
Received: December 16, 2020. Revised: January 25, 2021. 421

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

A New Hybrid Clustering Method of Binary Differential Evolution and Marine

Predators Algorithm for Multi-omics Datasets

Mohamed Ghoneimy1* Hesham A. Hassan2 Emad Nabil2,3

1Faculty of Information Technology, MUST University, 6th of October City, Giza, Egypt

2Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
3Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia

* Corresponding author’s Email: Mohamed.ghoneimy@must.edu.eg

Abstract: Clustering of biological datasets proved to reveal a lot of significant insights into the medical and biological

research. It is an important step towards drug design, vaccine discovery, disease diagnosis, and more. The current trend

in biological and medical research is to combine more than one dataset, referred to as multi-omics, related to a specific

problem, then perform the clustering or the analysis. The insights we gain for a particular biological problem or disease

are double using multi-omics rather than using one dataset. It is like investigating a problem from many dimensions

rather than using one dimension. On the other hand, the difficulty of clustering is increased. Another tricky problem

in data clustering is determining the best number of clusters used by a clustering algorithm. Due to the big success of

metaheuristics in solving the automatic clustering problems, we propose in this paper a new hybrid method that utilizes

two powerful metaheuristics algorithms, the Binary Differential Evolution and Marine Predators Algorithm, to perform

automatic clustering on multi-omics datasets. Our proposal's performance is investigated upon eight multi-omics

datasets from TCGA, and it is compared with four recent and powerful metaheuristics. The used performance metrics

are clustering quality and execution time. The experimental results show that the proposed algorithm not only

outperformed its competitors in terms of clustering quality, it also only needed a third of the execution time that of its

fastest competitor. Moreover, the statistical analysis shows that the obtained results are statistically significant.

Accordingly, the proposed method can be considered as an efficient clustering method for multi-omics datasets.

Keywords: Clustering, Automatic clustering, Differential evolution, MPA, Metaheuristics, Nature-inspired

metaheuristics, Molecular-level interaction, Multi-omics.

1. Introduction

The rapid development in high throughput

methods produced huge data types such as DNA

methylation, DNA genome sequence, and RNA

expression, each of them is called omic. The analysis

of multi-omics datasets is beneficial for the following

reasons. First, it reduces the effect of noise on results.

Seconds, using omics from different molecular aspect

levels such as genomic and epigenomic can show

different aspects of patients. Third, even using omics

from the same level, such as mutation and copy

number, can reveal the omics' different aspects [1].

It is necessary to develop new computational

methods to analyze these datasets. Clustering is the

process of discovering the natural grouping of

records according to their similarities. Clustering is a

fundamental process in analysis, and it is often used

as the first process of data analysis. Clustering is

essential for medical research as it is used to discover

the co-regulated genes and new grouping of patients

based on genetic similarity. Many clustering methods

need to determine the number of clusters before

starting, which can be challenging to obtain in a

multi-omics problem [2, 3]. This problem can be

solved using automatic clustering, which needs to

determine the minimum and the maximum number of

clusters.

The two main automatic clustering tasks are

determining the optimal number of clusters and

determining the appropriate cluster for each object.

Received: December 16, 2020. Revised: January 25, 2021. 422

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Finding the optimum solution for the clustering

problem is an NP-hard problem [4]. Many

publications tackled the problem of automatic

clustering using metaheuristic algorithms [5–7]. A

survey about solving the automatic clustering

problem using nature-inspired metaheuristics is

presented in [8].

To the best of our knowledge, the problem of

automatic clustering for multi-omics datasets is not

solved yet. In this paper, we propose a new hybrid

method combining modified Binary Differential

Evolution (BDE) [9] and Marine Predators

Algorithm (MPA) [10] called DEMP to solve the

automatic clustering problem for multi-omics

datasets. DEMP uses at the first stage BDE, and it

uses MPA at the second stage. In addition, we

propose a modified BDE algorithm to fit our method.

In the first stage, the DEMP method tries to reach the

right number of clusters and reasonable clustering

solutions. In contrast, in the second stage, it tries to

reach the optimal solution to the automatic clustering

problem. The DEMP method is benchmarked by

eight multi-omics datasets that are available on The

Cancer Genome Atlas (TCGA).

The rest of this paper is organized as follows: in

the second section we introduce the related works for

metaheuristics methods which solve an automatic

clustering problem. The third section presents our

new hybrid clustering method DEMP. The fourth

section displays the experimental results. Next, the

fifth section displays the result's discussions. Finally,

the sixth section presents the conclusion of this paper.

2. Related work

In this section, we will show and discuss the

related works to automatic clustering methods using

metaheuristics. Any metaheuristic needs to determine

an encoding to solve the automatic clustering

problem. The encoding schema is vital for

determining the metaheuristic search space, affecting

both the result's quality and the execution time.

Automatic clustering methods that use metaheuristics

can be divided in terms of encoding into three

categories, which are binary, integer, and real

encoding. Because the number of clusters is not

known in advance, the encoding scheme must be

designed to adapt to the clusters number change in the

specified pre-determined range [kmin, kmax].

