
Received: January 16, 2021. Revised: February 27, 2021. 201

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

An Empirical Comparison of Resampling Ensemble Methods of Deep Learning

Neural Networks for Cross-Project Software Defect Prediction

Mahmoud O. Elish1* Karim Elish2

1Computer Science Department, Gulf University for Science and Technology, Mishref, Kuwait

2Department of Computer Science, Florida Polytechnic University, Lakeland, FL, USA
* Corresponding author’s Email: elish.m@gust.edu.kw

Abstract: Software defect prediction is one of the most important quality assurance activities during software

development. This paper contributes empirical insights into the effectiveness of three resampling ensemble methods

(bagging, boosting, and dagging) of Deep Learning Neural Networks (DLNN) for cross-project software defect

prediction, compared to individual DLNN. An empirical study was conducted using five datasets. The results indicate

that the bagging ensembles of DLNN offer only 0.24% increase in accuracy, on average, compared to the individual

DLNN models, whereas the boosting and dagging ensembles degrade the accuracy. Furthermore, the results show that

the three resampling ensembles of DLNN outperform the individual DLNN models in precision; with a maximum

improved precision by 25.15% on average using the boosting ensembles. The results however indicate that none of the

resampling ensembles improve the recall. Lastly, for a balanced performance in terms of both precision and recall, the

results indicate improvements ranging from 0.98% on average by applying the bagging ensembles to 11.67% on

average by applying the boosting ensembles.

Keywords: Software defect prediction, Deep learning, Ensemble methods, Neural networks, Empirical studies.

1. Introduction

Software testing and inspection play a vital role

in software quality assurance. However, software

testing is costly and labour-intensive, and can take up

to 50% of the software development costs and more

for safety-critical systems [1]. It is therefore

important to focus software testing and inspection

activities on defect-prone modules of software

systems. This requires the development of effective

software defect prediction models.

Cross-project software defect prediction refers to

the process of predicting defects in a new software

system using the historical data of other systems. On

one hand, cross-project defect prediction is more

practical and industrially viable than within project,

as the later suffers from the scarcity of data in the

early phases of software development. On the other

hand, the accuracy of the cross-project prediction

models is usually lower than those of the within

project models due to the differences between the

source and the target software projects.

In recent years, Deep Learning Neural Networks

(DLNN) have been successfully applied in several

fields and demonstrated to be effective. These include

speech recognition [2], natural language processing

[3], image processing [4], and software engineering

[5-9]. The performance of DLNN varies from one

dataset to another, as with other machine learning

models.

Ensemble methods aggregate a group of base

learners as a committee of an ensemble that decides

on the prediction results by consensus using a

combination rule. They aim to manage each of their

individual base learners’ strengths and weaknesses,

and thus leading to the best possible decision being

taken overall. There are heterogeneous and

homogeneous ensembles [10]. Heterogeneous

ensembles combine multiple models built from

different machine learning algorithms, whereas

homogeneous combine multiple models built from a

Received: January 16, 2021. Revised: February 27, 2021. 202

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

single machine learning algorithm. Resampling

ensemble methods belong to the homogeneous

ensembles category.

Most of the existing studies [11-16] have applied

ensemble methods for within project software defect

prediction, not for the cross-project software defect

prediction. Only few studies focused on cross-project

software defect prediction and applied ensemble

methods with Naïve Bayes (NB) [17], Support

Vector Machine (SVM) [18], or Decision Tree (DT)

and NB as base learners [19]. None of them have

investigated the use of ensemble methods (bagging,

boosting, and dagging) with DLNN as their base

learner.

The objective of this paper is to empirically

evaluate and compare the predictive effectiveness of

three resampling ensemble methods (bagging,

boosting, and dagging) that use DLNN as their base

learner, and benchmark their performance against

individual DLNN in the context of cross-project

software defect prediction. The research question is

whether or not bagging, boosting, and/or dagging

ensemble methods of DLNN are more effective for

cross-project software defect prediction compared to

individual DLNN?

The rest of this paper is organized as follows.

