining 

the relationships between topologies [15]. In dynamic 

networks, temporal information needs to be 

considered and included in the analysis, which is 

often overlooked by models designed for static 

networks. Therefore, constructing dengue spread 

network model requires method that is designed for 

dynamic networks. By predicting the links that are 

going to appear or disappear, it is possible to 

understand how one location gets infected by dengue 

virus, and how it recovers. 

Several studies on DNLP include the use of 

Random walk which was able to predict future links 

efficiently in temporal uncertain social networks [16]. 

Authors in [17] previously applied Random walk on 

static networks, while authors in [18] applied it for 

learning dynamic/ time-dependent network without 

loss of information. Other than that, authors in [19] 

proposed link prediction approach based on the 

attraction force between nodes (DLPA). Using this 

method, it was possible to detect the missing links 

and predict potential links in the upcoming period. In 

addition, with the development of deep learning, 

authors in [20] proposed Deep Dynamic Network 

Embedding (DDNE), which made embeddings for 

new links using deep architecture and measured the 

similarity of nodes to address the neighbor’s 

influence.  

These methods were able to model a network 

evolution and predict whether there would be missing 

links or potential links. However, the methods tend to 

ignore historical information contained in the earlier 

period, as it only made use of a few historical 

snapshots. Authors in [15] proposed E-LSTM-D, an 

end-to-end deep learning framework, which 

incorporated encoder-decoder architecture to learn 

network representations, and a stacked long short-

term memory (LSTM) to learn the temporal features. 

This method allowed historical information to be 

fully used when generating the model, by learning the 

time dependencies between network snapshots. 

While most existing methods only focused on 

predicting links that were going to appear, E-LSTM-

D was also able to predict links that were going to 

disappear, which suited the dynamics of a disease 

spread network. On top of that, by fine tuning the 

network structure, this method also allowed 

prediction for  networks on various scales, such as the 

dengue spread networks that were generated in this 

research. 

3. Research methodology 

3.1 Dataset 

Malang Regency is one of the dengue endemic 

areas located in East Java province with the second 

highest number of dengue incidences among other 

regencies and municipalities in Indonesia. It consists 
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Figure. 1 Generating DSDN for predicting dengue spread using E-LSTM-D 
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of 390 villages which located in 33 sub-districts. This 

research focused on the dataset that was obtained 

from Malang Regency’s Health Office and 

Meteorology Climatology and Geophysics Council 

(BMKG). As displayed in Fig. 1, the raw data 

consists of dengue fever incidence, larvae free index 

(LFI), location-based neighborhood, and weather. 

Dengue fever incidence data during 2017 to mid-

2019 were obtained from community health centers 

on sub-district level, hereinafter referred to as locality. 

The data included patient registry which consists of 

an individual’s demographic (age, sex), location 

(sub-district, village, reporting locality/ hospital), and 

periods indicating the disease progression (dates of 

symptoms onset, as well as hospital’s admission and 

discharge). The incidences trend showed a spike in 

January which continued to peak in February 2019. 

The increase in cases had been occurred from 

September 2018, which indicated an outbreak period.  

Larvae free index (LFI) is a measurement used to 

identify the presence of mosquito vector in an area. 

The value was obtained from larvae inspection 

activity in residential houses, which is calculated as 

the percentage of the number of houses with zero 

larvae compared to the total number of houses 

inspected [21]. LFI raw data contained monthly index 

in each locality. 

Location-based neighborhood data contained 

neighboring sub-districts in northern, eastern, 

southern, and western boundaries. The incorporation 

of location-based neighborhood data aimed to 

analyze how dengue incidence in an area would be 

affected by its environmental conditions [22]. 

Daily weather data consisted of maximum, 

minimum, and average temperature, rainfall, average 

humidity, sunshine duration, as well as maximum and 

average wind speed. The data were recorded in two 

weather stations in Malang Regency and one 

neighboring station in Pasuruan Regency as 

supplementary data. The importance of including 

weather in the dataset was based on the analysis that 

temperature, rainfall, humidity, and wind speed were 

significant weather factors associated with dengue 

cases [23]. 

3.2 Create Daily Locality-Based dataset 

As illustrated in Fig. 1, preprocessing was the 

initial step carried out after raw data collection. It 

consisted of correcting inaccurate and duplicate 

entries. The inaccuracy included discrepancies in 

dengue incidence data due to the manually recorded 

patient registry, incorrect sub-district neighborhood 

mapping, and undefined values in weather data. In 

addition to that, imputation was performed on 

unrecorded weather values in a certain period. 

