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Abstract: This paper presents the Internet of things (IoT) technology for real-time monitoring of wastewater 

phytoremediation. Phytoremediation is a technique to remove pollutants from the wastewater using the plants. A 

conventional method to monitor the phytoremediation performance is by taking the samples of the contaminants from 

a site and measuring them at the laboratory. This method needs many works for data preparation and analysis. A recent 

development on the IoT technology may eliminate such tasks by a real-time monitoring system. In the proposed real-

time monitoring system, several phytoremediation models are implemented on embedded hardware and connected to 

the Thingspeak IoT platform. The proposed system aims to provide a real-time monitoring system to better model the 

phytoremediation by examining the monitoring data time interval and fitting techniques. From the experiments, the 

proposed monitoring system achieves a data transfer reliability of 81.4% when the period of the data transmission is 

one minute, which is suitable for one-day interval real-time monitoring system. The proposed monitoring system can 

build a phytoremediation model using a polynomial fitting with a higher fit than the existing methods using an 

exponential fitting. Further, the proposed method promises a better solution in terms of the best model, the low cost, 

and the acceptable accuracy. 
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1. Introduction 

Wastewater treatment plays an essential task in 

daily activity in households and industrial plants. The 

wastewater from those activities is usually processed 

in a Wastewater Treatment Plant (WWTP), where the 

pollutant in the wastewater is removed, and the 

effluents are safe to discharge to the river. One 

approach to remove the contaminant from the 

wastewater is using the plants, which is called 

phytoremediation.  

Many works [1-12] adopted phytoremediation in 

the wastewater treatment processes. Usually, they 

differ in the types of green plants and the pollutants 

to be removed. The water hyacinth was used in [1-5] 

as the plant for phytoremediation. The other types of 

plants are water lettuce [5], lettuce [6], kale [6-8], 

bamboo species [9], ornamental plant species [10], 

Rhizophora mangle [11], and Salvinia biloba [12]. 

Meanwhile, the common types of the pollutants to be 

removed are: NO3 [1, 6, 10], N [2], PO4 [1], Na [3], 

K [3], P [4], NH3 [4, 6], Zn [5, 12], Pb [5, 8, 12], Fe 

[5], Cu [5, 9, 12], Ni [5], Cd [7, 8, 12].  

The effectiveness of phytoremediation is 

measured by the reduction of the pollutants such as 

biochemical oxygen demand (BOD), chemical 

oxygen demand (COD), total suspended solids (TSS), 

and total dissolved solids (TDS).  Therefore, it 

requires to monitor those parameters regularly. The 

conventional method for monitoring the parameters 

is by collecting samples from the site and then 

measured at the laboratory every week, or every 

month or depending on the fund’s availability. 

Furthermore, from the data collected, we could build 

a phytoremediation model for analyzing and 

predicting purposes.   

A kinetic mathematical model of 

phytoremediation using water hyacinth was proposed 
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in [2]. Authors in [2] employed a conceptual model 

using STELLA software to develop the system's 

various processes. The model focused on the nitrogen 

transformation in the phytoremediation process. 

Authors in [3] proposed a phytoremediation model to 

predict the trend of water hyacinth potential for the 

pulp and paper industry. The model was developed 

based on the exponential model of growth. The 

experimental data collected on the 15th, 30th, and 

45th days were utilized to verify the model. 

There are a few works on the real-time 

monitoring of phytoremediation [13, 14]. In [13], the 

system was used to monitor the metal concentration 

in the plants by employing the reflectance 

spectroscopy and Laser Induced Breakdown 

Spectroscopy (LIB) sensors. In [14], a remote sensing 

technique using the satellite images was used to 

detect the heavy metal contained in the plants. 

Most of the works for real-time monitoring the 

pollutants in the wastewater are developed to monitor 

the WWTP parameters, as discussed in the following. 