Section 2 reviews related work. Section 3 describes

briefly the resampling ensemble methods. Section 4

reports the empirical study and analyzes its results.

Finally, Section 5 provides the concluding remarks

and suggests directions for future work.

2. Related work

Several studies have applied ensemble methods

for within project software defect prediction. Rathore

and Kumar [11, 12] investigated some linear and non-

linear heterogeneous ensemble methods for intra-

release and inter-release predictions of the number of

faults in software systems. Zheng [13] evaluated cost-

sensitive boosting of Artificial Neural Networks

(ANN) for software defect prediction. Shanthini and

Chandrasekaran [14] evaluated bagged ensemble of

SVM for software fault prediction. Aljamaan and

Elish [15] investigated bagging and boosting

ensembles in identifying faulty classes in object-

oriented software. As base classifiers, they used

MultiLayer Perceptron (MLP), Radial Basis Function

(RNF) network, Bayesian Belief Network (BBN),

NB, SVM, and DT. Misirli et al. [16] presented an

ensemble method that combines NB, ANN, and

voting feature intervals for locating software defects.

In the context of cross-project software defect

prediction, some studies have applied ensemble

methods. Chen et al. [17] introduced double transfer

boosting for cross-company software defects

prediction, and used NB as a base learner. Ryu et al.

[20] proposed a transfer cost-sensitive boosting

approach for cross-project defect prediction that uses

also NB as a base learner. Ryu et al. [18] applied

SVM learner with boosting in the context of cross-

project defect prediction. Zhang et al. [19]

investigated bagging and boosting ensembles for

cross-project defect prediction, and used DT and NB

as base learners. Additionally, they applied average

voting, majority voting, and random forest. Uchigaki

et al. [21] proposed an ensemble of Logistic

Regression (LR) model that uses weighted sum of

outputs for cross-project fault prediction.

Few studies have applied DLNN models for

software defect prediction, but not as ensembles.

Qiao et al. [22] applied deep neural network-based

model to predict the number of defects in software

systems. The results indicated that their proposed

method reduces the mean square error by more than

14% and increases the squared correlation coefficient

by more than 8%. Majd et al. [23] used deep-learning

models for statement-level software defect prediction,

and the results showed their effectiveness.

Some systematic literature reviews have been

conducted on software fault prediction [24-27]. The

most relevant one is by Hosseini et al. [27] who

conducted a systematic literature review and meta-

analysis on cross-project defect prediction. Among

their findings, it was found that NB and LR are the

most widely used models for that purpose as

individual models or as the base for ensembles. NB

seems to have an average performance, whereas

Nearest Neighbour (NN), SVM, and DT have the

highest median F-measure. Ensemble methods,

however, perform below average in terms of F-

measure, and best in terms of AUC measure.

Unlike other related works, this paper focuses on

cross-project software defect prediction to predict the

defects in a new software system using the historical

data of other systems and utilizing three resampling

ensemble methods of DLNN to achieve this goal.

3. Resampling ensemble methods

The ensemble learning for a classification

problem aggregates a group of base classifiers as a

committee of ensemble that decides on the prediction

results by consensus using a combination rule such as

majority voting. In case of a resampling ensemble

method, base classifiers are trained on different

subsets of the training data using a resampling

technique. Three popular resampling ensemble

methods (bagging, boosting, and dagging) were

empirically evaluated in this research for the aim of

Received: January 16, 2021. Revised: February 27, 2021. 203

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

cross-project software prediction using DLNN as

base classifiers.

DLNN represents stacked neural networks, i.e.,

networks composed of several layers. The layers

consist of nodes where each layer is trained using

distinct set of features based on the outputs from its

previous layer. The nodes are computational units

that combine their inputs using weights. These input-

weight outcomes are then summed and forwarded to

an activation function that produces the final outcome.

3.1 Bagging

Bagging stands for Bootstrap Aggregation, and

was introduced by Bieman [28]. This ensemble

method starts with bootstrap sampling (i.e. random

sampling with replacement) of the training dataset. A

base classifier is then developed for each sample.

