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Abstract: Wind Energy Output Prediction (WEOP) has an important impact on the integration of wind energy systems 

in the power grid, the management, power systems dispatching, safe and stable operation. Short-term probabilistic 

WEOP is a perfect choice to increase the stability of the power grid. Still, it has a high error because of uncertainty 

factors such as wind speed, and very important to find out a method to increase the fineness of predicting. Therefore, 

in this paper, the main contribution is to design an intelligent model capable of wind energy generation prediction. 

This aim is achieved by adopting a new Developed Particle Swarm optimization algorithm based on proposes a new 

inertia weight called DPSO and Back-Propagation Neural Network (DPSO-BPNN). The proposed models were 

compared and verified through MATLAB software test to prove the superiority over other models. The obtained results 

of the proposed model show a fast convergence and high prediction accuracy. Also, the error rate was improved 

compared with the published research by up to 98%. 
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1. Introduction 

Wind farms cover a large proportion of the loads 

that depend on renewable energy sources due to its 

more worldwide and availability of winds 

permanently and throughout the year. The exact 

prediction of wind energy leads to enhance efficiency 

and reliability of the power supplies from wind farms. 

It can provide a reference for dispatching 

management of electrical power networks and 

arrange power supply start-up methods prior. Also, 

putting the emergency plans to ensure the stable and 

safe operation of the electrical power network. Wind 

energy has randomness and fluctuation, and the 

increase of wind power penetration rate brings severe 

challenges to the safety, stability, reliable operation, 

and power quality of the power grid [1].  

Improving wind energy forecasting accuracy is 

conducive to the online bidding of wind energy, 

raising the upper limit of wind energy penetration 

thresholds and reducing wind energy integration's 

adverse impact on the power system. Also, the 

conducive to the long-term development of wind 

energy. 

Wind power systems have developed rapidly, but 

because of the fluctuation, randomness, and 

intermittent nature of wind power, wind power has 

instability. The wind power prediction methods can 

be divided into physics, statistics, and learning 

methods [2]. The physical method generally predicts 

the wind power based on the Numerical Weather 

Forecast (NWF) data of the wind farm. This method 

requires detailed physical information and related 

meteorological data around the wind farm, and less 

historical data is needed for modeling. However, the 

NWP always suffers from onerousness in gaining 

data and its limited-spatial accuracy [3]. In reference 

[4], the statistical methods include the Kalman 

filtering method, which combines observations and 

model prediction recursively to minimize the 

corresponding-biases.  

Furthermore, the percentage error between 

simulated and measured wind energy values showed 

relatively low and led a very appreciable 

development. Grey prediction method in reference 

[5] for ultra-short-term wind power prediction is 

presented, but the computational burden should be 

kept low to enable fast operational decisions. Where 
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was not achieved due to the increased error rate. The 

learning methods mainly include spatial correlation 

method, time series models and soft computing 

techniques, support vector machine method, neural 

network method, extreme learning machine method 

[6-10], etc. 

 The above methods have their characteristics, 

but the same prediction method may not have good 

prediction performance in all wind farm operating 

scenarios, and there are specific application 

limitations. Combined prediction can make full use 

of the information of different single prediction 

methods, improve the prediction accuracy of wind 

energy and improve the applicability of prediction 

models [11]. So, it has received widespread attention. 

Combination prediction methods are divided into 

linear combination methods and non-linear 

combination methods. The core of the linear 

combination method is to solve the weight values of 

all the individual prediction methods.  

Generally, research shows that most literature 

determines weight coefficients through some 

optimization criterion. In [12] calculates weight 

coefficients based on the squared error and the 

minimum criterion. Therefore, constant fluctuation 

and change in wind speed and air density cause a 

difference in the energy produced by wind farms. In 

[13], a neural network with a two-hidden layer has 

been proposed, which can be represented as a useful 

tool to predict the wind energy output, which 

improves various prediction indicators. The  obtained 

results show that the estimated wind energy values 

with the proposed network are in rather agree with the 

experimentally measured values. 

