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Abstract: Software defect prediction is one of the most important quality assurance activities during software 

development. This paper contributes empirical insights into the effectiveness of three resampling ensemble methods 

(bagging, boosting, and dagging) of Deep Learning Neural Networks (DLNN) for cross-project software defect 

prediction, compared to individual DLNN. An empirical study was conducted using five datasets. The results indicate 

that the bagging ensembles of DLNN offer only 0.24% increase in accuracy, on average, compared to the individual 

DLNN models, whereas the boosting and dagging ensembles degrade the accuracy. Furthermore, the results show that 

the three resampling ensembles of DLNN outperform the individual DLNN models in precision; with a maximum 

improved precision by 25.15% on average using the boosting ensembles. The results however indicate that none of the 

resampling ensembles improve the recall. Lastly, for a balanced performance in terms of both precision and recall, the 

results indicate improvements ranging from 0.98% on average by applying the bagging ensembles to 11.67% on 

average by applying the boosting ensembles. 
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1. Introduction 

Software testing and inspection play a vital role 

in software quality assurance. However, software 

testing is costly and labour-intensive, and can take up 

to 50% of the software development costs and more 

for safety-critical systems [1]. It is therefore 

important to focus software testing and inspection 

activities on defect-prone modules of software 

systems. This requires the development of effective 

software defect prediction models.  

Cross-project software defect prediction refers to 

the process of predicting defects in a new software 

system using the historical data of other systems. On 

one hand, cross-project defect prediction is more 

practical and industrially viable than within project, 

as the later suffers from the scarcity of data in the 

early phases of software development. On the other 

hand, the accuracy of the cross-project prediction 

models is usually lower than those of the within 

project models due to the differences between the 

source and the target software projects. 

In recent years, Deep Learning Neural Networks 

(DLNN) have been successfully applied in several 

fields and demonstrated to be effective. These include 

speech recognition [2], natural language processing 

[3], image processing [4], and software engineering 

[5-9]. The performance of DLNN varies from one 

dataset to another, as with other machine learning 

models.  

Ensemble methods aggregate a group of base 

learners as a committee of an ensemble that decides 

on the prediction results by consensus using a 

combination rule. They aim to manage each of their 

individual base learners’ strengths and weaknesses, 

and thus leading to the best possible decision being 

taken overall. There are heterogeneous and 

homogeneous ensembles [10]. Heterogeneous 

ensembles combine multiple models built from 

different machine learning algorithms, whereas 

homogeneous combine multiple models built from a 
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single machine learning algorithm. Resampling 

ensemble methods belong to the homogeneous 

ensembles category. 

Most of the existing studies [11-16] have applied 

ensemble methods for within project software defect 

prediction, not for the cross-project software defect 

prediction. Only few studies focused on cross-project 

software defect prediction and applied ensemble 

methods with Naïve Bayes (NB) [17], Support 

Vector Machine (SVM) [18], or Decision Tree (DT) 

and NB as base learners [19]. None of them have 

investigated the use of ensemble methods (bagging, 

boosting, and dagging) with DLNN as their base 

learner. 

The objective of this paper is to empirically 

evaluate and compare the predictive effectiveness of 

three resampling ensemble methods (bagging, 

boosting, and dagging) that use DLNN as their base 

learner, and benchmark their performance against 

individual DLNN in the context of cross-project 

software defect prediction. The research question is 

whether or not bagging, boosting, and/or dagging 

ensemble methods of DLNN are more effective for 

cross-project software defect prediction compared to 

individual DLNN?  

The rest of this paper is organized as follows. 

Section 2 reviews related work. Section 3 describes 

briefly the resampling ensemble methods. Section 4 

reports the empirical study and analyzes its results. 

Finally, Section 5 provides the concluding remarks 

and suggests directions for future work. 