Finally, the results of these multiple classifiers are

then combined using majority voting. Bagging is thus

considered a parallel ensemble since the base

classifiers are developed in parallel during the

training phase. Figure. 1 provides an overview of the

bagging ensemble, whereas Figure. 2 depicts its

algorithm.

3.2 Boosting

Boosting, which was introduced by Freund [29],

works by training a set of classifiers sequentially by

combing them for classification, where each latter

classifier focusses on the errors of the earlier

classifiers. In the first iteration of this ensemble

Figure. 1 Bagging ensemble

model generation

 Let N be the number of instances in the training data D

 For each iteration i:

 Di = random sample of size N with replacement from D

 Apply the classifier algorithm to Di

 Store the resulting modeli

 classification

 For each model i:

 Predict the class of instance using modeli

 Return class that has been predicted most often (majority

voting)

Figure. 2 Bagging algorithm [15]

Figure. 3 Boosting ensemble

model generation

 Assign equal weight to each instance in the training data D

 For iteration i:

 Apply the classifier to the weighted dataset Di

 Store the resulting modeli

 Compute error e of modeli

 If e = 0 or e ≥ 0.5:

 Terminate models generation

 Else generate Di+1 as follows:

 For each instance in Di:

 If instance was classified correctly by modeli:

 Multiply the weight of instance by e (1–e)

 Copy the instance from Di to Di+1

 Normalize the weights of all instances in Di+1

 classification

 For each model i (or less):

 Add –log(e/(1–e)) to the weight of class predicted by

modeli

 Return class with highest weight

Figure. 4 Boosting algorithm [15]

method, a base classifier takes the training dataset

and assigns equal weight to each of its instances. In

the next iteration, the incorrectly classified instances

are assigned to the next base classifier with a higher

weightage. The iterations then continue likewise until

the algorithm can correctly classify the output. There

are a few types of boosting algorithms, and this

research has used Adaptive Boosting (AdaBoost)

[30]. Figure. 3 provides an overview of the boosting

ensemble, and Figure. 4 depicts its algorithm.

3.3 Dagging

Dagging [31] is similar to bagging except that

disjoint sampling is applied, instead of bootstrap

sampling, to the training dataset. Following the

resampling of the training dataset, a base classifier is

developed for each sample. The results of these

multiple classifiers are then combined using majority

voting. Dagging is therefore considered a parallel

ensemble. Figure. 5 provides an overview of it, and

Figure. 6 depicts its algorithm.

4. Empirical study

The goal of this empirical study was to evaluate

and compare the accuracy of bagging, boosting, and

Received: January 16, 2021. Revised: February 27, 2021. 204

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

Figure. 5 Dagging ensemble

 model generation

 Let N be the number of instances in the training data D

 For each iteration i:

 Di = disjoint random sample from D

 Apply the classifier algorithm to Di

 Store the resulting modeli

 classification

 For each model i:

 Predict the class of instance using modeli

 Return class that has been predicted most often (majority

voting)

Figure. 6 Dagging algorithm

dagging ensemble methods of DLNN against

individual DLNN for the purpose of cross-project

software defect prediction. It aimed to determine the

extent to which these resampling ensemble methods

offer reliable and improved classification accuracy

over the individual model using different datasets.

This section reports the details of the empirical study

that was conducted and analyzes its results.

4.1 Datasets

Publicly accessible datasets were chosen that

represent five open source software projects

implemented in Java: Ant 1.7, Camel 1.6, Synapse

1.2, Velocity 1.6.1, and Xalan 2.6. These datasets are

available through the PROMISE repository of

empirical software engineering data [32]. The

observations in these datasets correspond to the

classes in the corresponding object-oriented software.

Furthermore, these datasets have one dependent

variable and 17 independent variables. The

dependent variable is a binary variable that indicates

whether or not the corresponding class is defective

regardless of the number, type and severity of defects

if any. The independent variables, on the other hand,

represent several class-level metrics that measure

various structural characteristics such as size,

complexity, coupling, cohesion, and inheritance.