Reference [14] presented an approach of a non-

linear combination of wind energy prediction based 

on a multi-output support vector machine and grey 

wolf optimizer (GWO-MSVM) model to improve 

prediction terms of multiple-error metrics, including 

fractional bias and direction accuracy. In [15] first 

decomposed the wind speed by Empirical Mode 

Decomposition (EMD) and used various adaptive 

methods to predict the low-frequency components 

and combination of Artificial Neural Network (ANN) 

model to perform combined prediction for the high-

frequency components. The final predicted 

assessment was equal to the algebraic summations of 

all high-low frequency components, and the results 

indicate that the accuracy of the prediction model is 

low. 

In [16], the Gravitational Search Algorithm 

(GSA) was used to optimize the parameters of the 

Least Squares Support Vector Machine model 

(LSSVM) and Ensemble Empirical Mode 

Decomposition - Permutation Entropy (EEMD-PE) 

for increased prediction accuracy of wind power 

generation. If the wind power prediction error is large, 

it will affect the safe and stable operation and power 

system dispatching. Therefore, improving the 

prediction accuracy of wind energy has become a 

primary task.  

Nature intermittent and random wind power, 

make it difficult to achieve accurate prediction using 

a single prediction model. In reference [17], a hybrid 

model (IDA-SVM) combining Improved Dragonfly 

Algorithm (IDA) and Support Vector Machin (SVM) 

is established to predict short-term wind power. The 

proposed model has shown better prediction 

performance compared with the other models such as 

SVM optimized by DA (DA-SVM), SVM optimized 

by Genetic Algorithm (GA-SVM), SVM optimized 

by Grid search method (Grid-SVM), BPNN, and 

Gaussian Process Regression (GPR). However, the 

accuracy of the proposed model may decrease with 

large-samples.  

Reference [18] presented a hybrid approach 

combining the Autoregressive Integrated Moving 

Average (ARIMA) model and the Radial Basis 

Function Neural Network (RBFNN) model in 

addition to BPNN models to increase the predicting 

accuracy of wind power, as well as solution 

convergence. The results of the case study show that 

the proposed models are suitable for short-term 

predicting applications. However, conclusions show 

that the performance of the NN model in wind energy 

predicting may be deceptive. A thorough 

investigation is needed on the selection of NN types 

and parameter models. Therefore, it is necessary to 

carry out a hybrid between the NN and other 

intelligent methods. 

In this paper, the BPNN algorithm based on the 

new development of PSO is used in wind energy 

prediction. It combines local optimization 

characteristics of the BPNN and global optimization 

of the PSO algorithm. Therefore, this paper proposed 

three models of intelligent algorithms: Fuzzy Neural 

Network (FNN), DPSO-FNN, and DPSO-BPNN, 

that can deliver wind predicting for a time horizon of 

short-time.   

However, improved predicting of wind energy 

can be regarded as one of the most accurate and 

efficient methods to solve different problems. It 

includes the effective market of design and electricity 

clearing, power quality, costs, standards 

interconnection, transmission capacity, real-time 

system operations, service requirements, stability, 

and power system reliability. 

In this paper, the features are listed as follows:  
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a) Design of a new intelligent model capable of 

wind energy generation prediction for 48 hours 

and 72 hours. 

b) New development on PSO algorithm by 

modifying the initial weights (Wnew) based on 

linearly decreasing and adopting the BPNN to get 

the optimum solution of WEOP and provide more 

realistic analyses.  

c) DPSO will be employed to improve the 

performance of the BPNN and make it effective 

where quickly reduce learning and generalization 

errors. 

d) The proposed method will be thoroughly tested 

and benchmarked on real wind energy data with 

reference [17, 18]. 

e) Study the optimization results obtained from the 

proposed models, including a formulation of the 

WEOP problem, and compare it with error rates. 

f) Use criteria of prediction accuracy to evaluate the 

performance of the proposed model. The criteria 

of prediction accuracy, in this article, will include 

the Mean Absolute-Error (MAE), Root Mean 

Square-Error (RMSE), and Mean Absolute 

Percentage-Error (MAPE). 

g) The results of prediction solutions for wind energy 

output obtained from DPSO-BPNN will be 

compared with previously published research 

papers. 