In the binary encoding scheme, a binary string of

length equal to N (where N equals the number of

objects/patients in the data set) is used to represent

each clustering solution. Furthermore, each

object/patient in the data set is represented as a

position in that binary string. In the binary string, the

Figure. 1 Clustering solution representation in binary

encoding

object/patient is considered a cluster centroid only if

the corresponding position equals one, as shown in

Fig. 1. A genetic algorithm for automatic clustering

that uses binary encoding is proposed in [11]. [12]

proposed a hierarchical evolutionary algorithm that

solves the automatic clustering problem for medical

images using binary encoding. The clustering

solution's binary string's length is frequently short

because the number of patients in multi-omics

datasets is relatively small, leading to a smaller

search space with faster convergence. On the other

hand, the metaheuristic that uses the binary encoding

chooses the potential centroids from the data set's

objects/patients, so obtaining a good clustering

solution using the binary encoding scheme depends

on the dataset. Therefore, metaheuristics do not often

use the binary encoding on clustering.

In the integer encoding scheme, an integer array

of length equal to N is used to represent each

clustering solution. Each object/patient in the data set

is represented as an integer array position, which

equals an integer value in the range [1:kmax]. All

objects/patients that have the same integer value

belong to the same cluster as shown in Fig. 2. One of

the drawbacks of this encoding is repetition, as the

same solution can have more than one representation,

which leads to doubling the clustering search space.

For example, the following representations

{1,1,2,2,2}, {2,2,1,1,1} represent the same clustering

solution. [13] proposed a genetic algorithm for

automatic clustering using integer encoding.

Proposed improvements that enhance the efficiency

of genetic algorithm in solving the automatic

clustering problem is published in [14]. A Bacterial

Evolutionary Algorithm is a metaheuristic that uses

integer encoding to solve the automatic clustering

problem [15]. [16, 17] are two automatic clustering

methods that use metaheuristics with integer

encoding for the microarray datasets (single omic).

In the real encoding scheme, each clustering

solution is represented as a set of centroids whose

Received: December 16, 2020. Revised: January 25, 2021. 423

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Figure. 2 Clustering solution representation in integer

encoding

number is Kmax. Due to representing clusters number

varying, activation thresholds are commonly used to

determine which centroid is active in a particular

clustering solution, as shown in Fig. 3. The

metaheuristics widely use real encoding in automatic

clustering. Many Genetic algorithm versions used

real encoding in solving the automatic clustering

problem such as [18, 19]. Two particle swarm

optimization (PSO) metaheuristics also used the real

encoding [20, 21]. Invasive weed optimization

(IWO) metaheuristics chose real encoding in [22]. An

evolutionary programming-based clustering

approach based on real encoding is presented in [23].

[24] proposed an automatic clustering method based

on a clone selection algorithm that uses real encoding.

[25] presented a comparative performance

experiment of five metaheuristics in solving the

automatic clustering problem. These metaheuristics

are firefly algorithm (FA), differential evolution (DE),

genetic algorithm (GA), IWO, and PSO. All

metaheuristics that are chosen in the mentioned

experiment are based on real encoding. Recently, a

modified DE metaheuristic used the real encoding to

solve the clustering problem [26]. Some powerful

modern metaheuristics have not been used to solve

the automatic clustering before due to their recency.

These metaheuristics can compete with the current

metaheuristics in this field. Such as Equilibrium

Optimizer (EO) [27], MPA, and Slime mould

algorithm (SMA) [28]. SMA is nature-inspired

metaheuristic that mainly inspired by slime mould

behaviour. It uses weights to mimic the negative and

positive oscillator's feedback through searching for

the food. It achieved superior results in terms of

average fitness value because it has a good balance

between explorations and exploitations. EO is a

physics-based metaheuristic that mainly inspired by

the mass balance equation for a control volume. It has

high exploitative and exploratory search techniques

to solutions' random modifications. This

Figure. 3 Clustering solution representation in centroid-

base real encoding

metaheuristic is known for its speed in reaching

optimum or near-optimum solutions. Despite the

metaheuristics, which uses real encoding can find a

much better solution to the clustering problem for

multi-omics datasets, they need higher execution

time because of the large number of decision

variables. The increase in the number of decision

variables because each centroid is represented as a

real value array of length equal to the number of

features in the multi-omics dataset, which are a huge

number.

3. The proposed method

This section presents our proposed hybrid

clustering method DEMP, which contains two

metaheuristics with two different encodings. We first

show the BDE algorithm and explain our

modification to it. Second, we present the MPA

algorithm and explain our adjustments to it. Finally,

we offer the DEMP method and how does it merge

both BDE and MPA.

3.1 Modified binary differential evolution

The DE is an evolutionary metaheuristic

proposed in [29]. In the beginning, it was designed to

solve the global optimization problem. A new binary

DE version is developed in [9] to solve the problem

of feature selection. We modified the BDE algorithm

to fit the proposed method (DEMP). In this section,

we present the modified version of BDE.

The BDE uses the binary encoding scheme in

which each solution is represented as a binary vector

with a length equals to the number of patients. The ith

element of a vector corresponds to the ith patient, as

shown in Fig. 1. In a specific solution, a patient of

index i is considered a centroid of a cluster if it's

corresponding element equals one. We modified the

initial population generation phase as follows. Let N

be the population's size; the algorithm chooses N

Received: December 16, 2020. Revised: January 25, 2021. 424

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

random numbers in the range [Kmin, Kmax]. Each

random number corresponds to a specific

vector/solution, where the random number specifies

the number of centroids of that vector/solution. Then

the algorithm chooses randomly which

elements/patients are centroids in each

vector/solution. The selected elements are set to 1,

while the remaining elements are set to 0.