Prior to creating the dengue spread model from 

the dataset, it is necessary to standardize its unit. As 

dengue incidence data can change rapidly every day 

in each locality, the unit was standardized into daily-

based and locality-based. Generating daily locality-

based dataset included calculating number of infected 

people during period of sickness, interpolating 

monthly LFI and stations-based weather data, as well 

as breaking down sub-districts neighborhood data 

into locality-based. 

Period of sickness started from three days before 

the patient’s sick date, while ended on 11 days after. 

This calculation was based on the minimum days in 

dengue Intrinsic Incubation Period (IIP), which lasts 

for 3 to 8 days. The number of days in the period of 

sickness is 14, which was the upper limit of dengue 

sickness duration  [24]. Hence, dengue infection on 

day t was calculated by accumulating co-occurring 

incidences during day t-3 to t+11. 

Interpolation was performed on LFI and weather 

data. Obtaining daily LFI data used Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) method. 

PCHIP was proven to be able to fill in missing or 

incorrect values [25], as well as replacing negative 

values for fitting rainfall data [26]. Whereas 

generating locality-based weather data used Kriging 

interpolation algorithm, as it was able to estimate 

precipitation, temperature, wind speed, humidity, 

cloudiness, sunshine duration, as well as rainfall data 

through interpolation [27]. 

3.3 Identify Risk Factor of Dengue Spread 

Feature ranking method was used to determine 

which factors were the most influential in correlation 

to the number of dengue incidences [28]. It included 

 
Table 1. Feature score and significance analysis of 

environmental variables to dengue incidence 

Environmental 

Factors 

Feature 

# 

Feature 

Score 

Infected people at 

neighboring localities 

F1 0.275 

Minimum temperature F2 0.044 

Maximum temperature F3 0.040 

Average temperature F4 0.053 

Average humidity F5 0.054 

Rainfall F6 0.035 

Sunshine duration F7 0.057 

Maximum wind speed F8 0.034 

Average wind speed F9 0.022 

Larvae Free Index F10 0.387 
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calculating the feature score using Random Forest as 

shown in Table 1, then incorporating the features into 

a dengue incidence prediction model. Experiments 

were carried out using a combination of features with 

the best scores. Based on the prediction accuracy 

result, features that were considered as environmental 

risk factors are five features with the highest scores 

including the number of infected people in 

neighboring locality (F1), average temperature (F4), 

average humidity (F5), sunshine duration (F7), and 

LFI (F10). 

3.4 Generate dengue spread dynamic network 

Fig. 2 displays undirected network with nodes 

representing localities. It was visualized using Bokeh 

visualization library, which was displayed on top of 

Malang Regency map view. The nodes were plotted 

based on the longitude and latitude coordinates of 

each locality, while edges were generated from 

neighboring localities matrix. Locality 𝑖 is linked to 

locality 𝑗 when 𝑗 is the immediate neighbor of 𝑖. In 

the figure, the nodes are visually separated by circular 

boundaries representing neighborhood groups, with 

three localities in the first group, five localities in the 

second group, and the rest of 31 localities in the other 

group. 

We modelled DSDN using five different 

scenarios based on our hypothesis about how dengue 

spreads spatially in a network. The network links 

indicated dengue spread between localities, which 

defined by co-occurring infections on each day. The 

dynamic network consists of sequential graphs, 

where  𝐺𝑘 = (𝑉, 𝐸𝑘)  is the 𝑘 th snapshot of the 

network, 𝑉 is the set of nodes representing locality, 

and 𝐸𝑘  describes temporal links within timespan 

[𝑡𝑘−1, 𝑡𝑘].  For each 𝐺𝑘 , adjacency matrix 𝐴𝑘 

represents the links between nodes. Each element 𝑎 

in 𝐴𝑘 ∈  {0, 1} shows whether an infection exists in 

locality 𝑖, 𝑗 (𝑎𝑘;𝑖,𝑗 = 1) or does not exist (𝑎𝑘;𝑖,𝑗 = 0). 