This article will be organized as follows; Section 

two presented the related works. In section three 

introduced a new method for the development of PSO 

depended on inertia weight. Section four presents the 

proposed models and implementation steps of the 

proposed approaches. In Section five, we presented 

an analysis for the results and prediction performance 

of the proposed models, including a study of two 

cases, and compared the results with previously 

published methods with plotting the results. Lastly, 

conclusions and future work will be given in Section 

six.  

2. Related works 

Wind Energy has characteristics of 

haphazardness variable and uncontrollability. WEOP 

can be an important part and challenge of electrical 

energy system construction in the coming years. The 

WEOP method is important in identifying and power 

systems operation with an extensive penetration of 

wind energy.  

WEOP can be classified according to; Time 

horizons, methods and principles, predict object, 

input data, and evaluation criteria about the inherent 

uncertainty for WEOP. As the wind farms are 

increased, the aggregated WEOP methods became 

faster for a region with several wind farms distributed 

[19]. The prediction system can be divided into three 

categories: spot prediction, wind farm prediction, or 

regional prediction [20]. The wind position can be 

enhanced by using prediction tools that can deal with 

the intermittent of the wind nature.  

Wind energy can be scheduled using accurate 

wind prediction as the cost effects of wind can be 

greatly reduced. Thus, improving the performance of 

wind energy and prediction tools has a major 

economic impact on the electric power grid by 

increasing the penetration of wind energy into the 

grid. Many authors have devoted their efforts to 

improving wind energy predicting techniques, and 

several of the wind farm predicting models have been 

developed in various locations around the world [21]. 

Besides, accurate numerical weather forecasting has 

been proposed for short-term wind predicting [22-24]. 

In reference [25], the described system has a modular 

framework that provides wind forecasting for a time 

horizon of up to 24 hours.  

Many kinds of literature and studies focused on 

long-term forecasting, where reference [26] proposed 

a long-term wind power forecasting model based on 

multi meteorological variables with data 

compensation. The RBF neural network model is 

built between meteorological variables and the power 

to get annuals of suitable power data. The problem of 

long-term wind speed and power forecasting based 

on meteorological information is proposed in [27]. It 

was solved using three types of recurrent neural 

networks as consideration predictive models.  

Furthermore, in [28] are suggested recurrent 

forecast models outperform the atmospheric and 

time-series models to reduce computational 

complexity and storage requirements. In reference 

[29], a prediction model of wind farm power 

generators is presented based on Fuzzy modeling. A 

short-term WEOP model is proposed and derived 

from raw data of wind farms. This model preserves 

good prediction accuracy and provides an 

interpretable model that contains several roles from 

which it may reveal a useful qualitative description of 

the prediction system. 

Reference [30] used aero structural simulations of 

generic 1.5 MW turbines to rank the atmospheric 

effect on the output power. These data are used to 

train regression that forecasts the turbine response for 

any combination of wind speed. In reference [31] 

presented an approach based on weather data and 

analysis of the main parameters with their correlation 

to energy output. They used a generic programming 

tool modeler based on the symbolic regression to deal 

with the different parameters. 
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3. Development of particle swarm 

optimization (DPSO) 

The proposed PSO algorithm is a random 

optimization technique that depends on swarm 

intelligent mobility [32, 33]. In this technique, the 

collection of random particles is initialized, and then 

the search for the optimal solution is done by iteration.  

In each iteration, the velocity and position of the 

particle are continuously updated by tracking the 

solution of individual optimal value (gbest) and the 

global optimal solution value (pbest). 

Each particle has a vector of velocity (V) and vector 

of position (X), which are updated by the equations as 

shown below: 

 

𝑉𝑛,𝑚
(𝑖+1)

= 𝑤. 𝑉𝑛,𝑚
𝑖 + 𝑐1. 𝑟1(𝑔𝑏𝑒𝑠𝑡

𝑖 − 𝑋𝑛,𝑚
𝑖 )

+ 𝑐2. 𝑟2(𝑝𝑏𝑒𝑠𝑡
𝑖 − 𝑋𝑛,𝑚

𝑖 ) 

(1) 

𝑋𝑛,𝑚
(𝑖+1)

= 𝑋𝑛,𝑚
𝑖 + 𝑉𝑛,𝑚

𝑖                                       (2) 

 

Where: Vn,m is the velocity of particle n and 

dimension m; Xn,m is the position of particle n and 

dimension m; c1 and c2 are acceleration constants; w 

is inertia weight factor; r1 and r2 are random numbers; 

pbest is best position of a specific particle and gbest is 

best particle of the group. 