Many clustering validity methods are used in

measuring the clustering algorithms results in terms

of the clustering cohesion and separation [25, 30]. We

chose the DB index [31] as the fitness function

because of its capability of finding feasible high-

quality results and its computational cost-efficiency

[25]. The DB index method, which is used as the

fitness function, includes calculating the distance

between every dataset object and its cluster centroid

every time it runs. Calculating the distance between

every object and its cluster centroid is extremely

time-consuming because of the massive number of

features in the multi-omics datasets. Since we use the

binary encoding, the BDE chooses centroids of the

clusters from the dataset's existing objects.

Accordingly, we made a modification, which is to

calculate the distances between every pair of the

dataset's objects once and save them in a table at the

beginning of the BDF algorithm. So, instead of

calculating these distances with each calling of the

fitness function, it can be obtained directly from the

previously mentioned saved table, which leads to a

vast decrease in the execution time of the proposed

method.

BDE has only three operators, which are mutation,

crossover, and selection. In this study, BDE uses the

same mutation operator used in [32]. At the

beginning of the mutation process for each vector Xi,

BDE selects three random vectors from the

population Xr1, Xr2, and Xr3 while r1 ≠ r2 ≠ r3. Then

BDE calculates the difference vector described in Eq.

(1) where d is element order in the vector, and i is the

vector order in the population. After that, the mutant

vector is obtained, as shown in Eq. (2). Since BDE is

frequently used in solving feature selection problems,

it always uses the traditional crossover operator [9,

32]. The traditional crossover operator works on each

vector's element alone, which may lead to the number

of ones/centroids in the trial vector outside the

specified range [Kmin, Kmax]. If this occurs, the

obtained trial vector will represent an unfeasible

solution and needs to be repaired. We propose a

modified version of the crossover operator in this

article to avoid unfeasible solutions. Instead of

working on each vector's element alone, our proposed

crossover operator works only on elements that equal

one (centroids) in both target and mutant vectors as

shown Eq. (3).

𝑑𝑖𝑓𝑓. 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 = {

0 𝑖𝑓𝑥𝑟1
𝑑 = 𝑥𝑟2

𝑑

𝑥𝑟1
𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

𝑚𝑢𝑡𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 = {

1 𝑖𝑓 𝑑𝑖𝑓𝑓. 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 = 1

𝑥𝑟1
𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝑡𝑟𝑖𝑎𝑙𝐶𝑒𝑛𝑡𝑜𝑟𝑖𝑑𝑠𝑖
𝑑 =

{
𝑚𝑢𝑡𝑎𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑖

𝑟1

𝑟 ≤ 𝐶𝑅(𝑡)

𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑖
𝑟2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

The trial-centroids, mutant-centroids and target-

centroids are integer vectors that contain the

centroids' indexes for the trial, mutant, and target

vectors respectively. r1 and r2 are unique integer

random numbers. r1 ranges from 1 to the size of

mutant-centroids vector, while r2 is between 1 and

the size of target-centroids vector. Then, the binary

trial vector's elements that their indexes exist in trial-

centroids are set to 1 as shown in Eq. (4).

𝑡𝑟𝑖𝑎𝑙𝑖
𝑑 = 1 𝑑 ∈ trailCentroids𝑖 (4)

Finally, the selection operator is the same as the

one used in [32]. In the selection process, the BDE

replaces the target vector with the trial vector only if

the trial vector has a better fitness value. Otherwise,

it keeps the target vector in the next population.

Algorithm 1 BDE pseudocode

Initialize the first population

While termination condition

-Generate a mutant vector for every target vector using

Eq. (1) and Eq. (2)

-Generate a trail vector for every target vector using Eq.

(3) and Eq. (4)

-Evaluate target and trial vectors using DB index [31].

-Replace the target vector with the trial vector only if

the trial vector has a better fitness value

End while

3.2 Marine predators algorithm

MPA is a recent nature-inspired metaheuristic

inspired mainly by the food searching strategies,

namely Brownian and Lévy movements in ocean

predators [10]. MPA considers both predator and

prey as a search agent as the prey itself is a predator

when it searches for its food.

Received: December 16, 2020. Revised: January 25, 2021. 425

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Each search agent in the initial population is

initialized randomly, as shown in Eq. (5). The amax

and amin are the upper and lower bound for variables,

while r is a random number between 0 and 1.

MPA represents the best predators in a separate

matrix E for Elite which mathematically represented

in Eq. (6). Another matrix to represent the preys

called P is mathematically represented in Eq. (7)

𝑎𝑖 = 𝑎𝑚𝑖𝑛 + 𝑟 (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛) (5)

E =

[

𝑎1,1

𝐼 𝑎1,2
𝐼 … 𝑎1,𝑑

𝐼

𝑎2,1
𝐼 𝑎2,2

𝐼 … 𝑎2,𝑑
𝐼

… … … …
𝑎𝑛,1

𝐼 𝑎𝑛,2
𝐼 … 𝑎𝑛,𝑑

𝐼
]

 (6)

P = [

𝑎1,1 𝑎1,2 … 𝑎1,𝑑

𝑎2,1 𝑎2,2 … 𝑎2,𝑑

… … … …
𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑑

] (7)

MPA balances exploration and exploitation by

mixing two types of searching strategies, which are

Brownian and Lévy, through dividing the

optimization process into three phases.

In the first phase, when the exploration is more

important, the search agents (Preys) use the Brownian

for exploration as modelled in Eq. (8) and Eq. (9).