Descriptive statistics of these five datasets in terms of

the number of classes (observations) and the

percentage of defective classes are provided in Table

1, whereas Table 2 lists the independent variables.

Table 1. Descriptive statistics of the datasets

Dataset # of classes % of defective classes

Ant 1.7 745 22.3%

Camel 1.6 965 19.5%

Synapse 1.2 256 33.6%

Velocity 1.6.1 229 34.1%

Xalan 2.6 885 46.4%

Table 2. Independent variables

Metric Description

WMC Weighted methods per class

DIT Depth of inheritance tree

NOC Number of Children

CBO Coupling between object classes

RFC Response for a class

LCOM Lack of cohesion in methods

CA Afferent couplings

CE Efferent couplings

NPM Number of public methods

LCOM3 Lack of cohesion in methods (another

version) LOC Lines of code

DAM Data access metric

MOA Measure of aggregation

MFA Measure of function abstraction

CAM Cohesion among methods of class

IC Inheritance couplings

CBM Coupling between methods

AMC Average method complexity

MAX_C

C

Maximum McCabe’s cyclomatic

complexity AVG_C

C

Average McCabe’s cyclomatic complexity

4.2 Models development and performance metrics

Given the five datasets representing five different

software projects, five experiments were conducted.

In each experiment, four datasets were used for

training the models and the fifth was used for testing.

Four classification prediction models were developed

and optimized using Eclipse Deeplearning4j

programming library and WEKA machine learning

software during each experiment:

1. DLNN – individual DLNN model

2. Bagging – bagging ensemble of DLNN

3. Boosting – boosting ensemble of DLNN

4. Dagging – dagging ensemble of DLNN

In order to assess the performance of the

classification prediction models, several metrics were

used: accuracy, precision, recall, and F-measure. The

accuracy is a measure of correct classification rate,

which is the ratio of classes that were correctly

classified to the total number of classes in the

Received: January 16, 2021. Revised: February 27, 2021. 205

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

software. The precision is the ratio of classes that

were correctly classified as defective to the total

number of classes that were classified as defective.

The recall is the ratio of classes that were correctly

classified as defective to the total number of actually

defective classes. The F-measure is the harmonic

mean of both precision and recall metrics, since there

is a trade-off between both of them. Mathematically,

these metrics are calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑐𝑎𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Where TP is the number of true positive cases, i.e.,

the cases that are actually defective and correctly

predicted as defective. TN is the number of true

negative cases, i.e., the cases that are actually not

defective and correctly predicted as not defective. FP

is the number of false positive cases, i.e., the cases

that are actually not defective but predicted as

defective. FN is the number of false negative cases,

i.e., the cases that are actually defective but predicted

as not defective. N in the total number of cases.

In addition to the above metrics, Area Under

Curve (AUC) was measured, which is calculated

based on the Receiver Operating Characteristic

(ROC) curve that plots the true positive rate versus

the false positive rate at various threshold settings. It

is calculated as follows [33]:

 −+−=
i

iAUC]})1([
2

1
)1{(

 (5)

FNTP

TP
veRateTruePositi

+
==− 1 (6)

TNFP

FP
iveRateFalsePosit

+
== (7)