The random direction in some intelligent 

algorithms leads to a delay in reaching the global 

solution. This problem can be solved by using the 

DPSO algorithm to speed up the optimal solution.  

In this section, PSO performance can be 

developed by updating the new weight (Wnew) based 

on increasing the linearly. The proposed Wnew is 

evaluated as follows: 

 

𝑊𝑛𝑒𝑤 = 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + [(𝑊𝑓𝑖𝑛𝑎𝑙

− 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (1 − (
ℎ

𝐻
)

2

)

2

] 

(3) 

 

Where: Winitial is initial inertia weight; Wfinial is 

final inertia weight; H is the number of iterations; and 

h = 1, 2, 3, …, H. 

4. The proposed models  

In this section, three models are proposed for 

wind energy output prediction, as follows: 

4.1 The proposed FNN model 

This section has suggested that a Fuzzy logic be 

combined with a Neural Network to create an FNN 

model to obtain an ideal solution to the WEOP 

problem. The proposed neural network model in this 

paper consists of two inputs and two outlets on the 

chassis, as depicted in Fig. 1 [6, 29]. 

The first layer represents the input layer, and each 

node corresponds to the input fixed, and the network 

has five layers. The input signal is sent to the next 

layer without conversion, which is the horizontal 

input layer, and is considered the second layer, and 

its role is to obliterate the scene change. As for the 

third layer, the neural network hidden layer and its 

primary role are the same as the regular neural 

network role itself used to set the fuzzy value of the 

input mutable to the fuzzy value of the input mutable.  

Finally, the fourth layer, an output layer, 

ultimately represents the proposed model for wind 

energy output prediction. The fifth layer statistical 

value is a weighted output layer, which outputs a 

specific value. For D-dimensional inputs e = (e1, e2… 

em) and used membership function of Gaussian 

function as follows:  
 

𝑀𝐴𝑗
𝑡 = 𝑒𝑥𝑝 [−(𝑒𝑗 − 𝐶𝑗

𝑡) (2
𝜎𝑗

⁄ )] (4) 

 

The multiplication operators of Fuzzy 

membership calculations as shown in the following 

equation: 

  

𝑆𝑡 = 𝑀𝐴𝑗
1(𝑒1). 𝑀𝐴𝑗

2(𝑒2) … 𝑀𝐴𝑗
𝑚(𝑒𝑚) (5) 

 

And the output value of the fuzzy model: 

 

𝑦𝑡 = ∑ 𝑆𝑡

𝑚

𝑡=1

(𝑃𝑜
𝑡 + 𝑃𝑜

𝑡𝑒𝑖 + ⋯

+ 𝑃𝑘
𝑡𝑒𝑘)/ ∑ 𝑆𝑡

𝑚

𝑡=1

  

(6) 

 

The network error equation: 

 

Figure. 1 Flowchart of the NN Model 
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𝐸 = 0.5 ∑(𝑦𝑡 − 𝐿)2

𝑚

𝑡=1

  (7) 

 

Where: c is center value of the Gaussian 

membership function; σ is width value of the 

Gaussian membership function; j =1, 2, …, n; Po is 

output value of fuzzy model; t = 1, 2, …, m; yt is 

actual output of the network; L is actual output of the 

network, and k is number of sample data. 

The ANNs have benefits for supplier selection; 

they consider the quantitative factors instead of the 

qualitative factors. The reason is the difficulty of 

formalizing and collection. Therefore, the proposed 

FNN leads to a more precise decision where FNN is 

based on evolutionary approaches to avoid FNN   

getting the local minimum.  

The main implementation steps of the WEOP 

model based on FNN are as follows: 

Step1: Set which factor is the most effect on supplier 

selection. 

Step2: Round up the quantitative and qualitative 

information. 

Step3: Base development of the Fuzzy IF-THEN rule. 

Step4: Train the FNN to build a database of the fuzzy 

rule. 

Step5: Train the integrated NN model.  