2. Related work 

Several studies have applied ensemble methods 

for within project software defect prediction. Rathore 

and Kumar [11, 12] investigated some linear and non-

linear heterogeneous ensemble methods for intra-

release and inter-release predictions of the number of 

faults in software systems. Zheng [13] evaluated cost-

sensitive boosting of Artificial Neural Networks 

(ANN) for software defect prediction. Shanthini and 

Chandrasekaran [14] evaluated bagged ensemble of  

SVM for software fault prediction. Aljamaan and 

Elish [15] investigated bagging and boosting 

ensembles in identifying faulty classes in object-

oriented software. As base classifiers, they used 

MultiLayer Perceptron (MLP), Radial Basis Function 

(RNF) network, Bayesian Belief Network (BBN), 

NB, SVM, and DT. Misirli et al. [16] presented an 

ensemble method that combines NB, ANN, and 

voting feature intervals for locating software defects. 

In the context of cross-project software defect 

prediction, some studies have applied ensemble 

methods. Chen et al. [17] introduced double transfer 

boosting for cross-company software defects 

prediction, and used NB as a base learner. Ryu et al. 

[20] proposed a transfer cost-sensitive boosting 

approach for cross-project defect prediction that uses 

also NB as a base learner. Ryu et al. [18] applied 

SVM learner with boosting in the context of cross-

project defect prediction. Zhang et al. [19] 

investigated bagging and boosting ensembles for 

cross-project defect prediction, and used DT and NB 

as base learners. Additionally, they applied average 

voting, majority voting, and random forest. Uchigaki 

et al. [21] proposed an ensemble of Logistic 

Regression (LR) model that uses weighted sum of 

outputs for cross-project fault prediction. 

Few studies have applied DLNN models for 

software defect prediction, but not as ensembles. 

Qiao et al. [22] applied deep neural network-based 

model to predict the number of defects in software 

systems. The results indicated that their proposed 

method reduces the mean square error by more than 

14% and increases the squared correlation coefficient 

by more than 8%. Majd et al. [23] used deep-learning 

models for statement-level software defect prediction, 

and the results showed their effectiveness. 

Some systematic literature reviews have been 

conducted on software fault prediction [24-27]. The 

most relevant one is by Hosseini et al. [27] who 

conducted a systematic literature review and meta-

analysis on cross-project defect prediction. Among 

their findings, it was found that NB and LR are the 

most widely used models for that purpose as 

individual models or as the base for ensembles. NB 

seems to have an average performance, whereas 

Nearest Neighbour (NN), SVM, and DT have the 

highest median F-measure. Ensemble methods, 

however, perform below average in terms of F-

measure, and best in terms of AUC measure.  

Unlike other related works, this paper focuses on 

cross-project software defect prediction to predict the 

defects in a new software system using the historical 

data of other systems and utilizing three resampling 

ensemble methods of DLNN to achieve this goal. 

3. Resampling ensemble methods 

The ensemble learning for a classification 

problem aggregates a group of base classifiers as a 

committee of ensemble that decides on the prediction 

results by consensus using a combination rule such as 

majority voting. In case of a resampling ensemble 

method, base classifiers are trained on different 

subsets of the training data using a resampling 

technique. Three popular resampling ensemble 

methods (bagging, boosting, and dagging) were 

empirically evaluated in this research for the aim of 
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cross-project software prediction using DLNN as 

base classifiers.  

DLNN represents stacked neural networks, i.e., 

networks composed of several layers. The layers 

consist of nodes where each layer is trained using 

distinct set of features based on the outputs from its 

previous layer. The nodes are computational units 

that combine their inputs using weights. These input-

weight outcomes are then summed and forwarded to 

an activation function that produces the final outcome. 

3.1 Bagging 

Bagging stands for Bootstrap Aggregation, and 

was introduced by Bieman [28]. This ensemble 

method starts with bootstrap sampling (i.e. random 

sampling with replacement) of the training dataset. A 

base classifier is then developed for each sample. 

Finally, the results of these multiple classifiers are 

then combined using majority voting. Bagging is thus 

considered a parallel ensemble since the base 

classifiers are developed in parallel during the 

training phase. Figure. 1 provides an overview of the 

bagging ensemble, whereas Figure. 2 depicts its 

algorithm. 