Online monitoring of the WWTP using Supervisory 

Control And Data Acquisition (SCADA) application 

was developed in [15, 16]. SCADA system provides 

real-time monitoring of the WWTP parameters, such 

as pH, TSS, DO, COD [15]. It is equipped with the 

alarm and the trending graphs of the important 

parameters of the WWTP.  An advanced monitoring 

technique based-on the statistical method is added to 

detect the process fault [16]. 

A wastewater quality monitoring system using a 

website interface was developed in [17]. It consisted 

of a field monitoring system for collecting data from 

the sensors and the factory monitoring room where 

the webserver is located. An internet connection via 

WiFi is used to communicate between the field and 

the server. 

The wastewater monitoring system using a LoRa 

technology was proposed in [18, 19]. The LoRa 

enables a long-range communication of 20 Km 

between the WWTPs and the gateway. Thus it 

provides a wide area monitoring of several WWTPs 

via the internet using a Geographical Information 

System (GIS)-based application. 

WWTP monitoring systems using the Internet of 

Things (IoT) technology were proposed in [20-23]. A 

minimal model of IoT-based monitoring system was 

proposed in [20], where only three critical sensors, 

i.e., the temperature, turbidity, and pH sensors, were 

used to monitor the operational status of WWTP. 

Similar to [20], the three parameters of wastewater, 

namely the temperature, level, and flow, were 

considered in the monitoring system [21]. 

A low-cost sensor and IoT system to monitor the 

Electronic Conductivity, pH, Dissolved Oxygen, 

Color, and Turbidity of the wastewater was proposed 

in [22]. A Thingspeak [23] was adopted as the IoT 

cloud server for displaying and analyzing the data. 

Integration of Wireless Sensor Network (WSN) 

and IoT was proposed in [24] to perform a 

Decentralized Smart Water Quality Monitoring 

System. The sensor device employed a cost-effective 

optical sensor based-on an ion chromatography 

system [25] to detect nitrite and nitrate in the water. 

The sensor devices are easy to be deployed in multi 

WWTPs using WSN technology. 

The online monitoring systems of the WWTP 

provide useful data for further processes and analyses. 

The advanced methods for analyzing the WWTP’s 

monitored data were proposed in [26-28]. In [26], a 

sensor fault was detected from the monitored data 

using a fuzzy logic algorithm. It employed a Takagi-

Sugeno fuzzy model to build an online fuzzy 

identification of the WWTP’s non-linear processes. 

The deep learning techniques were adopted in [27, 

28] for the fault detection of the WWTP. A deep 

neural network was proposed in [27] to detect the 

sensor fault by analyzing the oxidation and 

nitrification process’s temporal data. The approach 

shows a high fault detection rate of 92%. An 

unsupervised machine learning that integrates a deep 

belief network and a support vector machine was 

used in [28] for an anomaly-detection of 

decentralized WWTP. 

In this paper, we propose a system to monitor the 

phytoremediation using IoT technology. Compared 

to the existing systems, our work has several 

distinctive approaches. First, compared to the 

conventional methods [1-12], our approach provides 

real-time monitoring of pollutant’s concentration in 

the phytoremediation. Second, compared to the 

existing real-time monitoring in phytoremediation 

[13, 14], our approach offers a simple hardware 

configuration and adopts a recent IoT technology. 

Third, compared to the existing WWTP monitoring 

systems [15-28], our approach offers an efficient tool 

to monitor and examine the phytoremediation models 

by integrating the IoT platform and the mathematical 

model, which is implemented on the embedded 

hardware.   

Instead of using the real WWTP, we develop real-

time monitoring using a phytoremediation model 

which is implemented on an embedded system. Our 

previous work in [29] inspires the idea of using such 

a model for the real-time monitoring system. By 

implementing a phytoremediation model on 

embedded hardware, it could be connected to the IoT 

infrastructure for real-time monitoring.   
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The rest of the paper is as follows. Section 2 

presents our proposed system. Section 3 describes the 

results and discussion. Finally, the conclusion is 

covered in Section 4. 