Table 2 shows the characteristics of each 

generated network model.  In our models, we assume             

that when dengue spread occurred in two localities, 

each locality influenced each other equally. Thus, 

each network model was in the form of unweighted 

symmetrical directed network (the values of 𝑎𝑑;𝑖,𝑗 

and 𝑎𝑑;𝑗,𝑖  were always equal). Same-day Network 

was modelled based on dengue infections at different 

localities in one day, which was determined when the 

number of co-occurring infections in locality 𝑖 and 𝑗 

on day 𝑑  is greater than 0 ( 𝑖𝑛𝑓𝑒𝑐𝑡𝑖;𝑑 >

0 &  𝑖𝑛𝑓𝑒𝑐𝑡𝑗;𝑑 > 0) . Meanwhile, other four models 

covered a longer timespan by taking into account all  

 

 
Figure. 2 Visualization of locality neighborhood groups 

in in the form of undirected network 

 

Table 2. The characteristics of the generated dengue 

spread network models 

Network Conditions for links 𝒊 → 𝒋 

Group/cluster Infection presence 

Same-day - 𝑖𝑛𝑓𝑒𝑐𝑡𝑖;𝑑 > 0 & 

𝑖𝑛𝑓𝑒𝑐𝑡𝑗;𝑑 > 0 

14-days - 

∑ 𝑖𝑛𝑓𝑒𝑐𝑡𝑖;𝑑 > 0

𝑡+11

𝑑=𝑡−3

 

& 

∑ 𝑖𝑛𝑓𝑒𝑐𝑡𝑗;𝑑 > 0

𝑡+11

𝑑=𝑡−3

 

Neighbor 𝑛𝑒𝑖𝑔ℎ𝑖  = 𝑛𝑒𝑖𝑔ℎ𝑗  

Centroid-

based 

𝑐𝑙𝑢𝑠𝑡𝑖;𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑗;𝑑 

Density-

based 

𝑐𝑙𝑢𝑠𝑡𝑖;𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑗;𝑑 

 

period of sickness 𝑑 − 3 to 𝑑 + 11 

( ∑ 𝑖𝑛𝑓𝑒𝑐𝑡
𝑖;𝑑

> 0𝑡+11
𝑑=𝑡−3  & ∑ 𝑖𝑛𝑓𝑒𝑐𝑡

𝑗;𝑑
> 0𝑡+11

𝑑=𝑡−3 ) . In 

addition to that, group-based and cluster-based 

models also included grouping/clustering constraints, 

where the links between nodes only existed when  
localities 𝑖 and 𝑗 on day 𝑑 were in the same group or 

cluster (𝑛𝑒𝑖𝑔ℎ𝑖  = 𝑛𝑒𝑖𝑔ℎ𝑗 / 𝑐𝑙𝑢𝑠𝑡𝑖;𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑗;𝑑). 

Fig. 3 displays the visualization of all five 

dynamic network models within period 𝑡  to 𝑡 + 2 

using the same dataset. It was generated based on 

randomly selected samples in the dataset, which 

included incidences on day-816 (𝑡), 817 (𝑡 + 1), and 

818 ( 𝑡 + 2 ) in 7 localities from different 

neighborhood groups. Localities L1 and L2 

represented group 1, localities L3 and L4 were in 

group 2, while localities L5, L6, and L7 were in group 

3. The infections and recoveries which occurred 

during period 𝑡 − 2 to 𝑡 + 2 were as follows: 

• day 𝑡 − 2: infections existed in all localities 

L1, L2, L3, L4, L5, L6, and L7. 

• day 𝑡 − 1 : infections still existed in 

localities L2, L3, L4, L5, and L7, while 

infections in localities L1 and L6 were 

recovered, and no new infections existed. 

\
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• day 𝑡 to day 𝑡 + 2 : infections still existed 

in localities L2, L3, L4, L5, and L7, and no 

new infections existed. 

It can be seen from the visualization that the 

dynamics of each network model is different 

depending on its characteristics and how it was 

generated. 

For dengue spread prediction purposes, we 

transformed each network model into an adjacency 

matrix with the dimension of 𝑇 ×  ∑ 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 ×
∑ 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 , where 𝑇 was the number of days in one 

network, and ∑ 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 was the number of localities. 

The matrix element was defined as 1 if locality 𝑖 and 

locality 𝑗  nodes were connected through link, 

otherwise it was stated as 0. Two connected localities 

were considered to be related in terms of affecting 

dengue spread in day 𝑡  based on the conditions 

determined in each network. 

3.4.1. DSDN based on infections in the same day 

Same-day Network was modelled based on our 

hypothesis that two locations influence each other in 

the spread of dengue if there are co-occurring 

infections in the same day. Fig. 3 (a) shows the 

dengue spread dynamics, where infections only 

existed in localities L2, L3, L4, L5, and L7 on day 𝑡. 