4.2 The proposed DPSO-FNN model 

The FNN Model contains a center (c) value and 

(σ) width of the Gaussian membership function. The 

value and the connection weight of the network need 

to be improved for training, and the error 

requirements are achieved by fast and suitable 

methods.  

Moreover, the mathematics parameter correction 

is used for assessment and training. Still, when the 

data size is large the problem becomes complex and 

takes very long to calculate and does not give 

accuracy in calculating requirements. Hence, it is not 

possible to obtain distinct training results.  

Therefore, DPSO optimization in section (3), can 

be used to improve the parameters of the FNN, as 

DPSO works to improve the performance of the FNN 

and make it effective. Besides, it can quickly reduce 

learning and generalization errors. FNN equations in 

section (4.1) can be rewritten after merging the DPSO 

model to improve its work by using the new DPSO-

FNN Model. Assume that in a D-dimensional input 

for m-th particles are represented as a vector: 

 

𝑒𝑡 = (𝑒𝑡1, 𝑒𝑡2, … , 𝑒𝑡𝑚) (8) 

 

Can be represented velocity of m-th partial as 

follows: 

 

𝑉𝑡 = (𝑉𝑡1, 𝑉𝑡2, … , 𝑉𝑡𝑚) (9) 

 

The optimal position currently searched by the m-

th particle is called the locale best value (Pbest) and 

written as: 

 

𝑃𝑏𝑒𝑠𝑡,𝑡 = (𝑃𝑡1, 𝑃𝑡2, … , 𝑃𝑡𝑚) (10) 

 

The optimal position currently searched by the m-

th particle is called the global best value (gbest) and 

written as: 

 

𝑔𝑏𝑒𝑠𝑡,𝑡 = (𝑔𝑡1, 𝑔𝑡2, … , 𝑔𝑡𝑚) (11) 

 

Where: t =1, 2… m.  

The implementation steps of the DPSO-FNN 

Model are as follows:  

Step1: Initialize the original data, and establish an 

appropriate network structure based on the input 

fuzzy.  

Step2: Update the individual extreme values and 

extreme global values of the DPSO. The training 

samples are input into the FNN model. The DPSO 

method is used to train cit, σi of the network. When 

the fitness function value reaches the error 

requirement, the calculation is stopped, and the FNN 

model is optimal at this time.   

Step3: Update DPSO individual extreme and global 

extreme. The mean square error output from the 

training model is used as the fitness value of the 

DPSO to find the optimal value of each particle. At 

the same time, it is compared with the current particle 

optimal value Pi, and the individual optimal value of 

the particle is updated. If the optimal value of a single 

particle is better than the optimal value pbase of all 

current particles, the optimal value of the current 

particle is used as the global optimal value gbase.  

Step4: Update particle position and continuity. 

Update particle position and velocity in DPSO, 

according to Eqs. (1) and (2).   

Step5: Train and test; if the training error 

requirement is met, terminate the selection process, 

then the obtained parameter is the optimal value of 

FNN training: if the training error requirement cannot 

be met, go to step-2 and iterate again. 
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4.3 The proposed DPSO-BPNN model 

The DPSO-BPNN model combines the 

advantages of local optimization of the BP neural 

network and global optimization of the PSO 

algorithm. The DPSO algorithm is used to optimize 

the weights and thresholds value of the BP network 

and then continuously updates the particle position 

and velocity until the search is optimized adapted 

values to improve network training speed and 

prediction accuracy. The steps of the proposed 

DPSO-BPNN model can be described as follows: 

Step1: Determine the structure topology of the 

BPNN, that is, the number of neurons l, n, and m in 

the input layer, hidden layer, and output layer. 

Step2: Initialize the BPNN (weights, thresholds) and 

particle swarm (particle position, velocity, etc.). 

 

𝑉𝑖𝑗 = 𝑉𝑖𝑗 + 𝜇𝑋𝑗(1 − 𝑋𝑖) 𝑝(𝑖) ∑ 𝑉𝑗𝑡 𝑒𝑡

𝑚

𝑡=1

 (12) 

𝑉𝑖𝑡 = 𝑉𝑖𝑡 + 𝜇𝑋𝑗 𝑒𝑡 (13) 

 

Where: i =1, 2, …, l;  j =1, 2, …, n; t =1, 2, …, m; Vij 

and Vjt are the connection weights of the BP neural 

network; Pi, Xj is the layer input and the hidden layer 

output, respectively; μ is the learning rate. 