3.2 Boosting 

Boosting, which was introduced by Freund [29], 

works by training a set of classifiers sequentially by 

combing them for classification, where each latter 

classifier focusses on the errors of the earlier 

classifiers. In the first iteration of this ensemble 

 

 
Figure. 1 Bagging ensemble 

 

model generation 

 Let N be the number of instances in the training data D 

 For each iteration i: 

          Di = random sample of size N with replacement from D  

          Apply the classifier algorithm to Di 

          Store the resulting modeli 

 classification 

 For each model i: 

          Predict the class of instance using modeli 

 Return class that has been predicted most often (majority  

voting) 

Figure. 2 Bagging algorithm [15] 

 
Figure. 3 Boosting ensemble 

 

model generation 

 Assign equal weight to each instance in the training data D 

 For iteration i: 

         Apply the classifier to the weighted dataset Di 

         Store the resulting modeli 

         Compute error e of modeli  

         If e = 0 or e ≥ 0.5: 

                  Terminate models generation 

         Else generate Di+1 as follows: 

  For each instance in Di: 

                           If instance was classified correctly by modeli: 

                                 Multiply the weight of instance by e (1–e) 

            Copy the instance from Di to Di+1 

         Normalize the weights of all instances in Di+1 

 classification 

 For each model i (or less): 

         Add –log(e/(1–e)) to the weight of class predicted by 

modeli 

 Return class with highest weight 

Figure. 4 Boosting algorithm [15] 

 

method, a base classifier takes the training dataset 

and assigns equal weight to each of its instances. In 

the next iteration, the incorrectly classified instances 

are assigned to the next base classifier with a higher 

weightage. The iterations then continue likewise until 

the algorithm can correctly classify the output. There 

are a few types of boosting algorithms, and this 

research has used Adaptive Boosting (AdaBoost) 

[30]. Figure. 3 provides an overview of the boosting 

ensemble, and Figure. 4 depicts its algorithm. 

3.3 Dagging 

Dagging [31] is similar to bagging except that 

disjoint sampling is applied, instead of bootstrap 

sampling, to the training dataset. Following the 

resampling of the training dataset, a base classifier is 

developed for each sample. The results of these 

multiple classifiers are then combined using majority 

voting. Dagging is therefore considered a parallel 

ensemble. Figure. 5 provides an overview of it, and 

Figure. 6 depicts its algorithm. 

4. Empirical study 

The goal of this empirical study was to evaluate 

and compare the accuracy of bagging, boosting, and  
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Figure. 5 Dagging ensemble 

 

 model generation 

 Let N be the number of instances in the training data D 

 For each iteration i: 

          Di = disjoint random sample from D  

          Apply the classifier algorithm to Di 

          Store the resulting modeli 

 classification 

 For each model i: 

          Predict the class of instance using modeli 

 Return class that has been predicted most often (majority 

voting) 

Figure. 6 Dagging algorithm 

 

dagging ensemble methods of DLNN against 

individual DLNN for the purpose of cross-project 

software defect prediction. It aimed to determine the 

extent to which these resampling ensemble methods 

offer reliable and improved classification accuracy 

over the individual model using different datasets. 

This section reports the details of the empirical study 

that was conducted and analyzes its results. 

4.1 Datasets 

Publicly accessible datasets were chosen that 

represent five open source software projects 

implemented in Java: Ant 1.7, Camel 1.6, Synapse 

1.2, Velocity 1.6.1, and Xalan 2.6. These datasets are 

available through the PROMISE repository of 

empirical software engineering data [32]. The 

observations in these datasets correspond to the 

classes in the corresponding object-oriented software. 

Furthermore, these datasets have one dependent 

variable and 17 independent variables. The 

dependent variable is a binary variable that indicates 

whether or not the corresponding class is defective 

regardless of the number, type and severity of defects 

if any. The independent variables, on the other hand, 

represent several class-level metrics that measure 

various structural characteristics such as size, 

complexity, coupling, cohesion, and inheritance. 

Descriptive statistics of these five datasets in terms of 

the number of classes (observations) and the 

percentage of defective classes are provided in Table 

1, whereas Table 2 lists the independent variables. 
 