It can be seen in graph 𝐺𝑡 that those five nodes were 

linked and considered influential on the spread. On 

day 𝑡 + 1  and day 𝑡 + 2 , there were no new 

infections and recoveries occurred, thus the 

visualizations of graphs 𝐺𝑡+1  and 𝐺𝑡+2  were the  

same as 𝐺𝑡. 

3.4.2. DSDN based on co-occurring infections during 

period of sickness 

This 14-days Network covered a longer timespan 

compared to Same-Day Network,  as it was generated 

based on the period of sickness within 𝑡 − 3 to 𝑡 +
11 . We hypothesized that two locations influence 

each other in the spread of dengue if there were co-

occurring infections within the 14 days period of 

sickness. As shown in Fig. 3 (b), there were infections 

in all localities. This was due to the infections on 

previous days which were within one period of 

sickness. In this case, there were infections in all 

localities on day 𝑡 − 2. As displayed in graph 𝐺𝑡  and 

𝐺𝑡+1, all localities were linked. Meanwhile, on day 

𝑡 + 2  infections in localities L1 and L6 were 

recovered, and there were no new infections. Thus, 

graph 𝐺𝑡+2 displays no links from localities L1 and 

L6 to others. The model concluded that localities with 

no infections within 14 days did not affect the dengue 

spread. 

3.4.3. DSDN based on co-occurring  infections 

during period of sickness within a 

neighborhood group 

Neighbor Network was generated based on the 

same method as 14-days Network, which included all 

co-occurring infections within the period of sickness. 

This model also included neighborhood group 

characteristics, as defined in Fig. 2. We hypothesized 

that two locations in one neighborhood group 

influence each other in the spread of dengue if there 

Figure. 3 Visualization of dengue spread network 

models of localities P1 to P7 showing different dynamic 

network evolution within the same period 
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are co-occurring infections within the period of 

sickness. The links in Neighbor Network as shown in 

Fig. 3 (c) were basically the same with the links in 

14-days Network. However, in this model links only 

existed between localities in the same neighborhood 

group. Graphs 𝐺𝑡 and 𝐺𝑡+1 display the same links, as 

there were infections in all localities within one 

neighborhood group. On the other hand, graph 𝐺𝑡+2 

shows no links from/to localities L1 and L6, as all 

infections in both localities were recovered. 

3.4.4. DSDN dengue spread network based on co-

occurring infections during period of sickness 

within a centroid-based attributed cluster 

Centroid-based Network was created using the 

same period of sickness as 14-days Network and 

Neighbor Network, with different localities grouping. 

It was generated based on our hypothesis that dengue 

spreads between localities with similar 

environmental conditions. We used K-Means 

clustering algorithm to distribute the nodes into 

several clusters on each day. Based on feature scoring 

results as displayed in Table 1, features F1, F4, F5, 

F7, and F10 were specified as the clustering attributes.  

Simulations were carried out with number of 

centroids ranging from 2 to 39, which equals to the 

number of localities. It resulted in nodes clustering 

which consisted of 2 to 18 clusters per day, with an 

average Silhouette score of 0.607. The clustering 

process was applied to the dataset on each day. Hence, 

the cluster of each node, as well as the network 

structure, might change every day according to the 

attributes value. 

Fig. 3 (d) shows that two localities with co-

occurring infections were not always linked, as the 

link only appeared when the two localities were in the 

same cluster. In graph 𝐺𝑡, localities L5, L6, and L7 

were connected as its values for features F4, F5, and 

F7 were exactly the same. Meanwhile, localities L1, 

L2, and L4 were connected as its values for features 

F4, F5, F7, and F10 were similar. In addition to that, 

the values for feature F1 were all under 10, which 

showed that there was only a small number of dengue 

incidences occurred around the localities. On the 

other hand, locality L3 fell into a separate cluster as 

it had the greatest value difference compared to other 

localities, which indicated a different environmental 

condition. 

In graph 𝐺𝑡+1 , localities L1 and L2 were 

connected as its values for features F1, F4, F5, and F7 

were similar. Meanwhile, localities L4, L5, and L6 

were also connected due to the features value 

similarity.  However, localities L3 and L7 fell into 

two separate clusters, as its values for the five 

features were not similar. The values for feature F1 

were much higher than other localities, which also 

indicated a different environmental condition in the 

two localities. 