4.3 Results and analysis

Table 3 reports the measures of classification

performance of the ensemble models and the

individual DLNN models when applied for cross-

project software defect prediction over the five

datasets. Additionally, gain/loss analysis of the

performance of the ensemble methods in each

Table 3. Classification prediction results

D
a

ta
se

t

M
o

d
el

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

a
ll

F
-

m
ea

su
re

A
U

C

Ant

DLNN 0.809 0.398 0.611 0.482 0.657

Bagging 0.804 0.398 0.589 0.475 0.667

Boosting 0.596 0.867 0.340 0.489 0.380

Dagging 0.780 0.524 0.506 0.515 0.536

Camel

DLNN 0.789 0.138 0.382 0.203 0.586

Bagging 0.781 0.101 0.311 0.153 0.602

Boosting 0.762 0.218 0.331 0.263 0.569

Dagging 0.784 0.181 0.386 0.246 0.589

Synapse

DLNN 0.723 0.302 0.703 0.423 0.676

Bagging 0.734 0.349 0.714 0.469 0.672

Boosting 0.711 0.512 0.579 0.543 0.451

Dagging 0.715 0.372 0.627 0.467 0.655

Velocity

DLNN 0.664 0.090 0.538 0.154 0.639

Bagging 0.655 0.103 0.471 0.168 0.675

Boosting 0.651 0.295 0.479 0.365 0.622

Dagging 0.651 0.141 0.458 0.216 0.606

Xalan

DLNN 0.655 0.307 0.863 0.452 0.592

Bagging 0.677 0.345 0.893 0.498 0.664

Boosting 0.684 0.599 0.681 0.637 0.494

Dagging 0.654 0.392 0.742 0.513 0.494

measure over the individual DLNN models are

reported in Table 4, Table 5, Table 6, Table 7, and

Table 8; where gain values are in green font.

By analyzing the obtained accuracy results (Table

3 and Table 4) of the ensemble methods and

comparing it to the individual DLNN models, the

following can be observed. The bagging ensemble

models offered accuracy improvements of 1.17% and

2.15%, in the Synapse and Xalan datasets

respectively, over the individual DLNN models.

They achieved an average improvement of only

0.24% across the five datasets. In case of the boosting

ensemble models, an accuracy improvement of

2.82% was only observed in the Xalan dataset.

However, these boosting models degraded the

accuracy of the individual DLNN models by 4.74%

on average across the datasets. Lastly, the dagging

ensemble models consistently degraded the accuracy

of the individual DLNN models with an average of

1.11% across the datasets.

Looking at the precision results (Table 3 and

Table 5), the bagging ensemble models offered

improvements in precision over the individual DLNN

models in all datasets, except the Camel dataset. On

average, 1.22% improvement was observed across

Received: January 16, 2021. Revised: February 27, 2021. 206

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

Table 4. Gain/loss analysis of ensemble methods’

accuracy

Dataset Bagged_DLN

N

Boosted_DLN

N

Dagged_DLN

N Ant -0.54% -21.34% -2.95%

Camel -0.73% -2.69% -0.41%

Synaps

e

1.17% -1.17% -0.78%

Velocit

y

-0.87% -1.31% -1.31%

Xalan 2.15% 2.82% -0.11%

Avg. 0.24% -4.74% -1.11%

Table 5. Gain/loss analysis of ensemble methods’

precision

Dataset Bagged_DLN

N

Boosted_DLN

N

Dagged_DLN

N Ant 0.00% 46.99% 12.65%

Camel -3.72% 7.98% 4.26%

Synaps

e

4.65% 20.93% 6.98%

Velocit

y

1.28% 20.51% 5.13%

Xalan 3.89% 29.20% 8.52%

Avg. 1.22% 25.12% 7.51%

the datasets. On the other hand, both the boosting and

dagging ensemble models consistently outperformed

the individual DLNN models across the datasets. In

case of boosting, there was a significant improvement

of 25.12% in precision on average, and an average

improvement of 7.51% in precision was obtained in

case of dagging.

By considering the recall results (Table 3 and

Table 6), we can observe the following. The bagging

ensemble models offered recall improvements of

1.16% and 3.01%, in the Synapse and Xalan datasets

respectively, over the individual DLNN models.

However, across the datasets, an average degradation

of 2.38% was observed. The boosting ensemble

models consistently degraded the recall of the

individual DLNN models with an average of 13.74%

across the datasets. Similarly, the dagging ensemble

models degraded the recall in all datasets except the

Camel dataset; with an average of 7.55% across the

datasets.