Table 1. Descriptive statistics of the datasets 

Dataset # of classes % of defective classes 

Ant 1.7 745 22.3% 

Camel 1.6 965 19.5% 

Synapse 1.2 256 33.6% 

Velocity 1.6.1 229 34.1% 

Xalan 2.6 885 46.4% 

 
Table 2. Independent variables  

Metric Description 

WMC Weighted methods per class 

DIT Depth of inheritance tree 

NOC Number of Children 

CBO Coupling between object classes 

RFC Response for a class 

LCOM Lack of cohesion in methods 

CA Afferent couplings 

CE Efferent couplings 

NPM Number of public methods 

LCOM3 Lack of cohesion in methods (another 

version) LOC Lines of code 

DAM Data access metric 

MOA Measure of aggregation 

MFA Measure of function abstraction 

CAM Cohesion among methods of class 

IC Inheritance couplings 

CBM Coupling between methods 

AMC Average method complexity 

MAX_C

C 

Maximum McCabe’s cyclomatic 

complexity AVG_C

C 

Average McCabe’s cyclomatic complexity 

4.2 Models development and performance metrics 

Given the five datasets representing five different 

software projects, five experiments were conducted. 

In each experiment, four datasets were used for 

training the models and the fifth was used for testing. 

Four classification prediction models were developed 

and optimized using Eclipse Deeplearning4j 

programming library and WEKA machine learning 

software during each experiment:  

1. DLNN – individual DLNN model 

2. Bagging – bagging ensemble of DLNN 

3. Boosting – boosting ensemble of DLNN 

4. Dagging – dagging ensemble of DLNN  

In order to assess the performance of the 

classification prediction models, several metrics were 

used: accuracy, precision, recall, and F-measure. The 

accuracy is a measure of correct classification rate, 

which is the ratio of classes that were correctly 

classified to the total number of classes in the 
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software. The precision is the ratio of classes that 

were correctly classified as defective to the total 

number of classes that were classified as defective. 

The recall is the ratio of classes that were correctly 

classified as defective to the total number of actually 

defective classes. The F-measure is the harmonic 

mean of both precision and recall metrics, since there 

is a trade-off between both of them. Mathematically, 

these metrics are calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑐𝑎𝑦 =  
𝑇𝑃+𝑇𝑁

𝑁
                   (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (3) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

 

Where TP is the number of true positive cases, i.e., 

the cases that are actually defective and correctly 

predicted as defective. TN is the number of true 

negative cases, i.e., the cases that are actually not 

defective and correctly predicted as not defective. FP 

is the number of false positive cases, i.e., the cases 

that are actually not defective but predicted as 

defective. FN is the number of false negative cases, 

i.e., the cases that are actually defective but predicted 

as not defective. N in the total number of cases.  

In addition to the above metrics, Area Under 

Curve (AUC) was measured, which is calculated 

based on the Receiver Operating Characteristic 

(ROC) curve that plots the true positive rate versus 

the false positive rate at various threshold settings. It 

is calculated as follows [33]: 

 

 −+−=
i

iAUC ]})1([
2

1
)1{( 

      (5) 

 

FNTP

TP
veRateTruePositi

+
==− 1     (6) 

 

TNFP

FP
iveRateFalsePosit

+
==    (7) 

4.3 Results and analysis 

Table 3 reports the measures of classification 

performance of the ensemble models and the 

individual DLNN models when applied for cross-

project software defect prediction over the five 

datasets. Additionally, gain/loss analysis of the 

performance of the ensemble methods in each  

Table 3. Classification prediction results  
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Ant  

DLNN 0.809 0.398 0.611 0.482 0.657 

Bagging 0.804 0.398 0.589 0.475 0.667 

Boosting 0.596 0.867 0.340 0.489 0.380 

Dagging 0.780 0.524 0.506 0.515 0.536 

Camel 

DLNN 0.789 0.138 0.382 0.203 0.586 

Bagging 0.781 0.101 0.311 0.153 0.602 

Boosting 0.762 0.218 0.331 0.263 0.569 

Dagging 0.784 0.181 0.386 0.246 0.589 

Synapse 

DLNN 0.723 0.302 0.703 0.423 0.676 

Bagging 0.734 0.349 0.714 0.469 0.672 

Boosting 0.711 0.512 0.579 0.543 0.451 

Dagging 0.715 0.372 0.627 0.467 0.655 

Velocity 

DLNN 0.664 0.090 0.538 0.154 0.639 

Bagging 0.655 0.103 0.471 0.168 0.675 

Boosting 0.651 0.295 0.479 0.365 0.622 

Dagging 0.651 0.141 0.458 0.216 0.606 

Xalan 

DLNN 0.655 0.307 0.863 0.452 0.592 

Bagging 0.677 0.345 0.893 0.498 0.664 

Boosting 0.684 0.599 0.681 0.637 0.494 

Dagging 0.654 0.392 0.742 0.513 0.494 

 

measure over the individual DLNN models are 

reported in Table 4, Table 5, Table 6, Table 7, and 

Table 8; where gain values are in green font. 