It can be concluded from the Centroid-based 

Network model that the most significant value 

influencing the cluster formation was feature F1, as it 

had a wider range compared to the other features. 

Thus, localities with a high number of dengue 

incidences in its neighborhood were put into separate 

clusters. This also applied to the links in graph 𝐺𝑡+2, 

where although the values of features F4, F5, F7, and 

F10 for all localities were similar, localities L3 and 

L7 had much higher F1 values compared to localities 

L2, L4, and L5. 

3.4.5. DSDN based on co-occurring infections during 

period of sickness within a density-based 

attributed cluster 

Since the greater number of localities in one area 

indicates a denser population, it causes the distance 

between the localities to be closer. This Density-

based Network incorporated the coordinates of each 

locality by applying DBSCAN clustering algorithm 

[29]. All nodes were put into clusters based on the 

distance between localities and the value of its 

attributes on each day. Simulations were carried out 

to find the most suitable epsilon value based on the 

best Silhouette score. It resulted in nodes clustering 

with epsilon value ranging from 1.5 to 2.8, number of 

clusters between 2 to 9, with the average Silhouette 

score of 0.615. The minimum sample / point value 

was set to 1 so that all data points could be assigned 

to the clusters, and nothing was classified as noise 

[30]. The cluster composition might also vary each 

day, which depends on attributes value of the 

particular localities.  

Fig. 3 (e) shows that in graphs  𝐺𝑡, 𝐺𝑡+1, 𝐺𝑡+2, 

localities L3 and L4 were never linked to other 

localities. Based on the data, localities L3 and L4 had 

different values for features F4, F5, and F7, while 

localities L1, L2, L5, L6, and L7 had exactly the same 

values for the three features. Compared to Centroid-

based Network model, where feature F1 significantly 

affected cluster formation, in Density-based Network, 

the values of all five features affected the cluster 

formation. This was concluded based on the data, 

where localities were included into one cluster if the 

values for features F4, F5, and F7 were exactly the 

same, and features F1 and F10 were similar. When 

there was a big difference in the values for the two 

features, the respective localities were put into 

separate clusters. 
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Figure. 4 E-LSTM-D framework used for predicting dengue spread 

 

 

3.5 Predicting dengue spread 

Fig. 4 shows the architecture of E-LSTM-D 

framework used for predicting dengue spread in this 

research. E-LSTM-D framework consists of encoder- 

decoder architecture and stacked LSTM. Encoder 

layer was placed at the entrance of the model to learn 

the network structure, and represented the network as 

high-dimensional data into a lower dimensional 

vector space. Whereas decoder layer acted as a graph 

reconstructor at the end of the model to transform the 

latent features back into a matrix form. Between the 

encoder and decoder layers, the stacked LSTM layer, 

which consisted of multiple LSTM cells was placed 

to learn the pattern of the network evolution. 

Using E-LSTM-D, the evolution of a sequence of 

graphs {𝐺1, … , 𝐺𝑇} was learned to predict the future 

links that may appear or disappear. A sequence of 

length 𝑁  was used to add more information hence 

resulting in a more precise inference. As the input, 𝑆 

was a sequence of graphs with sequence length 𝑁 

which consists of graphs {𝐺𝑡−𝑁 , … , 𝐺𝑡−1}. It was first 

received by the encoder layer that was placed at the 

entrance of the model. The encoder layer processed 

each term in an input sequence separately. Then, by 

element-wise adding, it concatenated all the 

activations using 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)  as the 

activation function, to generate output 𝑌𝑒.  

Output 𝑌𝑒 from encoder layer was then fed into 

the stacked LSTM layer, which consisted of two 

LSTM cells. This layer generated 𝐻  as the output 

representing the features of target snapshot. As for 

the decoder layer, it had the mirrored structure of the 

encoder. However, unlike the encoder, the output 

layer of the decoder used activation function 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = [1/(1 + 𝑒−𝑥)] . Because in this 

research the number of layer in the decoder was 1, the 

activation function used in the decoder layer is only 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑. The decoder layer received feature 𝐻 to be 

processed and reconstructed into a form of predicted 

graph 𝐺𝑡 . To be able to produce a predicted graph 

with a structure that fit the input graph, the decoder 

output layer had the same number of units as the 

number of nodes. 

As for the parameters of E-LSTM-D, we set the 

encoder layer as 1 layer with 128 units, and the 

number of LSTM cells as 2, each with 256 units. 