This phase is performed in the first third of iterations.

s𝑖 = 𝑟𝐵 ⊙ (𝐸𝑖 − 𝑟𝐵 ⊙ 𝑃𝑖) 𝑖 = 1,… . 𝑛 (8)

𝑃𝑖 = 𝑃𝑖 + 𝑑. 𝑅 ⊙ s𝑖 (9)

si is the step size for the prayi. R is a vector of

uniformly random numbers between 0 and 1 while

d=0.5. rB is a random vector that represents the

Brownian movement. ⊙ refers to the element-wise

multiplication.

During the second phase, when both exploration

and exploitation have the same importance, half of

the search agents (Prey) use the Lévy strategy for

exploitation as modelled in Eq. (10) and Eq. (11).

s𝑖 = 𝑟𝐿 ⊙ (𝐸𝑖 − 𝑟𝐿 ⊙ 𝑃𝑖) 𝑖 = 1,… .
𝑛

2
 (10)

𝑃𝑖 = 𝑃𝑖 + 𝑑. 𝑅 ⊙ s𝑖 (11)

rL is a random vector that represents the Lévy

strategy. In contrast, the other half (Predators) use the

Brownian for exploration as modelled in Eq. (12) and

Eq. (13).

s𝑖 = 𝑟𝐵 ⊙ (𝑟𝐵 ⊙ 𝐸𝑖 − 𝑃𝑖) 𝑖 =
𝑛

2
, … . , 𝑛 (12)

𝑃𝑖 = 𝐸𝑖 + 𝑑. 𝐴𝑃 ⊙ s𝑖 (13)

The AP is an adaptive parameter that equals(1 −

𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)
(2∗

𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)

. In the last phase, when the

exploitation is more important, the search agents

(predators) use the Lévy for exploitation as modelled

in Eq. (14) and Eq. (15). In that way, MPA moves

smoothly from the exploration to the exploitation

phase.

s𝑖 = 𝑟𝐿 ⊙ (𝑟𝐿 ⊙ 𝐸𝑖 − 𝑃𝑖) 𝑖 = 1,… . , 𝑛 (14)

𝑃𝑖 = 𝐸𝑖 + 𝑑. 𝐴𝑃 ⊙ s𝑖 (15)

To avoid stuck in a local optimum, MPA mimics

the effect of Fish Aggregating Devices (FADs). That

effect makes search agents take a long jump in

different dimensions at a certain probability which

modelled in Eq. (16).

𝑃𝑖 =

{

𝑃𝑖 + 𝐴𝑃 [𝑎𝑚𝑖𝑛 + 𝑅 ⊙ (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)] ⊙ B
 if r ≤ FADs

𝑃𝑖 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟1 − 𝑃𝑟2)
 if r > FADs

(16)

FADs parameter represents the FADs effect's

probability that equals 0.2. B is a binary array which

is constructed by using another array R with the same

length. Each element in R is a real number between 0

and 1. The element in B equals 1 if the corresponding

element in R less than 0.2, otherwise it equals 0. r1

and r2 indicate random indexes of the P matrix. The

newly generated search agents are only added to the

new population if their fitness values are better than

their corresponding agents in the current population.

The Elite matrix is only updated if better solutions

than the Elite solutions appear at the end of every

iteration. MPA pseudocode is presented in Algorithm

2. For more details about MPA, please refer to [10].

Algorithm 2 MPA pseudocode

Initialize the first population Eq. (5)

While less than the max number of iterations

Evaluate each search agent

If iterNum < Max(iter) / 3

Use Brownian to update search agents

Eq. (8) and Eq. (9)

Else If 2×Max(iter)/3> iterNum > Max(iter) / 3

Use Lévy to update half of search agents

Eq. (10) and Eq. (11)

Received: December 16, 2020. Revised: January 25, 2021. 426

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

And use Brownian for the other half

Eq. (12) and Eq. (13)

Else If iterNum >2×Max(iter)/3

Use Lévy to update search agents

Eq. (14) and Eq. (15)

End if

search agents take jumps at a certain probability

Eq. (16)

the new agents are added in the new population

only if it is better than its previous counterparts.

Update Elite matrix.

End While

3.3 The proposed hybrid method (DEMP)

In the beginning, the DEMP method starts by

reading omics datasets as presented in Algorithm 3.

Each omic dataset is an n × m matrix where n is the

number of patients and m is the number of features

for that omic. After that, the DEMP method merges

all the omic datasets into one n × d matrix called M

where n is the number of patients and d is the sum of

all the features numbers for all omics as described in

Eq. (17).

M = [

𝑐1,1 𝑐1,2 … 𝑐1,𝑑

𝑐2,1 𝑐2,2 … 𝑐2,𝑑

… … … …
𝑐𝑛,1 𝑐𝑛,2 … 𝑐𝑛,𝑑

] (17)

In the first stage, DEMP uses the modified

version of BDE, presented in Algorithm 1. After

finishing the first stage, the DEMP method sets kmax

equals the clusters' number of the best-obtained

clustering solution. Then, it selects the fittest N/2

(where N is the MPA population size) solutions from

the BDE's last population as long as their clusters'

number less than or equal kmax. Subsequently, it

inserts the selected solutions into MPA's initial

population. The other half of the MPA population is

initialized using Eq. (5). Before inserting the selected

solution into MPA's initial population, the DEMP

method must transform the solution encoding from

Figure. 4 Transforming binary representation into real

representation example where n=8 and kmax= 3

binary to real, as depicted in Fig. 4.

The transformation process works as follows, for

every elementi that equals 1 (centroid) in the binary

representation, the Mi vector Eq. (17) is added to the

real representation in addition to a real number

between 0 and 1 works as a mask for that centroid. In

that way, the binary vector with length n is

transformed into a real vector with length equals

(d+1) × kmax. In the second stage, the DEMP method

uses the MPA algorithm, presented in Algorithm 2.