2. Proposed system 

The configuration of the proposed system is 

illustrated in Fig. 1. It consists of three main parts: 

Phytoremediation models, WiFi Acces Point, and IoT 

cloud server. As shown in the figure, the 

phytoremediation models are implemented on the 

Arduino Nano 33 IoT modules [30]. In this work, we 

implement three phytoremediation models, where the 

models of Phytoremediation-1, Phytoremediation-2, 

and Phytoremediation-3 are adopted from [6,4,3], 

respectively. 

Each phytoremediation model represents the 

concentration of the parameters of WWTP effluent 

for the phytoremediation period. The details of the 

models will be discussed in the following section.  

In this work, we employ Thingspeak [23] as the 

IoT platform. Thanks to its compatibility with the 

Arduino module, the integration with the 

phytoremediation model could be easily performed. 

Since the Arduino Nano IoT is equipped with the 

WiFi module, it becomes a simple task to connect it 

to the internet via a WiFi Acces Point. The model's 

data is then sent to the Thingspeak cloud server at a 

specific time interval defined by the user 

configuration.   

The Thingspeak provides an easy method to 

visualize and analyze the data on the cloud server that 

is collected from the field devices (Arduino Nano 33 

IoT modules). In this way, the parameters of 

phytoremediation could be monitored in a real-time 

manner, and further analysis could be performed 

using the Thingspeak platform. 
 

 
Figure. 1 System configuration 

2.1 Phytoremediation model 

A phytoremediation model used in this work is 

originated from the mathematical model proposed in 

[3]. In this model (hereafter called Exp-1 model), the 

phytoremediation potential at time t (Pt) is expressed 

as 

 

𝑃𝑡 = 𝑃0𝑒
𝜇𝑡,          (1) 

 

where P0 is the phytoremediation potential at time 

t=0, and  is the potential rate. The potential rate () 

is defined by the following formula 

 

𝜇𝑖 =
𝑙𝑛(

𝑃𝑖
𝑃0
)

𝑡𝑖
,             (2) 

 

𝜇 =
∑ 𝜇𝑖
𝑁
𝑖=1

𝑁
,            (3) 

 

where i=1,2,3,…N; and ti is the time at interval i. 

Using the above formulas, we may calculate or 

predict a pollutant's concentration in the 

phytoremediation at any time t. To build the model, 

we need to collect the data at several time intervals, 

e.g., 0, 15, 30, and 45 days as proposed in [3]. Once 

the model is developed, then it could be implemented 

on the Arduino Nano 33 IoT module.  

Even though the above model (Exp-1 model) [3] 

shows a reasonable accurate, from a few experiments, 

we find that the model cannot fit the other observed 

phytoremediation data indicated by the lower value 

of R2. Therefore we examine the other models as 

follows. 

To provide a more general model, we evaluate the 

other models, i.e., an exponential model (hereafter 

called Exp-2 model) and a second-order polynomial 

model (hereafter called Poly model). The exponential 

model is expressed as 

 

 𝑃𝑡 = 𝑎𝑒𝑏𝑡,                            (4) 

 

where a, b are the parameters that are calculated using 

the least square method. The second-order 

polynomial model is expressed as 

 

 𝑃𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2,     (5) 

 

where a0, a1, a2 are the parameters that are calculated 

using the least square method.  

Eqs. (1)-(5) are used to build the 

Phytoremediation Model-1, Phytoremediation 

Model-2, and Phytoremediation Model-3 as 

described in the following. 

 

Model of Phytoremediation-

1  

(Arduino Nano 33 IoT #1) 

Model of Phytoremediation-

2 

(Arduino Nano 33 IoT #2) 

Model of Phytoremediation-

3 

(Arduino Nano 33 IoT #3) 

WiFi  

Access 

Point 

IoT 

Cloud server 

(Thingspeak) Website 

https://thingspeak.com

/ 
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Table 1. Observed data of the Phytoremediation-1 

Plant Monitored 

parameter 

Observed data (mg/L) 

Day=0 Day=7 Day=14 

Kale 
NH3 6.965 5.560 1.479 

NO3 15.940 15.570 7.935 

Lettuce 
NH3 8.200 9.260 33.000 

NO3 5.822 9.072 10.120 

 