 

𝑏𝑡 = 𝑏𝑡 + 𝑒𝑡 (14) 

𝑎𝑗 = 𝑎𝑗 + 𝜇𝑋𝑗(1 − 𝑋𝑗) ∑ 𝑉𝑗𝑡  𝑒𝑡

𝑚

𝑡=1

 (15) 

 

Where: 𝑎𝑗 and 𝑏𝑡 national values of hidden layer 

and output layer 

Step3: Calculate the fitness value (F) of the particles. 

 

𝐹 =
1

𝑆
∑ ∑(𝑤𝑗𝑖

1 − 𝑤𝑗𝑖
2)2

𝑁

𝑗=1

𝑙

𝑖=1

 (16) 

 

Where: S is the number of training samples; N is 

the number of neurons in the output network; 𝑤𝑝𝑗𝑖
1  is 

the ideal wind power output value of the j-th network 

output node of the i sample; 𝑤𝑝𝑗𝑖
2  is the actual wind 

power output value of the j-th network output node of 

the i sample. 

Step4: Search for individual extreme values pbest of 

the particles and global extreme values gbest. If the 

current fitness value is better than gbest, update the 

particles gbest, if not, update the velocity and position 

of the particles.  

If the current fitness value of all particles is better 

than pbest, then update pbest. 

Step5: Update the velocity and position of the 

particles according to Eqs. (1) and (2). 

Step6: Update the weight Wnew according to Eq. (3). 

Step7: Check if the termination conditions are met. 

If it is, stop iteration to obtain the optimal weights and 

thresholds of the BPNN. Otherwise, return to (step3) 

and recalculate the fitness value of the particles. 

Step8: Train and test the BPNN; calculate the error, 

update the weights and thresholds values, and check 

if the end condition is met (whether the current 

position or number of iterations reaches a 

predetermined error).  

If it is, stop iteration and output the neural network 

optimal weights and thresholds; otherwise, 

recalculate the error.  

Fig. 2 shows a flowchart of the proposed DPSO-

BPNN model. 

5. Simulation results and discussion 

5.1 Data processing and criteria of prediction 

accuracy 

In this paper, the information contained in the 

reference [17, 18] for two cases (48 hours and 72 

hours) wind energy data resolution was relied upon 

for study and comparison. Therefore, it is suitable for 

the performance testing and feasibility of the 

proposed prediction models. It can also be noted that 

the proposed models adopted in this paper have been 

implemented using MATLAB/2020a software. 

This paper selects three accuracy measures to 

evaluate the effectiveness and practicability of the 

proposed prediction model performance. The 

performance measures of RMSE, MAPE, and MAE 

are utilized to quantify the errors of predicted values, 

and the smaller, the better the prediction capability 

that the model has. 

The computational formulas of these three 

criteria of prediction accuracy measure are 

formulated as follows [34]: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑝𝑡 − �̂�𝑡)2

𝑇

𝑡=1

 

 

(17) 

𝑀𝐴𝑃𝐸 =
1

𝑇
∫ |

𝑝𝑡 − �̂�𝑡

𝑝𝑡
|

𝑇

𝑡=1

 

 
(18) 
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𝑀𝐴𝐸 =
1

𝑇
∫ |𝑝𝑡 − �̂�𝑡|

𝑇

𝑡=1

 

 
(19) 

 

Where: T is the total of test data, 𝑝𝑡 is the real 

value of the wind power at the time (t), and �̂�𝑡  is 

predicted value of the wind energy at time (t). 

5.2 Model Validate 

In this part, the superiority of the proposed 

models in predicted capability can be verified by 

adopting the FNN, DPSO-FNN, and DPSO-BPNN  

Three error measurements, RMSE, MAPE, and 

MAE, are employed for performance accuracy 

evaluating of all the predicting models. Fig. 3, 4 

describes the predicted results of the proposed 

models. Moreover, Table 1 illustrates the predicted 

errors, including RMSE, MAPE, and MAE of the 

proposed models. The predicted error values of MAE, 

RMSE, and MAPE of the proposed DPSO-BPNN 

model  

illustrated in Table 1 and Table 2 are small 

compared with all the proposed models in this paper 

and proposed models in reference [17, 18]. 