When considering the F-measure results (Table 3

and Table 7) to overcome the trade-off between

precision and recall, the analysis yields the following

Table 6. Gain/loss analysis of ensemble methods’ recall

Dataset Bagged_DLN

N

Boosted_DLN

N

Dagged_DLN

N Ant -2.18% -27.07% -10.53%

Camel -7.09% -5.17% 0.40%

Synaps

e

1.16% -12.38% -7.53%

Velocit

y

-6.79% -5.93% -8.01%

Xalan 3.01% -18.16% -12.11%

Avg. -2.38% -13.74% -7.55%

Table 7. Gain/loss analysis of ensemble methods’ F-

measure

Dataset Bagged_DLN

N

Boosted_DLN

N

Dagged_DLN

N Ant -0.69% 0.72% 3.30%

Camel -5.05% 5.97% 4.33%

Synaps

e

4.60% 12.04% 4.44%

Velocit

y

1.46% 21.12% 6.18%

Xalan 4.58% 18.49% 6.03%

Avg. 0.98% 11.67% 4.86%

Table 8. Gain/loss analysis of ensemble methods’ AUC

Dataset Bagged_DLN

N

Boosted_DLN

N

Dagged_DLN

N Ant 1.00% -27.70% -12.10%

Camel 1.60% -1.70% 0.30%

Synaps

e

-0.40% -22.50% -2.10%

Velocit

y

3.60% -1.70% -3.30%

Xalan 7.20% -9.80% -9.80%

Avg. 2.60% -12.68% -5.40%

observations. The bagging ensemble models slightly

outperformed the individual DLNN models in three

out of the five datasets, with an average improvement

of just 0.98%. Both boosting and dagging ensemble

models consistently outperformed the individual

DLNN models across the datasets. In case of boosting,

there was a significant improvement of 11.67% on

average, and an average improvement of 4.86% was

observed in case of dagging.

Finally, the AUC results (Table 3 and Table 8)

indicate that the bagging ensemble models have

better AUC values compared to the individual DLNN

models in all datasets except the Synapse dataset. An

average gain of 2.6% was achieved by bagging across

Figure 7. ROC curves - ant

Received: January 16, 2021. Revised: February 27, 2021. 207

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

Figure 8. ROC curves – camel

Figure 9. ROC curves - synapse

the datasets. On the contrary, an average loss of

12.68% was observed in case of the boosting

ensemble models, and an average loss of 5.4% in case

of the dagging ensemble models. These observations

are further supported by the plots of the ROC curves

that are provided in Figure 7, Figure 8, Figure 9,

Figure 10, and Figure 11. The ROC curves of the

bagging ensemble models are the top-most curves in

these plots.

5. Concluding remarks

This paper has empirically evaluated and

compared the predictive effectiveness of three

resampling ensemble methods (bagging, boosting,

Figure 10. ROC curves - velocity

Figure 11. ROC curves - xalan

and dagging) of Deep Learning Neural Networks

(DLNN) against individual DLNN for the purpose of

cross-project software defect prediction. An

empirical study was conducted using five datasets.

Prediction classification models were assessed using

accuracy, precision, recall, F-measure, and AUC. The

results suggest that the answers to the questions of (i)

whether or not bagging, boosting, or dagging

ensemble methods of DLNN should be applied

instead of individual DLNN for cross-project

software defect prediction? and if so, (ii) which one

of them should be applied? depend on the

classification performance metric that has the highest

priority. In other words, the results indicate that the

bagging ensembles of DLNN offer only 0.24%

Received: January 16, 2021. Revised: February 27, 2021. 208

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

increase in accuracy, on average, compared to the

individual DLNN models, whereas the boosting and

dagging ensembles degrade the accuracy.

Furthermore, the results show that the three

resampling ensembles of DLNN outperform the

individual DLNN models in precision; with a

maximum improved precision by 25.15% on average

using the boosting ensembles. The results however

indicate that none of the resampling ensembles

improve the recall. Lastly, for a balanced

performance in terms of both precision and recall, the

results indicate improvements ranging from 0.98%

on average by applying the bagging ensembles to

11.67% on average by applying the boosting

ensembles.