Meanwhile, the number of units in the decoder layer 

was 39, which equals to the number of nodes in the 

network. We evaluated the performance of each 

model using different length of historical snapshots, 

which are 3, 11, and 14. This was to represent the 

number of days in period of sickness from 𝑡 − 3 to 

𝑡 + 11, which lasted for 14 days. For example, if 3 

was used as the number of historical snapshot, three 

graphs on the previous periods {𝐺𝑡−3, … , 𝐺𝑡−1} were 

used as input to predict graph 𝐺𝑡 . By distinguishing 

the length, the ability of E-LSTM-D in learning the 

model was analyzed, whether this method was able to 

study a lot of information from longer historical 

snapshot length, or had better performance at model 

with a shorter length. 

4. Results and Discussion 

There are three experiments conducted in this 

study. In the first experiment, we applied link 

prediction methods to the generated networks. We 

evaluated the performance of E-LSTM-D against 

node2Vec [16] and CTDNE [17] using two different 

evaluation metrics. The first one was area under 

Receiver Operation Characteristics curve (AUC), 

which was the mostly adopted metric to calculate the 

link prediction accuracy [31]. AUC shows the 

plotting result of True Positive Rate (TPR) against 

False Positive Rate (FPR), which indicated a near 

perfect prediction if the score approached 1.0. Other 

metric was error rate, which compared the number of 

links that were falsely predicted, to the total number 

of existing links. This was an addition to AUC, to 

make the performance evaluation became more 

comprehensive [15]. 
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Table 3. Performances of E-LSTM-D link prediction 

against node2Vec and CTDNE applied to five generated 

dengue spread dynamic networks 

Network AUC 

Node2Vec CTDNE E-LSTM-D 

Same-day .692 .691 .838 

14-days .688 .689 .859 

Neighbor .691 .679 .926 

Centroid- 

based 

.676 .680 .662 

Density- 

based 

.700 .679 .837 

Table 4. Performances of E-LSTM-D link prediction on 

five generated dengue spread dynamic networks with 3, 

11, and 14 days as the length of historical snapshots 

Network AUC Error Rate 

3 11 14   3 11 14 

Same-day .838 .751 .738 .478 .627 .725 

14-days .859 .821 .819 .271 .356 .369 

Neighbor .926 .909  .904 .267 .322 .363 

Centroid- 

based 

.662 .635 .625 1.35 1.20 1.23 

Density- 

based 

.837 .794 .809 .377 .428 .435 

 

Table 5. Performances of E-LSTM-D link prediction on non-outbreak and outbreak period 

Network AUC Error Rate 

3 11 14 3 11 14 

No-

Out 

Out No-

Out 

Out No-

Out 

Out No-

Out 

Out No-

Out 

Out No-

Out 

Out 

Same-day .825 .864 .753 .766 .711 .802 .869 .214 1.15 .290 1.19 .290 

14-days .866 .958 .812 .920 .776 .910 .507 .074 .710 .110 .777 .138 

Neighbor .885 .959 .849 .944 .844 .940 .513 .064 .707 .100 .717 .117 

Centroid-based .838 .825 .806 .820 .788 .795 .704 .807 .775 .683 .829 .754 

Density-based .847 .919 .805 .868 .782 .835 .610 .136 .756 .230 .818 .273 

 

The hyperparameters used for node2Vec and 

CTDNE were the followings: embedding size = 128, 

number of walks per node = 10, walk length = 80, and 

context window = 2. Prior to applying both methods, 

the network models were transformed into undirected 

network. All the graphs within the network period 

length (838 days for Same-day Network and 824 for 

the others) were used as prediction input, with the 

first 80% of the data being the training set, while the 

remainder defined as the test set. 

As for E-LSTM-D, historical snapshots length 

was required to be determined. For the first 

experiment, we used 3 as the historical snapshot 

length. We only used 810 snapshots of the dataset, 

which was subtracted by 14 from a total of 824 

samples. This was to accommodate 14 as the 

historical snapshots length required in the second 

experiment, so that all link prediction models had the 

same training and test set. We divided the first 648 

snapshots as the traning set, and the rest 162 samples 

(20% of the dataset) as the test set.  

Table 3 shows the performance of all link 

prediction methods measured using AUC, where E-

LSTM-D outperformed other two methods for all 

network models except Centroid-based Network. 