It confirmed that the proposed DPSO-BPNN 

model had the best predicting performance. 

For more comparison, Fig. 5 and Fig. 6 show the 

errors of RMSE, MAPE, and MAE of various models 

for two cases (48 Hours and 72 Hours).  

According to the results illustrated in Table 1, 

Table 2, Fig. 5, and Fig.6, four comparisons of results 

can be obtained as follows:   

(a) When comparing DPSO-BPNN vs. FNN and 

DPSO-BPNN vs. DPSO-FNN as in Table 1 and Fig. 

5. We will note MAE, RMSE, and MAPE values 

have improved for the DPSO-BPNN model, about 

96.79%, 94.51%, and 73.54% compared to the FNN 

model, and 91.89%, 92.07%, and 62.96% compared 

to the DPSO-FNN model. 

Therefore, based on the above analysis, it can be 

easily found that the proposed DPSO-BPNN model 

can significantly decrease the errors, including MAE, 

RMSE, and MAPE of FNN and DPSO-FNN models. 

Thus, it can be concluded that the proposed DPSO-

BPNN is very effective for performance, improving 

the criteria of prediction accuracy. 

(b) To make sure that the development of the PSO 

algorithm on the BPNN model proves its 

effectiveness compared to DPSO-BPNN vs. IDA-

SVM. Where the IDA-SVM has considered the best 

model suggested in the reference [30]. We'll note 

from Table 1 and Fig. 5 that the values of MAE, 

RMSE, and MAPE of the DPSO-BPNN model have 

been improved about 90.68%, 85.78%, and 63.68% 

compared to the IDA-SVM model [17], and it is a 

good indication of the success of the method 

proposed in this paper. 

(c) According to the results illustrated in Table 2 

and Fig. 6. In comparison the DPSO-BPNN vs. FNN 

and DPSO-BPNN vs. DPSO-FNN, it can be found 

that the values of MAE, RMSE, and MAPE of the 

DPSO-BPNN model improved about 98.51%, 

98.19%, and 89.63% compared to the FNN model, 

and approximately 94.69%, 95.89%, and 83.14% 

compared to the DPSO-FNN model.  

Based on the above comparison, it can be concluded 

that the integrating of the DPSO algorithm into the 

FNN and BPNN models can decrease the non- 

linearity and non-stability characteristics that are 

occurred in the original wind energy series to some 

extent. Therefore, it is useful and suitable for 

improving the predicting ability of FNN and BPNN 

models. 

(d) When compare DPSO-BPNN vs. ARIMA-

NN. Where the ARIMA-NN has considered the best 

model suggested in the reference [18]. We'll note 

from Table 2 and Fig. 6 that RMSE and MAPE values 

by approximately 94.04% and 14.98%, respectively, 

compared with the ARIMA-NN model [18]. We can 

be noted that through optimizing the neural network, 

the initial weights and thresholds are optimized by the 

DPSO algorithm, enabling the BPNN model to obtain 

 
Table 1. Comparison of prediction performances among 

various models (48 Hours) 

                       Index 

 Models MAE RMSE MAPE 

Proposed FNN 7.97 8.42 14.52 

Proposed DPSO-FNN 3.16 5.83 10.37 

Proposed DPSO-BPNN 0.2562 0.4621 3.8416 

Grid-SVM [17] 3.09 3.80 10.84 

GA-SVM [17] 3.48 4.20 12.54 

DA-SVM [17] 3.68 4.42 13.06 

IDA-SVM [17] 2.75 3.25 10.58 

 

Table 2. Comparison of prediction performances among 

various models (72 Hours) 

                       Index 

 Models MAE RMSE MAPE 

Proposed FNN 8.65 9.79 27.88 

Proposed DPSO-FNN 2.42 4.31 11.93 

Proposed DPSO-BPNN 0.1285 0.1772 2.011 

RBPNN [18] --- 18.729 16.736 

ARIMA [18] --- 28.743 27.183 

BPNN [18] --- 23.877 22.032 

ARIMA-NN [18] --- 3.133 2.659 
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Figure. 2 Flowchart of DPSO-BPNN mode
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Figure. 3 The definitive predict result of various proposed models (48 Hours) 

Figure. 4 The definitive predict result of various proposed models (72 Hours) 
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Figure. 5 Error graphics of various models (48 Hours) 
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 a stronger approximation. Therefore, it is found that 

the Wind energy output predicting model based on 

the DPSO-BPNN model used in this paper shows a 

positive effeteness and better prediction accuracy. 