This paper has contributed novel and interesting

empirical insights into the applications of three

resampling ensemble methods (bagging, boosting,

and dagging) of DLNN to the problem of cross-

project software defect prediction. The effectiveness

of these ensemble methods, as suggested by the

results of this study, depends on the classification

performance metric that has the highest priority from

the perspective of a software developer/manager as

discussed previously. Therefore, it is recommended

to first decide on the highest priority classification

performance metric, and then select the proper

ensemble method or just an individual DLNN to

apply accordingly.

As a future work, more empirical studies may be

conducted to further support the findings of this study

and to accumulate knowledge using other datasets.

Investigation of other types of ensemble methods,

including heterogeneous ensembles, is another

direction for future work. It is also worth

investigating the effectiveness of ensemble methods

on other software quality and security prediction

problems.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, M. Elish; methodology, M.

Elish; validation, M. Elish and K. Elish; formal

analysis, M. Elish and K. Elish; investigation, M.

Elish and K. Elish; resources, M. Elish; data curation,

M. Elish and K. Elish; writing—original draft

preparation, M. Elish and K. Elish; writing—review

and editing, M. Elish and K. Elish; visualization, M.

Elish and K. Elish.

References

[1] P. Ammann and J. Offutt, Introduction to

Software Testing. Cambridge University Press,

2008.

[2] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very Deep

Convolutional Neural Networks for Noise

Robust Speech Recognition”, IEEE/ACM

Transactions on Audio, Speech, and Language

Processing, Vol. 24, No. 12, pp. 2263–2276,

2016.

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria,

“Recent trends in deep learning based natural

language processing”, IEEE Computational

Intelligence Magazine, Vol. 13, No. 3, pp. 55-75,

2017.

[4] T. Goswami, “Impact of deep learning in image

processing and computer vision”, In: Proc. of

Microelectronics, Electromagnetics and

Telecommunications, pp. 475–485, 2018.

[5] G. Zhao and J. Huang, “Deepsim: Deep learning

code functional similarity”, In: Proc. of 26 ACM

Joint Meeting on European Software

Engineering Conf. and Symposium on the

Foundations of Software Engineering, pp. 141-

151, 2018.

[6] J. Guo, J. Cheng, and J. Cleland-Huang,

“Semantically enhanced software traceability

using deep learning techniques”, In: Proc. of

39th IEEE/ACM International Conf. on

Software Engineering, pp. 3-14, 2017.

[7] M. White, C. Vendome, M. Linares-Vásquez,

and D. Poshyvanyk, “Toward deep learning

software repositories”, In: Proc. of 12th Working

Conf. on Mining Software Repositories, pp.

334–345, 2015.

[8] M. Balog, A. Gaunt, M. Brockschmidt, S.

Nowozin, and D. Tarlow, “Deepcoder: Learning

to write programs”, In: Proc. of 5th International

Conf. on Learning Representations, pp. 1-19,

2017.

[9] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest:

Automated testing of deep-neural- network-

driven autonomous cars”, In: Proc. of 4th

International Conf. on Software Engineering, pp.

303-314, 2018.

[10] M. Elish, T. Helmy, and M. Hussain, “Empirical

Study of Homogeneous and Heterogeneous

Ensemble Models for Software Development

Effort Estimation”, Mathematical Problems in

Engineering, 2013.

[11] S. Rathore and S. Kumar, “Towards an ensemble

based system for predicting the number of

software faults”, Expert Systems with

Applications, Vol. 82, pp. 357–382, 2017.

Received: January 16, 2021. Revised: February 27, 2021. 209

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021 DOI: 10.22266/ijies2021.0630.18

[12] S. Rathore and S. Kumar, “Linear and non-linear

heterogeneous ensemble methods to predict the

number of faults in software systems”,

Knowledge-Based Systems, Vol. 119, pp. 232-

256, 2017.

[13] J. Zheng, “Cost-sensitive boosting neural

networks for software defect prediction”, Expert

Systems with Applications, Vol. 37, No. 6, pp.

4537–4543, 2010.

[14] A. Shanthini and R. Chandrasekaran,

“Analyzing the effect of bagged ensemble

approach for software fault prediction in class

level and package level metrics”, In: Proc. of

IEEE International Conf. on Information

Communication and Embedded Systems, pp. 1-5,

2014.

