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Abstract: Clustering of biological datasets proved to reveal a lot of significant insights into the medical and biological 

research. It is an important step towards drug design, vaccine discovery, disease diagnosis, and more. The current trend 

in biological and medical research is to combine more than one dataset, referred to as multi-omics, related to a specific 

problem, then perform the clustering or the analysis. The insights we gain for a particular biological problem or disease 

are double using multi-omics rather than using one dataset. It is like investigating a problem from many dimensions 

rather than using one dimension. On the other hand, the difficulty of clustering is increased. Another tricky problem 

in data clustering is determining the best number of clusters used by a clustering algorithm. Due to the big success of 

metaheuristics in solving the automatic clustering problems, we propose in this paper a new hybrid method that utilizes 

two powerful metaheuristics algorithms, the Binary Differential Evolution and Marine Predators Algorithm, to perform 

automatic clustering on multi-omics datasets. Our proposal's performance is investigated upon eight multi-omics 

datasets from TCGA, and it is compared with four recent and powerful metaheuristics. The used performance metrics 

are clustering quality and execution time. The experimental results show that the proposed algorithm not only 

outperformed its competitors in terms of clustering quality, it also only needed a third of the execution time that of its 

fastest competitor. Moreover, the statistical analysis shows that the obtained results are statistically significant. 

Accordingly, the proposed method can be considered as an efficient clustering method for multi-omics datasets. 

Keywords: Clustering, Automatic clustering, Differential evolution, MPA, Metaheuristics, Nature-inspired 

metaheuristics, Molecular-level interaction, Multi-omics. 

 

 

1. Introduction 

The rapid development in high throughput 

methods produced huge data types such as DNA 

methylation, DNA genome sequence, and RNA 

expression, each of them is called omic. The analysis 

of multi-omics datasets is beneficial for the following 

reasons. First, it reduces the effect of noise on results. 

Seconds, using omics from different molecular aspect 

levels such as genomic and epigenomic can show 

different aspects of patients. Third, even using omics 

from the same level, such as mutation and copy 

number, can reveal the omics' different aspects [1]. 

It is necessary to develop new computational 

methods to analyze these datasets. Clustering is the 

process of discovering the natural grouping of 

records according to their similarities. Clustering is a 

fundamental process in analysis, and it is often used 

as the first process of data analysis.  Clustering is 

essential for medical research as it is used to discover 

the co-regulated genes and new grouping of patients 

based on genetic similarity. Many clustering methods 

need to determine the number of clusters before 

starting, which can be challenging to obtain in a 

multi-omics problem [2, 3]. This problem can be 

solved using automatic clustering, which needs to 

determine the minimum and the maximum number of 

clusters. 

The two main automatic clustering tasks are 

determining the optimal number of clusters and 

determining the appropriate cluster for each object. 
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Finding the optimum solution for the clustering 

problem is an NP-hard problem [4]. Many 

publications tackled the problem of automatic 

clustering using metaheuristic algorithms [5–7]. A 

survey about solving the automatic clustering 

problem using nature-inspired metaheuristics is 

presented in [8].  

To the best of our knowledge, the problem of 

automatic clustering for multi-omics datasets is not 

solved yet. In this paper, we propose a new hybrid 

method combining modified Binary Differential 

Evolution (BDE) [9] and Marine Predators 

Algorithm (MPA) [10] called DEMP to solve the 

automatic clustering problem for multi-omics 

datasets. DEMP uses at the first stage BDE, and it 

uses MPA at the second stage. In addition, we 

propose a modified BDE algorithm to fit our method. 

In the first stage, the DEMP method tries to reach the 

right number of clusters and reasonable clustering 

solutions. In contrast, in the second stage, it tries to 

reach the optimal solution to the automatic clustering 

problem. The DEMP method is benchmarked by 

eight multi-omics datasets that are available on The 

Cancer Genome Atlas (TCGA).  

The rest of this paper is organized as follows: in 

the second section we introduce the related works for 

metaheuristics methods which solve an automatic 

clustering problem. The third section presents our 

new hybrid clustering method DEMP. The fourth 

section displays the experimental results. Next, the 

fifth section displays the result's discussions. Finally, 

the sixth section presents the conclusion of this paper. 

2. Related work 

In this section, we will show and discuss the 

related works to automatic clustering methods using 

metaheuristics. Any metaheuristic needs to determine 

an encoding to solve the automatic clustering 

problem. The encoding schema is vital for 

determining the metaheuristic search space, affecting 

both the result's quality and the execution time. 