Finally, the fittest clustering solution found by MPA

is the best clustering solution for the DEMP method.
The general schema for the DEMP method is

depicted in Fig. 5.

Algorithm 3 DEMP pseudocode

Read more than one omic dataset

Merge all of them into one n × d matrix Eq. (17)

Run BDE Algorithm 1

kmax = fittest clustering solution’s clusters number

best_solutions = the best N/2 clustering solutions where N

is the MPA population’s size

transform best_solutions into a real representation as

shown in Fig. 4.

Run MPA Algorithm 2

Output the fittest clustering solution

4. Experimental results

In order to measure DEMP's performance, we

applied it and four recent and powerful

metaheuristics to eight multi-omics datasets available

from TCGA. We chose FA [33] based on its

superiority in the recent comparative experiment with

four other metaheuristics DE, GA, IWO, and PSO in

solving the automatic clustering problem [25]. EO is

a physics-based metaheuristic while MPA, and SMA

are nature-inspired metaheuristics. All of them are

recent metaheuristic algorithms proven to be

competent in solving global optimization problems.

Since MPA is already an essential part of the DEMP

method, comparing it with DEMP can reveal whether

the DEMP method provides an improvement or not.

The comparison experiments have been applied to

eight datasets contain cancer tumor multi-omics data,

while each dataset belongs to a specific type of cancer.

Each dataset includes three omics (gene expression -

DNA methylation - miRNA expression). The

characteristics of all datasets are shown in Table 1.

We pre-processed the datasets as follows: we

removed features that have more than 20% missing

values. We then removed any patient record has more

than 20% values missing. Regarding the methylation

data, the highest 5000 features in terms of variance

are selected.

Received: December 16, 2020. Revised: January 25, 2021. 427

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Figure. 5 General schema of DEMP method

We used two criteria to evaluate the proposed

method's performance. First, we measured the

average fitness value over 20 runs. The fitness

function for all algorithms uses the DB index. Second,

we used the average execution time in seconds over

20 runs for each algorithm. Tables. 2-9 show the

comparative experiment done in this study. All

algorithms executed on the windows 8 operating

system installed on Intel Core i5 machine with 8 GB

of memory using Matlab R2017b.

The number of iterations equals 500, while the

number of search agents equals 30 for all algorithms.

The Kmax for all algorithms equals five, while the Kmin

equals two. For any other parameters, we chose what

the author recommended. During the first phase of

DEMP method (BDE), the number of iterations

equals 500, while the number of search agents equals

60 and the Kmax equals 20. ِAfter that, during the

second phase MPA, the number of iterations equals

Table 1. Summary of multi-omics datasets

Dataset

name

Number

of objects

Exp Methy miRNA

Aml 159 20531 5000 705

Colon 214 20531 5000 705

Gbm 271 12042 5000 534

Kidney 206 20531 5000 1046

Liver 404 20531 5000 1046

Melanoma 439 20531 5000 1046

Ovarian 290 20531 5000 705

Sarcoma 261 20531 5000 1046

Table 2. Average fitness values and average execution

time over 20 runs for the AML dataset. The best result is

shown in boldface and underlined, and the second-best is

in boldface

algorithm

name

Avg

fitness
STD Avg time

FireFly 1.166 0.0187 1.70×104

EO 1.789 0.3158 8.39×103

MPA 0.813 0.0084 9.38×103

SMA 0.804 0.0033 8.63×103

DEMP 0.791 0.0094 1234

100, while the number of search agents equals 30.

It can be seen in Table 2 that DEMP method got

the best results in terms of average fitness value and

execution time. SMA algorithm got the second-best

results in terms of average fitness value, but it took

eight times the DEMP's time.

The results of Table 3 show that the best method

in terms of average fitness value and average

execution time is DEMP. For the second time, SMA

algorithm won second place in terms of average

fitness value, but it needed five times the DEMP's

time.

Table 4 shows that the DEMP method won first

place in terms of average fitness value and average

execution time. For the first time, MPA algorithm got

the second-best results in terms of average fitness

value, but it took almost four times the DEMP's time.

We can see from Table 5 that, as usual, DEMP

method got the best results in terms of average fitness

value and execution time. SMA algorithm won

second place in terms of average fitness value, but it

needed five times the time of DEMP.

We can get from Table 6 that the DEMP method

is the best one in terms of the average fitness value

and execution time. MPA for the second time comes

second in terms of the average fitness value, but it

needed nine times the DEMP's time.

Table 3. Average fitness values and average execution

time over 20 runs for the colon dataset. The best result is

shown in boldface and underlined, and the second-best is

in boldface

algorithm

name
avg fitness STD Avg time

FireFly 1.331 0.022 1.99×104

EO 2.584 0.2711 7.55×103

MPA 1.003 0.0287 8.06×103

SMA 0.981 0.0329 1.81×104

DEMP 0.977 0.0182 1517

Received: December 16, 2020. Revised: January 25, 2021. 428

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Table 4. Average fitness values and average execution

time over 20 runs for the gbm dataset. The best result is

shown in boldface and underlined, and the second-best is

in boldface

algorithm

name
avg fitness STD Avg time

FireFly 1.552 0.0084 1.11×104

EO 2.692 0.1147 4.66×103

MPA 1.527 0.0121 4.58×103

SMA 1.590 0.0071 5.93×103

DEMP 1.235 0.0438 1294

Table 5. Average fitness values and average execution

time over 20 runs for the kidney dataset. The best result is

shown in boldface and underlined, and the second-best is

in boldface

algorithm

name
avg fitness STD Avg time

FireFly 1.405 0.025 1.46×104

EO 2.719 0.300 5.49×103

MPA 1.074 0.031 5.98×103

SMA 1.062 0.060 8.37×103

DEMP 0.964 0.021 1.53×103

Table 7 shows that the best method for getting

average fitness value and execution time is DEMP.