6. Conclusions 

This paper proposed three models to increase the 

WEOP. The suggested prediction models consist of 

the FNN model, DPSO-FNN model, and DPSO-

BPNN model. The simulation results show that the 

proposed DPSO-BPNN model has higher prediction 

accuracy than the FNN model and DPSO-FNN model 

and is suitable for short-term WEOP. Therefore, the 

results of this paper are as follow: 

1) Development of PSO algorithm was used by 

modifying the initial weights (Wnew) and adopting the 

BPNN algorithm. The hybrid DPSO-BPNN model is 

evaluated to predict the WEOP in the short-term. 

2) The proposed models were trained by actual 

measured data to predict the wind energy output in 

terms of the short-term.  

3) The proposed DPSO-BPNN model can 

effectively improve wind power prediction accuracy 

compared with the FNN and DPSO-FNN models. 

4) The proposed DPSO-BPNN model was 

compared with the models presented in previous 

literature, such as Grid-SVM, GA-SVM, DA-SVM, 

IDA-SVM [17], RBPNN, ARIMA, BPNN, and 

ARIMA-NN [18], to emphasize the proposed model's 

effectiveness and applicability.  

(5) This paper selects three accuracy measures to 

evaluate the performance, effectiveness and 

practicability of the proposed model. The three 

prediction errors and accuracy of the DPSO-BPNN 

model are superior compared with the proposed 

models in this paper and presented in references [17, 

18]. The prediction error rate was improved by about 

98%. 

Two essential conclusions are obtained as 

follows:  

Firstly, the proposed DPSO-BPNN model has the 

best performance compared with other considered 

benchmark models. The proposed model shows have 

training speed and high prediction accuracy, 

providing technical support for future dispatching 

operations and ensuring the power system stable and 

safe operation. 

Secondly, the proposed DPSO algorithm shows a 

positive effect on the BPNN model by optimizing the 

initial weights and thresholds between the input and 

hidden layers.  

For future work, there are many research 

directions. For example, plan further study for 

longer-term wind energy output prediction. Some 

intelligent optimization methods can be combined 

and meteorological factors to improve prediction 

accuracy. Finally, we can be applying the proposed 

model to other fields, such as predict electricity 

consumers' loads and wind speed output. 
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Notation list 

 

Symbol Parameters 

aj, bt National values of hidden layer and 

output layer 

c Center of the Gaussian membership 

function. 

c1, c2 Acceleration constants 

e D-dimensional inputs 

E Network error 

et D-dimensional input for m-th particles 

F Fitness value of the particles. 

gbest Particle of the group 

H Number of iterations 

k Number of sample data 

L Actual output of the network 

N Number of neurons in the output 

network 

pbest Best position of a specific particle 

Pi, Xj Layer input and hidden layer output 

Po Output value of fuzzy model 

�̂�𝑡 Predicted value of  wind power at time 

(t) 

𝑝𝑡 Real value of wind power at time (t) 

r1, r2 Random numbers 

S Number of training samples 

St Multiplication operators of Fuzzy 

membership 

T Total of test data 

Vij, Vjt Connection weights of the BP neural 

network 

Vn,m Velocity of particle n and dimension m 

w Inertia weight factor 

Wfinial Final inertia weight 

Winitial Initial inertia weight 

𝑤𝑝𝑗𝑖
1  Ideal wind power output value of the j-

th network output node of the i sample 

𝑤𝑝𝑗𝑖
2  Actual wind power output value of the 

j-th network output node of the i 

sample 

Xn,m Position of particle n and dimension m 

μ Learning rate 

σ Width of the Gaussian membership 

function. 