Automatic clustering methods that use metaheuristics 

can be divided in terms of encoding into three 

categories, which are binary, integer, and real 

encoding. Because the number of clusters is not 

known in advance, the encoding scheme must be 

designed to adapt to the clusters number change in the 

specified pre-determined range [kmin, kmax]. 

In the binary encoding scheme, a binary string of 

length equal to N (where N equals the number of 

objects/patients in the data set) is used to represent 

each clustering solution. Furthermore, each 

object/patient in the data set is represented as a 

position in that binary string. In the binary string, the  

 
Figure. 1 Clustering solution representation in binary 

encoding 

 

object/patient is considered a cluster centroid only if 

the corresponding position equals one, as shown in 

Fig. 1. A genetic algorithm for automatic clustering 

that uses binary encoding is proposed in [11]. [12] 

proposed a hierarchical evolutionary algorithm that 

solves the automatic clustering problem for medical 

images using binary encoding. The clustering 

solution's binary string's length is frequently short 

because the number of patients in multi-omics 

datasets is relatively small, leading to a smaller 

search space with faster convergence. On the other 

hand, the metaheuristic that uses the binary encoding 

chooses the potential centroids from the data set's 

objects/patients, so obtaining a good clustering 

solution using the binary encoding scheme depends 

on the dataset. Therefore, metaheuristics do not often 

use the binary encoding on clustering. 

In the integer encoding scheme, an integer array 

of length equal to N is used to represent each 

clustering solution. Each object/patient in the data set 

is represented as an integer array position, which 

equals an integer value in the range [1:kmax]. All 

objects/patients that have the same integer value 

belong to the same cluster as shown in Fig. 2. One of 

the drawbacks of this encoding is repetition, as the 

same solution can have more than one representation, 

which leads to doubling the clustering search space. 

For example, the following representations 

{1,1,2,2,2}, {2,2,1,1,1} represent the same clustering 

solution. [13] proposed a genetic algorithm for 

automatic clustering using integer encoding. 

Proposed improvements that enhance the efficiency 

of genetic algorithm in solving the automatic 

clustering problem is published in [14]. A Bacterial 

Evolutionary Algorithm is a metaheuristic that uses 

integer encoding to solve the automatic clustering 

problem [15]. [16, 17] are two automatic clustering 

methods that use metaheuristics with integer 

encoding for the microarray datasets (single omic).  

In the real encoding scheme, each clustering 

solution is represented as a set of centroids whose 
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Figure. 2 Clustering solution representation in integer 

encoding 

 

number is Kmax. Due to representing clusters number 

varying, activation thresholds are commonly used to 

determine which centroid is active in a particular 

clustering solution, as shown in Fig. 3. The 

metaheuristics widely use real encoding in automatic 

clustering. Many Genetic algorithm versions used 

real encoding in solving the automatic clustering 

problem such as [18, 19].  Two particle swarm 

optimization (PSO) metaheuristics also used the real 

encoding [20, 21]. Invasive weed optimization 

(IWO) metaheuristics chose real encoding in [22]. An 

evolutionary programming-based clustering 

approach based on real encoding is presented in [23]. 

[24] proposed an automatic clustering method based 

on a clone selection algorithm that uses real encoding. 

[25] presented a comparative performance 

experiment of five metaheuristics in solving the 

automatic clustering problem. These metaheuristics 

are firefly algorithm (FA), differential evolution (DE), 

genetic algorithm (GA), IWO, and PSO. All 

metaheuristics that are chosen in the mentioned 

experiment are based on real encoding. Recently, a 

modified DE metaheuristic used the real encoding to 

solve the clustering problem [26]. Some powerful 

modern metaheuristics have not been used to solve 

the automatic clustering before due to their recency.  

These metaheuristics can compete with the current 

metaheuristics in this field. Such as Equilibrium 

Optimizer (EO) [27], MPA, and Slime mould 

algorithm (SMA) [28]. SMA is nature-inspired 

metaheuristic that mainly inspired by slime mould 

behaviour. It uses weights to mimic the negative and 

positive oscillator's feedback through searching for 

the food. It achieved superior results in terms of 

average fitness value because it has a good balance 

between explorations and exploitations. EO is a 

physics-based metaheuristic that mainly inspired by 

the mass balance equation for a control volume. It has 

high exploitative and exploratory search techniques 

to solutions' random modifications. This  

 
Figure. 3 Clustering solution representation in centroid-

base real encoding 

 

metaheuristic is known for its speed in reaching 

optimum or near-optimum solutions. Despite the 

metaheuristics, which uses real encoding can find a 

much better solution to the clustering problem for 

multi-omics datasets, they need higher execution 

time because of the large number of decision 

variables. The increase in the number of decision 

variables because each centroid is represented as a 

real value array of length equal to the number of 

features in the multi-omics dataset, which are a huge 

number. 