SMA succeeded to come second even though it took

almost three times the time of DEMP.

Table 6. Average fitness values and average execution

time over 20 runs for the liver dataset. The best result is

shown in boldface and underlined, and the second-best is

in boldface

algorithm

name
avg fitness STD Avg time

FireFly 0.8814 0.0168 2.34×104

EO 1.3478 0.3454 9.13×103

MPA 0.642 0.0024 9.23×103

SMA 0.6461 0.0034 1.04×104

DEMP 0.6313 0.0042 2757

Table 7. Average fitness values and average execution

time over 20 runs for the melanoma dataset. The best

result is shown in boldface and underlined, and the

second-best is in boldface

algorithm

name
avg fitness STD Avg time

FireFly 1.434 0.0353 2.23×104

EO 3.086 0.4717 1.02×104

MPA 0.950 0.0134 9.88×103

SMA 0.934 0.0158 1.05×104

DEMP 0.914 0.0198 2952

Table 8. Average fitness values and average execution

time over 20 runs for the ovarian dataset. The best result

is shown in boldface and underlined, and the second-best

is in boldface
algorithm

name
avg fitness STD Avg time

FireFly 1.308 0.0198 1.74×104

EO 2.223 0.5269 6.90×103

MPA 1.010 0.0189 7.02×103

SMA 0.989 0.0382 9.01×103

DEMP 0.960 0.0383 1941

The results of Table 8 show that the method with

the best average fitness value is DEMP. It also has the

shortest execution time. SMA algorithm got the

second-best results in terms of average fitness value,

but it took almost five times the DEMP's time.

As is evident from the results of Table 9, DEMP

method obtained the clustering solutions that have the

best average fitness value. On the other hand, MPA

came in second place, while it needed almost five

times the time of DEMP.

Table 10 reveals that all experimental results are

statistically significant, except for comparing DEMP

and SMA on the colon dataset. So, we can conclude

that the proposed method DEMP not only has an

Table 9. Average fitness values and average execution

time over 20 runs for the sarcoma dataset. The best result

is shown in boldface and underlined, and the second-best

is in boldface

algorithm

name
avg fitness STD Avg time

FireFly 1.233 0.0381 1.48×104

EO 1.523 0.2834 6.88×103

MPA 0.727 0.0066 6.81×103

SMA 0.737 0.0074 8.87×103

DEMP 0.720 0.0087 1.87×103

Table 10. The p-values of Wilcoxon's test for DEMP

method against the other considered algorithms through

eight datasets

 FireFly EO MPA SMA

AML 0.00001 0.00001 0.00004 0.00005

Colon 0.00001 0.00001 0.00151 0.95443

gbm 0.00001 0.00001 0.00001 0.00001

Kidney 0.00001 0.00001 0.00001 0.00001

Liver 0.00001 0.00001 0.00001 0.00001

melanom 0.00001 0.00001 0.00002 0.0027

Ovarian 0.00001 0.00001 0.00031 0.00325

Sarcoma 0.00001 0.00001 0.01099 0.00003

Received: December 16, 2020. Revised: January 25, 2021. 429

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

Figure. 6 Average fitness values over 20 runs for all

dataset

Figure. 7 Average execution time over 20 runs for all

dataset

advantage over other algorithms, but almost all the

results are statistically significant.

The results in Fig. 6 and Fig. 7 are deduced from

Tables. 2-9. These results show us that DEMP's

average fitness values are the best on all datasets.

Besides, it is far faster than other algorithms under

study.

5. Discussions

5.1 DEMP’s superiority explanation

Although metaheuristics that use centroids-base

real encoding can achieve better results than those

who use binary encoding, they take a long execution

time because solving the automatic clustering

problem for multi-omics datasets is more

complicated than other datasets. Fig. 3 shows the real

encoding example for a dataset that each centroid can

be represented with a single real value. In this case,

each solution's length equals 2 × kmax since we need

extra decision variables for the activation thresholds.

In case of the multi-omics dataset, instead of

representing each centroid with a single real number,

it is represented with d real numbers as depicted in

Fig. 4. So, in that case, the number of decision

variables equals kmax × d + kmax. Since kmax normally

equals √𝑁 where N is the number of objects/patients

in the dataset, the number of decision variables equals

√𝑁 × d + √𝑁 . If we consider the data in Table 1,

this leads to a huge number of decision variables for

each clustering solution, which greatly increases the

search space.

From the previous section, we can see the

superiority of DEMP over all the real encoding

metaheuristics under study. We can explain this for

the following reasons. First, during the DEMP's first

stage, it uses BDE that uses the binary encoding

which needs only a binary vector of length N to

represent a clustering solution as shown in Fig. 1.