Compared to the other two methods, E-LSTM-D 

made use of historical snapshots length to predict the 

links in the next immediate period. This indicated that 

sequential data from previous periods were able to 

supervise the method to achieve higher prediction 

accuracy. This also suggested that it was necessary to 

learn the historical relationship between nodes to 

produce better predictions. Meanwhile, Centroid-

based Network had widely varied links between 

nodes in each period, which were more difficult to be 

predicted using methods that relied heavily on 

historical data patterns such as E-LSTM-D. 

For the second experiment, we compared the 

performance of E-LSTM-D using 3, 11, and 14 as the 

historical snapshot length as shown in Table 4, where 

the link prediction applied to Neighbor Network 

model  achieved the highest scores among all models 

for all evaluation metrics and historical snapshot 

lengths. Neighbor Network was a model in which the 

links between nodes were more fixed compared to the 

other models, because the links only existed between 

nodes in one neighborhood group. For example, as 

localities 13, 19, and 26 were in one neighborhood 

groups, locality 13 was never connected to localities 

other than 19 and 26. E-LSTM-D was able to learn 

this kind of characteristic in the link prediction. 

However, this was not the case for the other models, 

because the links in other models did not depend on 

fixed group as in the Neighbor Network, so the other 

networks were more sparse. This was shown from the 

prediction result for Centroid-based Network, where 

it had low AUC score and high Error Rate scores, due 

to its varying daily cluster for each locality.  
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Our third experiment was to apply E-LSTM-D 

link prediction to the network models in non-

outbreak and outbreak periods with results as shown 

Table 5. Based on the dengue fever incidence data 

trend, we divided the dataset into two periods, non-

outbreak (January 2017 – August 2018) and outbreak 

(from September 2018 onwards). For non-outbreak 

period dataset, we divided the first 466 snapshots as 

the traning set, and the rest 116 samples as the test set. 

Meanwhile, for outbreak period dataset, the first 160 

snapshots were included in the training set, and the 

rest 40 samples were in the test set. In this experiment, 

the link prediction applied to Neighbor Network also 

had the best performance for all metrics in non-

outbreak/outbreak periods. 

Compared to the use of all data in the link 

prediction model, using the data only in outbreak 

period could improve the prediction performance. 

This applied to all models, for all evaluation metrics 

and historical snapshot lengths. On the other hand, 

using only non-outbreak period data generally 

resulted in a lower prediction performance. However, 

this did not happen to link prediction with Centroid-

based Network, where the performance using only 

non-outbreak data was better than using all data, with 

higher AUC and lower Error Rate scores. This was 

mainly influenced by how the training set and the test 

set were determined.  

For the evaluation of historical snapshots length 

variation, the previous study concluded that longer 

historical snapshots were able to increase the model’s 

performance [15]. In contrast to that, the performance 

of the link prediction models in this research tend to 

decrease as the number of snapshots increased. This 

was due to how the network was generated based on 

calculating the presence of cumulative dengue 

infections in one period of sickness (from 𝑡 − 3 to 

𝑡 + 11), so that the network dynamics tend not to 

change much within a small period of time. This 

meant that the snapshots from a closer period actually 

had a bigger influence on the current snapshot than 

from a further period, thus resulting in a better link 

prediction performance. 

To support the above evaluation, Fig. 5 shows the 

visualization of the link prediction using 3 as 

historical snapshot length represented by graphs 𝐺𝑡−3, 

𝐺𝑡−2, and 𝐺𝑡−1 to predict 𝐺𝑡. We used data on day-

813, day-814, day-815 as the input for the outbreak 

period, and data on day-585, day-586, day-587 for the 

non-outbreak period. Nodes in black represent 

localities with no dengue infections, while nodes in 

white describe localities where infections existed. 

The link between white nodes is a two-way directed 

link which illustrates that these localities influenced 

each other in the spread of dengue. It can be seen that 

the relationship between nodes in the outbreak period 

 

(a) Outbreak period

(b) Non-outbreak period

! "#$ ! "#$ ! "#$ ! "	(predicted)

! "#$ ! "#$ ! "#$ ! "	(predicted)

Figure. 5 Visualization of the prediction results using Neighbor Network model with 3 as the number of historical snapshots 

(𝐺𝑡−3 to 𝐺𝑡−1 as input) 

 t 
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is denser, which was also indicated by the presence 

of more white nodes compared to graphs in the non-

outbreak period. This shows that dengue was rapidly 

spreading during the outbreak period. 