3. The proposed method 

This section presents our proposed hybrid 

clustering method DEMP, which contains two 

metaheuristics with two different encodings. We first 

show the BDE algorithm and explain our 

modification to it. Second, we present the MPA 

algorithm and explain our adjustments to it. Finally, 

we offer the DEMP method and how does it merge 

both BDE and MPA. 

3.1 Modified binary differential evolution 

The DE is an evolutionary metaheuristic 

proposed in [29]. In the beginning, it was designed to 

solve the global optimization problem. A new binary 

DE version is developed in [9] to solve the problem 

of feature selection. We modified the BDE algorithm 

to fit the proposed method (DEMP). In this section, 

we present the modified version of BDE.   

The BDE uses the binary encoding scheme in 

which each solution is represented as a binary vector 

with a length equals to the number of patients. The ith 

element of a vector corresponds to the ith patient, as 

shown in Fig. 1. In a specific solution, a patient of 

index i is considered a centroid of a cluster if it's 

corresponding element equals one. We modified the 

initial population generation phase as follows. Let N 

be the population's size; the algorithm chooses N 
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random numbers in the range [Kmin, Kmax]. Each 

random number corresponds to a specific 

vector/solution, where the random number specifies 

the number of centroids of that vector/solution. Then 

the algorithm chooses randomly which 

elements/patients are centroids in each 

vector/solution. The selected elements are set to 1, 

while the remaining elements are set to 0. 

Many clustering validity methods are used in 

measuring the clustering algorithms results in terms 

of the clustering cohesion and separation [25, 30]. We 

chose the DB index [31] as the fitness function 

because of its capability of finding feasible high-

quality results and its computational cost-efficiency 

[25]. The DB index method, which is used as the 

fitness function, includes calculating the distance 

between every dataset object and its cluster centroid 

every time it runs. Calculating the distance between 

every object and its cluster centroid is extremely 

time-consuming because of the massive number of 

features in the multi-omics datasets. Since we use the 

binary encoding, the BDE chooses centroids of the 

clusters from the dataset's existing objects. 

Accordingly, we made a modification, which is to 

calculate the distances between every pair of the 

dataset's objects once and save them in a table at the 

beginning of the BDF algorithm. So, instead of 

calculating these distances with each calling of the 

fitness function, it can be obtained directly from the 

previously mentioned saved table, which leads to a 

vast decrease in the execution time of the proposed 

method.  

BDE has only three operators, which are mutation, 

crossover, and selection. In this study, BDE uses the 

same mutation operator used in [32]. At the 

beginning of the mutation process for each vector Xi, 

BDE selects three random vectors from the 

population Xr1, Xr2, and Xr3 while r1 ≠ r2 ≠ r3.  Then 

BDE calculates the difference vector described in Eq. 

(1) where d is element order in the vector, and i is the 

vector order in the population. After that, the mutant 

vector is obtained, as shown in Eq. (2). Since BDE is 

frequently used in solving feature selection problems, 

it always uses the traditional crossover operator [9, 

32]. The traditional crossover operator works on each 

vector's element alone, which may lead to the number 

of ones/centroids in the trial vector outside the 

specified range [Kmin, Kmax]. If this occurs, the 

obtained trial vector will represent an unfeasible 

solution and needs to be repaired. We propose a 

modified version of the crossover operator in this 

article to avoid unfeasible solutions. Instead of 

working on each vector's element alone, our proposed 

crossover operator works only on elements that equal 

one (centroids) in both target and mutant vectors as 

shown Eq. (3).  

 

𝑑𝑖𝑓𝑓. 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 = {

0                 𝑖𝑓𝑥𝑟1
𝑑 = 𝑥𝑟2

𝑑  

𝑥𝑟1
𝑑                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

 

 

𝑚𝑢𝑡𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 = {

1           𝑖𝑓 𝑑𝑖𝑓𝑓. 𝑣𝑒𝑐𝑡𝑜𝑟𝑖
𝑑 =  1

𝑥𝑟1
𝑑                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 

 

𝑡𝑟𝑖𝑎𝑙𝐶𝑒𝑛𝑡𝑜𝑟𝑖𝑑𝑠𝑖
𝑑 =                                             

{
𝑚𝑢𝑡𝑎𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑖

𝑟1
         

𝑟 ≤ 𝐶𝑅(𝑡)

𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑖
𝑟2     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3) 

 

The trial-centroids, mutant-centroids and target-

centroids are integer vectors that contain the 

centroids' indexes for the trial, mutant, and target 

vectors respectively. r1 and r2 are unique integer 

random numbers. r1 ranges from 1 to the size of 

mutant-centroids vector, while r2 is between 1 and 

the size of target-centroids vector. Then, the binary 

trial vector's elements that their indexes exist in trial-

centroids are set to 1 as shown in Eq. (4). 