Table 2. Observed data of the Phytoremediation-2 

Plant Monitored 

parameter 

Observed data (mg/L) 

Day=0 Day=7 Day=14 

A. pinnata 
NH3 8.00 4.85 2.26 

P 1.00 0.96 0.39 

E. 

crassipes 

NH3 8.00 5.23 2.74 

P 1.00 0.99 0.5 

 

Table 3. Observed data of the Phytoremediation-3 

Plant Monitored 

parameter 

Observed data (ppm) 

Day=0 Day= 15 Day=3

0 

Day= 45 

E. 

crassipes 

TSS 406.7 279.3 191.3 132 

COD 800 497.4 309.3 192 

Na 19.3 16.4 13.9 11.9 

K 39.4 32.6 26.8 22.3 

 

The observed data and the monitored parameters 

of the Phytoremediation-1, Phytoremediation-2, and 

Phytoremediati-3 are listed in Table 1, Table 2, and 

Table 3, respectively.  

The Phytoremediation-1 model represents the 

phytoremediation of the Tlogomas Communal 

WWTP in Malang City, Indonesia [6]. The monitored 

parameters are Ammonia (NH3) and Nitrate (NO3), 

while the phytoremediation plants are the Kale 

(Ipomoea aquatic) and the Lettuce (Lactuca sativa 

L.).       

The Phytoremediation-2 model represents the 

phytoremediation of wastewater from Estero de San 

Miguel Mendiola, Manila, Philippines [4]. The 

monitored parameters are Ammonia (NH3) and 

Phosphorous (P), while the phytoremediation plants 

are the Azolla pinnata and Eichhornia crassipes. 

The Phytoremediation-3 model represents the 

phytoremediation of wastewater from the Century 

Pulp and Paper Industry, Lalkuan, India [3]. The 

monitored parameters are TSS, COD, Natrium (Na), 

and Kalium (K), while the phytoremediation plant is 

the water hyacinth (Eichhornia crassipes). 

We evaluate each phytoremediation model using 

the Eqs. (1) – (5). Since the minimum time interval of 

observed data listed in Table 1 to Table 3 is seven 

days, we create a linear interpolation model (hereafter  

Table 4. Mathematical model of the phytoremediation-1 

Model 

name 

Mathematical model 

Kale Lettuce 

NH3 NO3 NH3 NO3 

Lin  

Day: 

0-7  

-0.2007t  

+ 6.965 

-0.0528t 

+15.94 

0.1514t 

+8.2 

0.4643t 

+5.822 

Day: 

8-14 

-0.583t 

+9.641 

-1.0907t 

+23.205 

3.3914t     

 -14.48 

0.1497t 

+8.024 

Exp-1 6.965 

e-0.0714t 

15.940    

e-0.0266t 

8.200  

e0.0584t 

5.822 

e0.0514t 

Exp-2 8.365     

 e-0.111t 

17.766   

 e-0.05t 

6.7706  

e0.0995t 

6.1555 

e0.0395t 

Poly -0.0273t2    

- 0.0096t  

 + 6.965 

-0.0741t2 

+0.4661t 

+ 15.94 

0.2314t2     

 - 1.4686t 

+ 8.2 

-0.0225t2 

+0.6216t 

+ 5.822 

 

Table 5. Mathematical model of the phytoremediation-2 

Model 

name 

Mathematical model 

A. pinnata E. crassipes 

NH3 P NH3 P 

Lin  

Day: 

0-7  

-0.45t 

+8 

-0.0057t 

+1 

-0.3957t 

+8 

-0.0014t 

+1 

Day: 

8-14 

-0.37t 

+7.44 

-0.0814t 

+1.53 

-0.3557t 

+7.72 

-0.07t 

+1.48 

Exp-1 8e-0.08089t 1e-0.0365t 8e-0.0686t 1e-0.0255t 

Exp-2 8.3587 

e-0.09t 

1.1541 

e-0.067t 

8.3007 

e-0.077t 

1.1187 

e-0.05t 

Poly 0.0057t2  

- 0.49t  

+ 8 

-0.0054t2 

+0.0321t 

+ 1 

0.0029t2 

 - 0.4157t 

+ 8 

-0.0049t2 

+0.0329t 

+ 1 

 