In Fig. 5(a), the network structure of the first 

(𝐺𝑡−3 ) and second (𝐺𝑡−2 ) day are the same, and 

changes only occur on the third day (𝐺𝑡−1). In 𝐺𝑡, it 

was predicted that the link that existed in 𝐺𝑡−3 and 

𝐺𝑡−2 would appear on 𝐺𝑡, even though that particular 

link was missing on 𝐺𝑡−1. Thus, the number of white 

nodes in 𝐺𝑡−3 and 𝐺𝑡−2 was the same as the number 

in 𝐺𝑡. This also occurred to the interconnected nodes 

in the three input graphs, which were predicted to 

have the same links in 𝐺𝑡.  

Meanwhile, some of the black nodes in the input 

graphs were predicted to have only one-way link, 

which were visualized as blue nodes. This means that 

localities denoted by blue node had the potential to be 

infected with dengue coming from other localities. 

The three blue nodes represent localities L3, L16, and 

L36. Of the three nodes, localities L16 and L36 had 

links from all white nodes in the neighborhood group. 

It was predicted that all localities that had dengue 

infection would influence the spread to localities L16 

and L36. Another blue node representing locality L3 

was predicted to only have one link from locality L1. 

Based on dengue fever incidence data, locality L3 

was the locality with the lowest incidence frequency 

(108 days) compared to other locality L16 (120 days) 

and L36 (154 days). L1 also had the least number of 

concurring incidences with L3 (52 days), but with the 

highest number of existing links in 𝐺𝑡 (3 times) when 

there was no relationship between 𝐺𝑡−3 to 𝐺𝑡−1. 

In Fig. 5 (b), changes in the network structure 

occurred in each period, where there were several 

links that were added and removed in 𝐺𝑡−2 and 𝐺𝑡−1. 

In 𝐺𝑡, locality L13 that was visualized as white node 

in all three input graphs was predicted to have 

recovered from the infections, thus illustrated as 

black node. Based on the dengue fever incidence data, 

the frequency of dengue incidence in locality L13 

was much lower (104 days) compared to the 

frequency of non-incidences (373 days).  

It was also predicted that there were blue nodes 

represent localities L5, L7, L17, L24, L28, L33, and 

L37. From those seven, L24 was the only locality 

which had dengue incidences in 𝐺𝑡−2, and L28 had 

dengue infections in  𝐺𝑡−1. Meanwhile, the other five 

nodes had no incidences in graphs 𝐺𝑡−3, 𝐺𝑡−2, and 

𝐺𝑡−1 . However, compared to other black nodes 

within the same neighborhood group, there were 

more historical dengue incidences occurred in 

localities L5 (307 days), L7 (330 days), L17 (374 

days), L33 (287 days), and L37 (336 days). 

In addition, there were also four nodes that were 

visualized in green, which were localities L3, L15, 

L21, and L23. In the input graphs, those four nodes 

were visualized as white nodes with two-way links 

from and to other nodes. However, it was predicted 

that those nodes only had one-way links toward 

others. Based on historical data, there were less 

dengue incidences occurred in localities L3 (62 days), 

L15 (104 days), L21 (202 days), and L23 (111 days). 

5. Conclusion and Future Works 

In this research, dengue spread was modelled into 

5 types of network based on the number of co-

occurring infections in localities, as well as 

neighborhood group and cluster boundaries. The 

prediction of dengue fever spread using DNLP 

approach with E-LSTM-D resulted in the best 

accuracy when applied to the Neighbor Network 

which modelled that dengue only spread between 

localities within the same neighborhood group. The 

accuracy increased when the prediction was applied 

only to the outbreak period data, where the AUC 

score increased by 0.0339 while the Error Rate 

decreased by 0.202. This suggested that E-LSTM-D 

performance was improved when applied to network 

with more inter-node links, which indicated rapidly 

spreading infections.  

The prediction of dengue spread also included the 

result that localities did not always have a two-way 

relationship with each other. There were localities 

that did not have current infections, but could 

potentially be affected by the spread from others, 

when historically there had been many dengue 

incidences in that localities. On the other hand, there 

were also localities that had incidences, but were not 

affected by the spread from others, when there were 

less frequent dengue incidences in that localities. 

For future works, other method could be applied to 

incorporate factors influencing dengue spread as the 

attributes of the network, so that the spread model 

could be generated based on the defined parameter of 

each factor over time. 
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