 

𝑡𝑟𝑖𝑎𝑙𝑖
𝑑 = 1                      𝑑 ∈ trailCentroids𝑖 (4) 

 

Finally, the selection operator is the same as the 

one used in [32]. In the selection process, the BDE 

replaces the target vector with the trial vector only if 

the trial vector has a better fitness value. Otherwise, 

it keeps the target vector in the next population.  

 

Algorithm 1 BDE pseudocode 

Initialize the first population 

While termination condition 

-Generate a mutant vector for every target vector using 

Eq. (1) and Eq. (2) 

-Generate a trail vector for every target vector using Eq. 

(3) and Eq. (4) 

-Evaluate target and trial vectors using DB index [31]. 

-Replace the target vector with the trial vector only if 

the trial vector has a better fitness value 

End while 

3.2 Marine predators algorithm 

MPA is a recent nature-inspired metaheuristic 

inspired mainly by the food searching strategies, 

namely Brownian and Lévy movements in ocean 

predators [10]. MPA considers both predator and 

prey as a search agent as the prey itself is a predator 

when it searches for its food.  
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Each search agent in the initial population is 

initialized randomly, as shown in Eq. (5). The amax 

and amin are the upper and lower bound for variables, 

while r is a random number between 0 and 1.  

MPA represents the best predators in a separate 

matrix E for Elite which mathematically represented 

in Eq. (6). Another matrix to represent the preys 

called P is mathematically represented in Eq. (7) 

 

𝑎𝑖 = 𝑎𝑚𝑖𝑛 + 𝑟 (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)                (5) 

 

E =  

[
 
 
 
 
𝑎1,1

𝐼 𝑎1,2
𝐼 … 𝑎1,𝑑

𝐼

𝑎2,1
𝐼 𝑎2,2

𝐼 … 𝑎2,𝑑
𝐼

… … … …
𝑎𝑛,1

𝐼 𝑎𝑛,2
𝐼 … 𝑎𝑛,𝑑

𝐼
]
 
 
 
 

                    (6) 

 

P =  [

𝑎1,1 𝑎1,2 … 𝑎1,𝑑

𝑎2,1 𝑎2,2 … 𝑎2,𝑑

… … … …
𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑑

]                    (7) 

 

MPA balances exploration and exploitation by 

mixing two types of searching strategies, which are 

Brownian and Lévy, through dividing the 

optimization process into three phases. 

In the first phase, when the exploration is more 

important, the search agents (Preys) use the Brownian 

for exploration as modelled in Eq. (8) and Eq. (9). 

This phase is performed in the first third of iterations.  

 

s𝑖 = 𝑟𝐵 ⊙ (𝐸𝑖 − 𝑟𝐵  ⊙ 𝑃𝑖)   𝑖 = 1,… . 𝑛    (8) 

 

𝑃𝑖 = 𝑃𝑖 + 𝑑. 𝑅 ⊙ s𝑖                                           (9) 

 

si is the step size for the prayi. R is a vector of 

uniformly random numbers between 0 and 1 while 

d=0.5. rB is a random vector that represents the 

Brownian movement. ⊙ refers to the element-wise 

multiplication. 

During the second phase, when both exploration 

and exploitation have the same importance, half of 

the search agents (Prey) use the Lévy strategy for 

exploitation as modelled in Eq. (10) and Eq. (11). 

 

s𝑖 = 𝑟𝐿 ⊙ (𝐸𝑖 − 𝑟𝐿  ⊙ 𝑃𝑖)   𝑖 = 1,… .
𝑛

2
     (10) 

 

𝑃𝑖 = 𝑃𝑖 + 𝑑. 𝑅 ⊙ s𝑖                          (11) 

 

rL is a random vector that represents the Lévy 

strategy. In contrast, the other half (Predators) use the 

Brownian for exploration as modelled in Eq. (12) and 

Eq. (13). 