BDE looks for the centroids only in the

objects/patients in the dataset, which allows it to

converge faster. Second, our modification which is to

calculate the distances between every pair of the

dataset's objects once and save them in a table at the

beginning of the BDF algorithm. This modification

greatly increased the speed of BDF and thus DEMP

since it only calculates the distance between two real

victors (with length equals d) N2 times. On the

contrast, without this modification, DEMP needs to

calculate the same distance almost (I × S × kmax / 2)

times. Where I is BDE's iterations number and S is

BDE's search agents number. Third, at the end of the

first stage, the Kmax for the second stage is determined.

Often the determined Kmax is smaller than the normal

Kmax that equals the √𝑁. As mentioned earlier in this

section, the number of the decision variables equals

kmax × d + kmax. Therefore, if the Kmax decreases by x,

the number of decision variables is reduced by x × d,

which dramatically reduces the search space and

convergence time.

Fourth, at the beginning of the second stage, half

of MPA initial population initialized using the fittest

clustering solutions in the BDE final population. So,

MPA in the second stage needs only 100 iterations to

get better results than other metaheuristics that need

500 iterations.

Since the genomic data amount grows fast and,

new omics are expected to appear in the future, a

faster clustering method such as DEMP will have a

greater chance to cope with that growth. Therefore, it

is expected that the DEMP method will become

widespread in the future.

6. Conclusions

This paper proposes a new hybrid automatic

clustering method based on BDE and MPA called

DEMP method. BDE uses a binary encoding to solve

the binary optimization problem, while MPA uses

real encoding to solve the global optimization

problem. DEMP method combines the speed

0

0.5

1

1.5

2

2.5

3

3.5

Fi
tn

es
s

va
lu

e

FA

EO

MPA

SMA

DEMP

0

5

10

15

20

25

Ex
ec

u
ti

o
n

 t
im

e
in

(t

h
o

u
sa

n
d

se
co

n
d

s)

FA EO MPA SMA DEMP

Received: December 16, 2020. Revised: January 25, 2021. 430

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

convergence of BDE and accurate clustering results

of MPA to improve both the clustering solution

accuracy and execution time. We proposed

adjustments for both algorithms to allow them to

solve the problem of automatic clustering.

This article evaluated the DEMP method's

performance using clustering accuracy and execution

time on eight multi-omics datasets. Moreover, we

compared the DEMP method to four powerful and

recent optimization algorithms FA, EO, MPA, and

SMA. The experimental results reveal that the DEMP

method could solve the automatic clustering problem

for multi-omics datasets. Furthermore, the results

show that the clustering solutions accuracy of the

DEMP method is much superior to other algorithms

under study. It is also evident from the results that the

DEMP's execution time is much less than the

algorithms under investigation. Finally, we should

note that 97% of the comparisons are statistically

significant. Based on the above, it can be concluded

that DEMP is a powerful automatic clustering tool for

multi-omics datasets.

As future research, DEMP can be applied to other

problems with a vast number of features. Besides,

adding an efficient local search method to DEMP can

further improve the clustering solution quality.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, EN and HAH; methodology,

MG and EN; software, MG; validation, MG, and EN;

formal analysis, MG; investigation, MG; data

curation, MG; writing—original draft preparation,

MG; writing—review and editing, EN; visualization,

MG; supervision, EN; project administration, HAH.

References

[1] N. Rappoport and R. Shamir, “Multi-Omic and

Multi-View Clustering Algorithms: Review and

Cancer Benchmark”, Nucleic Acids Research.

Vol. 46, No. 20, pp. 10546–10562, 2018.

[2] A. K. Jain, “Data Clustering: 50 Years beyond

K-Means”, Pattern Recognition Letters. Vol. 31,

No. 8, pp. 651–666, 2010.

[3] R. Xu and D. Wunsch, “Survey of Clustering

Algorithms”, IEEE Transactions on Neural

Networks. Vol. 16, No. 3, pp. 645–678, 2005.

[4] M. Nicholson, “Genetic Algorithms and

Grouping Problems”, Software: Practice and

Experience. Vol. 28, No. 10, pp. 1137–1138,

1998.

[5] C.-W. Bong and M. Rajeswari, “Multi-

Objective Nature-Inspired Clustering and

Classification Techniques for Image

Segmentation”, Applied Soft Computing. Vol. 11,

No. 4, pp. 3271–3282, 2011.

[6] J. Handl and J. Knowles, “An Evolutionary

Approach to Multiobjective Clustering”, IEEE

Transactions on Evolutionary Computation. Vol.

11, No. 1, pp. 56–76, 2007.

[7] S. Bandyopadhyay and U. Maulik, “Genetic

Clustering for Automatic Evolution of Clusters

and Application to Image Classification”,

Pattern Recognition. Vol. 35, No. 6, pp. 1197–

1208, 2002.

[8] E. R. Hruschka, R. J. Campello, A. A. Freitas,

and others, “A Survey of Evolutionary

Algorithms for Clustering”, IEEE Transactions

on Systems, Man, and Cybernetics, Part C

(Applications and Reviews). Vol. 39, No. 2, pp.

133–155, 2009.

[9] E. Zorarpac and S. A. Özel, “A Hybrid

Approach of Differential Evolution and

Artificial Bee Colony for Feature Selection”,

Expert Systems with Applications. Vol. 62, pp.

91–103, 2016.

[10] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and

A. H. Gandomi, “Marine Predators Algorithm:

A Nature-Inspired Metaheuristic”, Expert

Systems with Applications. Vol. 152, p. 113377,

2020.

[11] G. Garai and B. Chaudhuri, “A Novel Genetic

Algorithm for Automatic Clustering”, Pattern

Recognition Letters. Vol. 25, No. 2, pp. 173–187,

2004.