By analyzing the obtained accuracy results (Table 

3 and Table 4) of the ensemble methods and 

comparing it to the individual DLNN models, the 

following can be observed. The bagging ensemble 

models offered accuracy improvements of 1.17% and 

2.15%, in the Synapse and Xalan datasets 

respectively, over the individual DLNN models. 

They achieved an average improvement of only 

0.24% across the five datasets. In case of the boosting 

ensemble models, an accuracy improvement of 

2.82% was only observed in the Xalan dataset. 

However, these boosting models degraded the 

accuracy of the individual DLNN models by 4.74% 

on average across the datasets. Lastly, the dagging 

ensemble models consistently degraded the accuracy 

of the individual DLNN models with an average of 

1.11% across the datasets. 

Looking at the precision results (Table 3 and 

Table 5), the bagging ensemble models offered 

improvements in precision over the individual DLNN 

models in all datasets, except the Camel dataset. On 

average, 1.22% improvement was observed across  
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Table 4. Gain/loss analysis of ensemble methods’ 

accuracy  

Dataset Bagged_DLN

N 

Boosted_DLN

N 

Dagged_DLN

N Ant -0.54% -21.34% -2.95% 

Camel -0.73% -2.69% -0.41% 

Synaps

e 

1.17% -1.17% -0.78% 

Velocit

y 

-0.87% -1.31% -1.31% 

Xalan 2.15% 2.82% -0.11% 

Avg. 0.24% -4.74% -1.11% 

 

Table 5. Gain/loss analysis of ensemble methods’ 

precision  

Dataset Bagged_DLN

N 

Boosted_DLN

N 

Dagged_DLN

N Ant 0.00% 46.99% 12.65% 

Camel -3.72% 7.98% 4.26% 

Synaps

e 

4.65% 20.93% 6.98% 

Velocit

y 

1.28% 20.51% 5.13% 

Xalan 3.89% 29.20% 8.52% 

Avg. 1.22% 25.12% 7.51% 

 
the datasets. On the other hand, both the boosting and 

dagging ensemble models consistently outperformed 

the individual DLNN models across the datasets. In 

case of boosting, there was a significant improvement 

of 25.12% in precision on average, and an average 

improvement of 7.51% in precision was obtained in 

case of dagging.   

By considering the recall results (Table 3 and 

Table 6), we can observe the following. The bagging 

ensemble models offered recall improvements of 

1.16% and 3.01%, in the Synapse and Xalan datasets 

respectively, over the individual DLNN models. 

However, across the datasets, an average degradation 

of 2.38% was observed. The boosting ensemble 

models consistently degraded the recall of the 

individual DLNN models with an average of 13.74% 

across the datasets. Similarly, the dagging ensemble 

models degraded the recall in all datasets except the 

Camel dataset; with an average of 7.55% across the 

datasets. 