 

s𝑖 = 𝑟𝐵 ⊙ (𝑟𝐵  ⊙ 𝐸𝑖 − 𝑃𝑖)   𝑖 =
𝑛

2
, … . , 𝑛  (12) 

 

𝑃𝑖 = 𝐸𝑖 + 𝑑. 𝐴𝑃 ⊙ s𝑖                   (13) 

 

The AP is an adaptive parameter that equals(1 −

 
𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)
(2∗

𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)

. In the last phase, when the 

exploitation is more important, the search agents 

(predators) use the Lévy for exploitation as modelled 

in Eq. (14) and Eq. (15). In that way, MPA moves 

smoothly from the exploration to the exploitation 

phase. 

 

s𝑖 = 𝑟𝐿 ⊙ (𝑟𝐿  ⊙ 𝐸𝑖 − 𝑃𝑖)   𝑖 = 1,… . , 𝑛    (14) 

 

𝑃𝑖 = 𝐸𝑖 + 𝑑. 𝐴𝑃 ⊙ s𝑖                  (15) 

 

To avoid stuck in a local optimum, MPA mimics 

the effect of Fish Aggregating Devices (FADs). That 

effect makes search agents take a long jump in 

different dimensions at a certain probability which 

modelled in Eq. (16). 

 

𝑃𝑖 =                                                                 

{

𝑃𝑖 + 𝐴𝑃 [𝑎𝑚𝑖𝑛 + 𝑅 ⊙ (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)] ⊙ B   
   if r ≤ FADs

𝑃𝑖 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟1 − 𝑃𝑟2)              
        if r > FADs    

 

(16) 

 

FADs parameter represents the FADs effect's 

probability that equals 0.2. B is a binary array which 

is constructed by using another array R with the same 

length. Each element in R is a real number between 0 

and 1. The element in B equals 1 if the corresponding 

element in R less than 0.2, otherwise it equals 0.  r1 

and r2 indicate random indexes of the P matrix. The 

newly generated search agents are only added to the 

new population if their fitness values are better than 

their corresponding agents in the current population. 

The Elite matrix is only updated if better solutions 

than the Elite solutions appear at the end of every 

iteration. MPA pseudocode is presented in Algorithm 

2. For more details about MPA, please refer to [10]. 

 

Algorithm 2 MPA pseudocode 

Initialize the first population Eq. (5) 

While less than the max number of iterations 

Evaluate each search agent 

If iterNum < Max(iter) / 3 

Use Brownian to update search agents  

Eq. (8) and Eq. (9) 

Else If 2×Max(iter)/3> iterNum > Max(iter) / 3 

Use Lévy to update half of search agents 

Eq. (10) and Eq. (11) 
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And use Brownian for the other half 

Eq. (12) and Eq. (13) 

Else If iterNum >2×Max(iter)/3  

Use Lévy to update search agents 

Eq. (14) and Eq. (15) 

End if 

search agents take jumps at a certain probability 

Eq. (16) 

the new agents are added in the new population 

only if it is better than its previous counterparts. 

Update Elite matrix. 

End While 

3.3 The proposed hybrid method (DEMP) 

In the beginning, the DEMP method starts by 

reading omics datasets as presented in Algorithm 3. 

Each omic dataset is an n × m matrix where n is the 

number of patients and m is the number of features 

for that omic. After that, the DEMP method merges 

all the omic datasets into one n × d matrix called M 

where n is the number of patients and d is the sum of 

all the features numbers for all omics as described in 

Eq. (17). 

 

M = [

𝑐1,1 𝑐1,2 … 𝑐1,𝑑

𝑐2,1 𝑐2,2 … 𝑐2,𝑑

… … … …
𝑐𝑛,1 𝑐𝑛,2 … 𝑐𝑛,𝑑

]                 (17) 

 

In the first stage, DEMP uses the modified 

version of BDE, presented in Algorithm 1. After 

finishing the first stage, the DEMP method sets kmax 

equals the clusters' number of the best-obtained 

clustering solution. Then, it selects the fittest N/2 

(where N is the MPA population size) solutions from 

the BDE's last population as long as their clusters' 

number less than or equal kmax. Subsequently, it 

inserts the selected solutions into MPA's initial 

population. The other half of the MPA population is 

initialized using Eq. (5). Before inserting the selected 

solution into MPA's initial population, the DEMP 

method must transform the solution encoding from  

 

 
Figure. 4 Transforming binary representation into real 

representation example where n=8 and kmax= 3 

binary to real, as depicted in Fig. 4. 

The transformation process works as follows, for 

every elementi that equals 1 (centroid) in the binary 

representation, the Mi vector Eq. (17) is added to the 

real representation in addition to a real number 

between 0 and 1 works as a mask for that centroid. In 

that way, the binary vector with length n is 

transformed into a real vector with length equals 

(d+1) × kmax. In the second stage, the DEMP method 

uses the MPA algorithm, presented in Algorithm 2. 