[15] H. Aljamaan and M. Elish, “An Empirical Study

of Bagging and Boosting Ensembles for

Identifying Faulty Classes in Object-Oriented

Software”, In: Proc. of IEEE Symposium on

Computational Intelligence and Data Mining,

pp. 187-194, 2009.

[16] A. Misirli, A. Bener, and B. Turhan, “An

industrial case study of classifier ensembles for

locating software defects”, Software Quality

Journal, Vol. 19, No. 3, pp. 515–536, 2011.

[17] L. Chen, B. Fang, Z. Shang, and Y. Tang,

“Negative samples reduction in cross-company

software defects prediction”, Information and

Software Technology, Vol. 62, pp. 67–77, 2015.

[18] D. Ryu, O. Choi, and J. Baik, “Value-cognitive

boosting with a support vector machine for

cross-project defect prediction”, Empirical

Software Engineering, Vol. 21, No. 1, pp. 43-71,

2016.

[19] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An

empirical study of classifier combination for

cross-project defect prediction”, In: Proc. of

39th IEEE Annual Computer Software and

Applications Conf., pp. 264–269, 2015.

[20] D. Ryu, J. I. Jang, and J. Baik, “A transfer cost-

sensitive boosting approach for cross-project

defect prediction”, Software Quality Control,

Vol. 25, No. 1, pp. 235–272, 2017.

[21] S. Uchigaki, S. Uchida, K. Toda, and A. Monden,

“An ensemble approach of simple regression

models to cross-project fault prediction”, In:

Proc. of 13th ACIS International Conf. on

Software Engineering, Artificial Intelligence,

Networking and Parallel & Distributed

Computing, pp. 476–481, 2012.

[22] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep

learning based software defect prediction”,

Neurocomputing, Vol. 385, pp. 100-110, 2020.

[23] A. Majd, M. Vahidi-Asl, A. Khalilian, and P.

Poorsarvi-Tehrani, “SLDeep: Statement-level

software defect prediction using deep-learning

model on static code features”, Expert Systems

with Applications, Vol. 147, 2020.

[24] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell, “Systematic Literature Review on

Fault Prediction Performance in Software

Engineering”, IEEE Transactions on Software

Engineering, Vol. 38, No. 6, pp. 1276–1304,

2012.

[25] C. Catal, “Software fault prediction: A literature

review and current trends”, Expert Systems with

Applications, Vol. 38, No. 4, pp. 4626–4636,

2011.

[26] R. Wahono, “A Systematic Literature Review of

Software Defect Prediction: Research Trends,

Datasets, Methods and Frameworks”, Journal of

Software Engineering, Vol. 1, No. 1, 2015.

[27] S. Hosseini, B. Turhan, and D. Gunarathna, “A

systematic literature review and meta-analysis

on cross project defect prediction”, IEEE

Transactions on Software Engineering, Vol. 45,

No. 2, pp. 111-147, 2017.

[28] L. Breiman, “Bagging predictors”, Machine

Learning, Vol. 24, No. 2, pp. 123-140, 1996.

[29] Y. Freund, “Boosting a weak learning algorithm

by majority”, Information and Computation,

Vol. 121, No. 2, pp. 256–285, 1995.

[30] Y. Freund and R. E. Schapire, “Experiments

with a new boosting algorithm”, In: Proc. of

13th International Conf. on Machine Learning,

Italy, pp. 148-156, 1996.

[31] K. Ting and I. Witten, “Stacking Bagged and

Dagged Models”, In: Proc. of 14th International

Conf. on Machine Learning, pp. 367-375, 1997.

[32] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall,

F. Peters, and B. Turhan, “The promise

repository of empirical software engineering

data”, West Virginia University, Department of

Computer Science, 2012.

[33] A. Bradley, “The use of the area under the ROC

curve in the evaluation of machine learning

algorithms”, Pattern Recognition, Vol. 30, No. 7,

pp. 1145-1159, 1997.