[12] H.-J. Lin, F.-W. Yang, and Y.-T. Kao, “An

Efficient GA-Based Clustering Technique”,

Tamkang Journal of Science and Engineering.

Vol. 8, No. 2, pp. 113–122, 2005.

[13] E. R. Hruschka and N. F. Ebecken, “A Genetic

Algorithm for Cluster Analysis”, Intelligent

Data Analysis. Vol. 7, No. 1, pp. 15–25, 2003.

[14] E. R. Hruschka, R. J. Campello, and L. N. de

Castro, “Improving the Efficiency of a

Clustering Genetic Algorithm”, In: Proc. of

Ibero-American Conf. on Artificial Intelligence,

Berlin, Heidelberg, pp. 861–870, 2004.

[15] S. Das, A. Chowdhury, and A. Abraham, “A

Bacterial Evolutionary Algorithm for Automatic

Data Clustering”, In: 2009 IEEE Congress on

Evolutionary Computation, Trondheim, Norway,

pp. 2403–2410, 2009.

[16] P. C. Ma, K. C. Chan, X. Yao, and D. K. Chiu,

“An Evolutionary Clustering Algorithm for

Gene Expression Microarray Data Analysis”,

Received: December 16, 2020. Revised: January 25, 2021. 431

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.38

IEEE Transactions on Evolutionary

Computation. Vol. 10, No. 3, pp. 296–314, 2006.

[17] E. R. Hruschka, R. J. Campello, and L. N. De

Castro, “Evolving Clusters in Gene-Expression

Data”, Information Sciences. Vol. 176, No. 13,

pp. 1898–1927, 2006.

[18] D. Horta, I. C. De Andrade, and R. J. Campello,

“Evolutionary Fuzzy Clustering of Relational

Data”, Theoretical Computer Science. Vol. 412,

No. 42, pp. 5854–5870, 2011.

[19] Y. Liu, X. Wu, and Y. Shen, “Automatic

Clustering Using Genetic Algorithms”, Applied

Mathematics and Computation. Vol. 218, No. 4,

pp. 1267–1279, 2011.

[20] J. Qu, Z. Shao, and X. Liu, “Mixed PSO

Clustering Algorithm Using Point Symmetry

Distance”, Journal of Computational

Information Systems. Vol. 6, No. 6, pp. 2027–

2035, 2010.

[21] Y. Kao and C.-C. Chen, “Automatic Clustering

for Generalised Cell Formation Using a Hybrid

Particle Swarm Optimisation”, International

Journal of Production Research. Vol. 52, No. 12,

pp. 3466–3484, 2014.

[22] A. Chowdhury, S. Bose, and S. Das, “Automatic

Clustering Based on Invasive Weed

Optimization Algorithm”, In: Proc. of

International Conf. on Swarm, Evolutionary,

and Memetic Computing, Berlin, Heidelberg, pp.

105–112, 2011.

[23] M. Sarkar, B. Yegnanarayana, and D. Khemani,

“A Clustering Algorithm Using an Evolutionary

Programming-Based Approach”, Pattern

Recognition Letters. Vol. 18, No. 10, pp. 975–

986, 1997.

[24] R. Liu, L. Jiao, X. Zhang, and Y. Li, “Gene

Transposon Based Clone Selection Algorithm

for Automatic Clustering”, Information Sciences.

Vol. 204, pp. 1–22, 2012.

[25] A. E. Ezugwu, “Nature-Inspired Metaheuristic

Techniques for Automatic Clustering: A Survey

and Performance Study”, SN Applied Sciences.

Vol. 2, No. 2, pp. 273–330, 2020.

[26] P. P. W. Cho and T. T. S. Nyunt, “Data

Clustering Based on Modified Differential

Evolution and Quasi-Opposition-Based

Learning”, Intelligent Engineering & Systems.

Vol. 13, No. 6, pp. 168–178, 2020.

[27] A. Faramarzi, M. Heidarinejad, B. Stephens, and

S. Mirjalili, “Equilibrium Optimizer: A Novel

Optimization Algorithm”, Knowledge-Based

Systems. Vol. 191, p. 105190, 2020.

[28] S. Li, H. Chen, M. Wang, A. A. Heidari, and S.

Mirjalili, “Slime Mould Algorithm: A New

Method for Stochastic Optimization”, Future

Generation Computer Systems. Vol. 111, pp.

300–323, 2020.

[29] R. Storn and K. Price, “Differential Evolution-a

Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces”, Journal

of Global Optimization. Vol. 11, No. 4, pp. 341–

359, 1997.

[30] A. José-Garcia and W. Gómez-Flores,

“Automatic Clustering Using Nature-Inspired

Metaheuristics: A Survey”, Applied Soft

Computing. Vol. 41, pp. 192–213, 2016.

[31] D. L. Davies and D. W. Bouldin, “A Cluster

Separation Measure”, IEEE Transactions on

Pattern Analysis and Machine Intelligence. Vol.

1, No. 2, pp. 224–227, 1979.

[32] J. Too, A. R. Abdullah, and N. Mohd Saad,

“Hybrid Binary Particle Swarm Optimization

Differential Evolution-Based Feature Selection

for EMG Signals Classification”, Axioms. Vol. 8,

No. 3, pp. 79–95, 2019.

[33] X.-S. Yang, “Firefly Algorithms for Multimodal

Optimization”, In: International Symposium on

Stochastic Algorithms, Berlin, Heidelberg, pp.

169–178, 2009.