Finally, the fittest clustering solution found by MPA 

is the best clustering solution for the DEMP method. 
The general schema for the DEMP method is 

depicted in Fig. 5.  
 

Algorithm 3 DEMP pseudocode 

Read more than one omic dataset 

Merge all of them into one n × d matrix Eq. (17) 

Run BDE Algorithm 1 

kmax = fittest clustering solution’s clusters number 

best_solutions = the best N/2 clustering solutions where N 

is the MPA population’s size  

transform best_solutions into a real representation as 

shown in Fig. 4.  

Run MPA Algorithm 2 

Output the fittest clustering solution 

4. Experimental results 

In order to measure DEMP's performance, we 

applied it and four recent and powerful 

metaheuristics to eight multi-omics datasets available 

from TCGA. We chose FA [33] based on its 

superiority in the recent comparative experiment with 

four other metaheuristics DE, GA, IWO, and PSO in 

solving the automatic clustering problem [25]. EO is 

a physics-based metaheuristic while MPA, and SMA 

are nature-inspired metaheuristics. All of them are 

recent metaheuristic algorithms proven to be 

competent in solving global optimization problems. 

Since MPA is already an essential part of the DEMP 

method, comparing it with DEMP can reveal whether 

the DEMP method provides an improvement or not.  

The comparison experiments have been applied to 

eight datasets contain cancer tumor multi-omics data, 

while each dataset belongs to a specific type of cancer. 

Each dataset includes three omics (gene expression - 

DNA methylation - miRNA expression). The 

characteristics of all datasets are shown in Table 1. 

We pre-processed the datasets as follows: we 

removed features that have more than 20% missing 

values. We then removed any patient record has more 

than 20% values missing. Regarding the methylation 

data, the highest 5000 features in terms of variance 

are selected.  
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Figure. 5 General schema of DEMP method 

 

We used two criteria to evaluate the proposed 

method's performance. First, we measured the 

average fitness value over 20 runs. The fitness 

function for all algorithms uses the DB index. Second, 

we used the average execution time in seconds over 

20 runs for each algorithm. Tables. 2-9 show the 

comparative experiment done in this study. All 

algorithms executed on the windows 8 operating 

system installed on Intel Core i5 machine with 8 GB 

of memory using Matlab R2017b.  

The number of iterations equals 500, while the 

number of search agents equals 30 for all algorithms. 

The Kmax for all algorithms equals five, while the Kmin 

equals two. For any other parameters, we chose what 

the author recommended. During the first phase of 

DEMP method (BDE), the number of iterations 

equals 500, while the number of search agents equals 

60 and the Kmax equals 20. ِAfter that, during the 

second phase MPA, the number of iterations equals  
 

Table 1. Summary of multi-omics datasets 

Dataset 

name 

Number 

of objects 

Exp Methy miRNA 

Aml 159 20531 5000 705 

Colon 214 20531 5000 705 

Gbm 271 12042 5000 534 

Kidney 206 20531 5000 1046 

Liver 404 20531 5000 1046 

Melanoma 439 20531 5000 1046 

Ovarian 290 20531 5000 705 

Sarcoma 261 20531 5000 1046 

Table 2. Average fitness values and average execution 

time over 20 runs for the AML dataset. The best result is 

shown in boldface and underlined, and the second-best is 

in boldface 

algorithm 

name 

Avg 

fitness 
STD Avg time 

FireFly 1.166 0.0187 1.70×104 

EO 1.789 0.3158 8.39×103 

MPA 0.813 0.0084 9.38×103 

SMA 0.804 0.0033 8.63×103 

DEMP 0.791 0.0094 1234 

 

100, while the number of search agents equals 30.  

It can be seen in Table 2 that DEMP method got 

the best results in terms of average fitness value and 

execution time. SMA algorithm got the second-best 

results in terms of average fitness value, but it took 

eight times the DEMP's time. 
 

The results of Table 3 show that the best method 

in terms of average fitness value and average 

execution time is DEMP. For the second time, SMA 

algorithm won second place in terms of average 

fitness value, but it needed five times the DEMP's 

time.  

Table 4 shows that the DEMP method won first 

place in terms of average fitness value and average 

execution time. For the first time, MPA algorithm got 

the second-best results in terms of average fitness 

value, but it took almost four times the DEMP's time. 

We can see from Table 5 that, as usual, DEMP 

method got the best results in terms of average fitness 

value and execution time. SMA algorithm won 

second place in terms of average fitness value, but it 

needed five times the time of DEMP.  