When considering the F-measure results (Table 3 

and Table 7) to overcome the trade-off between 

precision and recall, the analysis yields the following 

 
Table 6. Gain/loss analysis of ensemble methods’ recall  

Dataset Bagged_DLN

N 

Boosted_DLN

N 

Dagged_DLN

N Ant -2.18% -27.07% -10.53% 

Camel -7.09% -5.17% 0.40% 

Synaps

e 

1.16% -12.38% -7.53% 

Velocit

y 

-6.79% -5.93% -8.01% 

Xalan 3.01% -18.16% -12.11% 

Avg. -2.38% -13.74% -7.55% 

Table 7. Gain/loss analysis of ensemble methods’ F-

measure  

Dataset Bagged_DLN

N 

Boosted_DLN

N 

Dagged_DLN

N Ant -0.69% 0.72% 3.30% 

Camel -5.05% 5.97% 4.33% 

Synaps

e 

4.60% 12.04% 4.44% 

Velocit

y 

1.46% 21.12% 6.18% 

Xalan 4.58% 18.49% 6.03% 

Avg. 0.98% 11.67% 4.86% 

 
Table 8. Gain/loss analysis of ensemble methods’ AUC  

Dataset Bagged_DLN

N 

Boosted_DLN

N 

Dagged_DLN

N Ant 1.00% -27.70% -12.10% 

Camel 1.60% -1.70% 0.30% 

Synaps

e 

-0.40% -22.50% -2.10% 

Velocit

y 

3.60% -1.70% -3.30% 

Xalan 7.20% -9.80% -9.80% 

Avg. 2.60% -12.68% -5.40% 

 
observations. The bagging ensemble models slightly 

outperformed the individual DLNN models in three 

out of the five datasets, with an average improvement 

of just 0.98%. Both boosting and dagging ensemble 

models consistently outperformed the individual 

DLNN models across the datasets. In case of boosting, 

there was a significant improvement of 11.67% on 

average, and an average improvement of 4.86% was 

observed in case of dagging. 

Finally, the AUC results (Table 3 and Table 8) 

indicate that the bagging ensemble models have 

better AUC values compared to the individual DLNN 

models in all datasets except the Synapse dataset. An 

average gain of 2.6% was achieved by bagging across  

 

 
Figure 7. ROC curves - ant 
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Figure 8. ROC curves – camel 

 

 
Figure 9. ROC curves - synapse 

 

the datasets. On the contrary, an average loss of 

12.68% was observed in case of the boosting 

ensemble models, and an average loss of 5.4% in case 

of the dagging ensemble models. These observations 

are further supported by the plots of the ROC curves 

that are provided in Figure 7, Figure 8, Figure 9, 

Figure 10, and Figure 11. The ROC curves of the 

bagging ensemble models are the top-most curves in 

these plots. 

5. Concluding remarks 

This paper has empirically evaluated and 

compared the predictive effectiveness of three 

resampling ensemble methods (bagging, boosting,  

 
Figure 10. ROC curves - velocity 

 

 
Figure 11. ROC curves - xalan 

 

and dagging) of Deep Learning Neural Networks 

(DLNN) against individual DLNN for the purpose of 

cross-project software defect prediction. An 

empirical study was conducted using five datasets. 

Prediction classification models were assessed using 

accuracy, precision, recall, F-measure, and AUC. The 

results suggest that the answers to the questions of (i) 

whether or not bagging, boosting, or dagging 

ensemble methods of DLNN should be applied 

instead of individual DLNN for cross-project 

software defect prediction? and if so, (ii) which one 

of them should be applied? depend on the 

classification performance metric that has the highest 

priority. In other words, the results indicate that the 

bagging ensembles of DLNN offer only 0.24% 
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increase in accuracy, on average, compared to the 

individual DLNN models, whereas the boosting and 

dagging ensembles degrade the accuracy. 

Furthermore, the results show that the three 

resampling ensembles of DLNN outperform the 

individual DLNN models in precision; with a 

maximum improved precision by 25.15% on average 

using the boosting ensembles. The results however 

indicate that none of the resampling ensembles 

improve the recall. Lastly, for a balanced 

performance in terms of both precision and recall, the 

results indicate improvements ranging from 0.98% 

on average by applying the bagging ensembles to 

11.67% on average by applying the boosting 

ensembles.   

This paper has contributed novel and interesting 

empirical insights into the applications of three 

resampling ensemble methods (bagging, boosting, 

and dagging) of DLNN to the problem of cross-

project software defect prediction. The effectiveness 

of these ensemble methods, as suggested by the 

results of this study, depends on the classification 

performance metric that has the highest priority from 

the perspective of a software developer/manager as 

discussed previously. Therefore, it is recommended 

to first decide on the highest priority classification 

performance metric, and then select the proper 

ensemble method or just an individual DLNN to 

apply accordingly. 

As a future work, more empirical studies may be 

conducted to further support the findings of this study 

and to accumulate knowledge using other datasets. 

Investigation of other types of ensemble methods, 

including heterogeneous ensembles, is another 

direction for future work. It is also worth 

investigating the effectiveness of ensemble methods 

on other software quality and security prediction 

problems.  
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