We can get from Table 6 that the DEMP method 

is the best one in terms of the average fitness value 

and execution time. MPA for the second time comes 

second in terms of the average fitness value, but it 

needed nine times the DEMP's time. 

 
Table 3. Average fitness values and average execution 

time over 20 runs for the colon dataset. The best result is 

shown in boldface and underlined, and the second-best is 

in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 1.331 0.022 1.99×104 

EO 2.584 0.2711 7.55×103 

MPA 1.003 0.0287 8.06×103 

SMA 0.981 0.0329 1.81×104 

DEMP 0.977 0.0182 1517 
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Table 4. Average fitness values and average execution 

time over 20 runs for the gbm dataset. The best result is 

shown in boldface and underlined, and the second-best is 

in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 1.552 0.0084 1.11×104 

EO 2.692 0.1147 4.66×103 

MPA 1.527 0.0121 4.58×103 

SMA 1.590 0.0071 5.93×103 

DEMP 1.235 0.0438 1294 

 

Table 5. Average fitness values and average execution 

time over 20 runs for the kidney dataset. The best result is 

shown in boldface and underlined, and the second-best is 

in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 1.405 0.025 1.46×104 

EO 2.719 0.300 5.49×103 

MPA 1.074 0.031 5.98×103 

SMA 1.062 0.060 8.37×103 

DEMP 0.964 0.021 1.53×103 

 

Table 7 shows that the best method for getting 

average fitness value and execution time is DEMP. 

SMA succeeded to come second even though it took 

almost three times the time of DEMP.  

 
 

Table 6. Average fitness values and average execution 

time over 20 runs for the liver dataset. The best result is 

shown in boldface and underlined, and the second-best is 

in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 0.8814 0.0168 2.34×104 

EO 1.3478 0.3454 9.13×103 

MPA 0.642 0.0024 9.23×103 

SMA 0.6461 0.0034 1.04×104 

DEMP 0.6313 0.0042 2757 

 
Table 7. Average fitness values and average execution 

time over 20 runs for the melanoma dataset. The best 

result is shown in boldface and underlined, and the 

second-best is in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 1.434 0.0353 2.23×104 

EO 3.086 0.4717 1.02×104 

MPA 0.950 0.0134 9.88×103 

SMA 0.934 0.0158 1.05×104 

DEMP 0.914 0.0198 2952 

Table 8. Average fitness values and average execution 

time over 20 runs for the ovarian dataset. The best result 

is shown in boldface and underlined, and the second-best 

is in boldface 
algorithm 

name 
avg fitness STD Avg time 

FireFly 1.308 0.0198 1.74×104 

EO 2.223 0.5269 6.90×103 

MPA 1.010 0.0189 7.02×103 

SMA 0.989 0.0382 9.01×103 

DEMP 0.960 0.0383 1941 

 

The results of Table 8 show that the method with 

the best average fitness value is DEMP. It also has the 

shortest execution time. SMA algorithm got the 

second-best results in terms of average fitness value, 

but it took almost five times the DEMP's time. 

As is evident from the results of Table 9, DEMP 

method obtained the clustering solutions that have the 

best average fitness value. On the other hand, MPA 

came in second place, while it needed almost five 

times the time of DEMP.  

Table 10 reveals that all experimental results are 

statistically significant, except for comparing DEMP 

and SMA on the colon dataset. So, we can conclude 

that the proposed method DEMP not only has an  

 
Table 9. Average fitness values and average execution 

time over 20 runs for the sarcoma dataset. The best result 

is shown in boldface and underlined, and the second-best 

is in boldface 

algorithm 

name 
avg fitness STD Avg time 

FireFly 1.233 0.0381 1.48×104 

EO 1.523 0.2834 6.88×103 

MPA 0.727 0.0066 6.81×103 

SMA 0.737 0.0074 8.87×103 

DEMP 0.720 0.0087 1.87×103 
 

 

Table 10. The p-values of Wilcoxon's test for DEMP 

method against the other considered algorithms through 

eight datasets 

  FireFly EO MPA SMA 

AML 0.00001 0.00001 0.00004 0.00005 

Colon 0.00001 0.00001 0.00151 0.95443 

gbm 0.00001 0.00001 0.00001 0.00001 

Kidney 0.00001 0.00001 0.00001 0.00001 

Liver 0.00001 0.00001 0.00001 0.00001 

melanom 0.00001 0.00001 0.00002 0.0027 

Ovarian 0.00001 0.00001 0.00031 0.00325 

Sarcoma 0.00001 0.00001 0.01099 0.00003 
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Figure. 6 Average fitness values over 20 runs for all 

dataset 

 
Figure. 7 Average execution time over 20 runs for all 

dataset 

 

advantage over other algorithms, but almost all the 

results are statistically significant.  

The results in Fig. 6 and Fig. 7 are deduced from 

Tables. 2-9. These results show us that DEMP's 

average fitness values are the best on all datasets. 

Besides, it is far faster than other algorithms under 

study. 

5. Discussions 

5.1 DEMP’s superiority explanation 

Although metaheuristics that use centroids-base 

real encoding can achieve better results than those 

who use binary encoding, they take a long execution 

time because solving the automatic clustering 

problem for multi-omics datasets is more 

complicated than other datasets. Fig. 3 shows the real 

encoding example for a dataset that each centroid can 

be represented with a single real value. In this case, 

each solution's length equals 2 × kmax since we need 

extra decision variables for the activation thresholds. 

In case of the multi-omics dataset, instead of 

representing each centroid with a single real number, 

it is represented with d real numbers as depicted in 

Fig. 4. So, in that case, the number of decision 

variables equals kmax × d + kmax. Since kmax normally 

equals √𝑁 where N is the number of objects/patients 

in the dataset, the number of decision variables equals 

√𝑁  × d + √𝑁 . If we consider the data in Table 1, 

this leads to a huge number of decision variables for 

each clustering solution, which greatly increases the 

search space.   

From the previous section, we can see the 

superiority of DEMP over all the real encoding 

metaheuristics under study. We can explain this for 

the following reasons. First, during the DEMP's first 

stage, it uses BDE that uses the binary encoding 

which needs only a binary vector of length N to 

represent a clustering solution as shown in Fig. 1. 

BDE looks for the centroids only in the 

objects/patients in the dataset, which allows it to 

converge faster. Second, our modification which is to 

calculate the distances between every pair of the 

dataset's objects once and save them in a table at the 

beginning of the BDF algorithm. This modification 

greatly increased the speed of BDF and thus DEMP 

since it only calculates the distance between two real 

victors (with length equals d) N2 times. On the 

contrast, without this modification, DEMP needs to 

calculate the same distance almost (I × S × kmax / 2) 

times. Where I is BDE's iterations number and S is 

BDE's search agents number.  Third, at the end of the 

first stage, the Kmax for the second stage is determined. 

Often the determined Kmax is smaller than the normal 

Kmax that equals the √𝑁. As mentioned earlier in this 

section, the number of the decision variables equals 

kmax × d + kmax. Therefore, if the Kmax decreases by x, 

the number of decision variables is reduced by x × d, 

which dramatically reduces the search space and 

convergence time. 

Fourth, at the beginning of the second stage, half 

of MPA initial population initialized using the fittest 

clustering solutions in the BDE final population. So, 

MPA in the second stage needs only 100 iterations to 

get better results than other metaheuristics that need 

500 iterations. 

Since the genomic data amount grows fast and, 

new omics are expected to appear in the future, a 

faster clustering method such as DEMP will have a 

greater chance to cope with that growth. Therefore, it 

is expected that the DEMP method will become 

widespread in the future. 

6. Conclusions 

This paper proposes a new hybrid automatic 

clustering method based on BDE and MPA called 

DEMP method. BDE uses a binary encoding to solve 

the binary optimization problem, while MPA uses 

real encoding to solve the global optimization 

problem. DEMP method combines the speed 
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convergence of BDE and accurate clustering results 

of MPA to improve both the clustering solution 

accuracy and execution time. We proposed 

adjustments for both algorithms to allow them to 

solve the problem of automatic clustering. 

This article evaluated the DEMP method's 

performance using clustering accuracy and execution 

time on eight multi-omics datasets. Moreover, we 

compared the DEMP method to four powerful and 

recent optimization algorithms FA, EO, MPA, and 

SMA. The experimental results reveal that the DEMP 

method could solve the automatic clustering problem 

for multi-omics datasets. Furthermore, the results 

show that the clustering solutions accuracy of the 

DEMP method is much superior to other algorithms 

under study. It is also evident from the results that the 

DEMP's execution time is much less than the 

algorithms under investigation. Finally, we should 

note that 97% of the comparisons are statistically 

significant. Based on the above, it can be concluded 

that DEMP is a powerful automatic clustering tool for 

multi-omics datasets.  

As future research, DEMP can be applied to other 

problems with a vast number of features. Besides, 

adding an efficient local search method to DEMP can 

further improve the clustering solution quality.  
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