Table 6. Mathematical model of the phytoremediation-3 

Model 

name 

Mathematical model 

TSS COD Na K 

Lin   

Day: 

0-15  

-8.4933t 

+406.7 

-20.1733t 

+800 

-0.1933t 

+19.3 

-0.4533t 

+39.4 

Day: 

16-30 

-5.8667t 

+367.3 

-12.54t 

+685.5 

-0.1667t 

+18.9 

-0.3867t 

+38.4 

Day: 

31-45 

-3.9533t 

+309.9 

-7.82t 

+543.9 

-0.1333t 

+17.9 

-0.0108t 

+27.12 

Exp-1 406.7 

e-0.02507t 

800 

e-0.03169t 

19.3 

e-0.01085t 

39.4 

e-0.01271t 

Exp-2 406.42 

e-0.025t 

800.25 

e-0.032t 

19.276 

e-0.011t 

39.381 

e-0.013t 

Poly 0.0757t2 

 - 9.4857t 

+ 406.17 

0.2059t2 

 - 22.679t 

+ 797.82 

0.001t2 

 - 0.2097t 

+ 19.305 

0.0026t2 

 - 0.4957t 

+ 39.415 

 

called Lin model) between these intervals to provide 

daily data.  

The Lin, Exp-1, Exp-2, and Poly models of the 

Phytoremediation-1, Phytoremediation-2, and 

Phytoremediation-3 are given in Table 4, Table 5, and 

Table 6, respectively. These mathematical models 

were then implemented on the Arduino Nano 33 IoT 
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for real-time monitoring using the Thingspeak 

platform. 

2.2 Thingspeak configuration  

The objective of applying the IoT technology in 

phytoremediation is to monitor the parameters in a 

real-time manner. By performing real-time 

monitoring, the data can be collected hourly or daily. 

Thus data can be analyzed accurately. 

In this work, we configure the Thingspeak to 

accomplish those objectives, especially in terms of 

data visualization and analysis. Fortunately, both 

features are supported by Thingspeak, specifically 

the integration of Thingspeak and Matlab [31] for the 

data analysis. Thus the modeling, i.e., the data fitting, 

could be performed easily. 

As described previously, the period for manual 

data collecting in the phytoremediation is usually 

seven days (one week). It suggests that for better 

monitoring, the period for real-time monitoring could 

be conducted in one day. For simplification and 

evaluation purposes, we configure the 

phytoremediation model (Arduino Nano 33 IoT) to 

send the data to the Thingspeak every minute that 

reflects every day in the real phytoremediation 

process. 

 
Table 7. Evaluation scenario 

No. Model name  

Period=1 min Period=7 min* 

1 NA Observed data 

2 Lin model NA 

3 Exp-1 model Exp-1 model 

4 Exp-2 model Exp-2 model 

5 Poly model Poly model 
 * 15 min for Phytoremediation-3 

 

Table 8. Time slot of data transfer and analysis 

Time 

slot  

Data transfer allocation# 

0h Lin model, 1 min interval: 0 - 14  

1h Exp-1 model, 1 min interval: 0 - 14 

2h Exp-2 model, 1 min interval: 0 - 14 

3h Poly model, 1 min interval: 0 - 14 

4h Observed data, 7 min interval: 0, 7,14  

5h Exp-1 model, 7 min interval: 0, 7, 14  

6h Exp-2 model, 7 min interval: 0, 7, 14 

7h Poly model, 7 min interval: 0, 7, 14  
#:  

- Phytoremediation-1 &2: 7 min period = 0,7,14 

- Phytoremediation-3: 15 min period = 0,15,30,45 

 

 

To evaluate our proposed system, we prepare five 

scenarios, as shown in Table 7, where each scenario 

differs in the data transfer period, and the model used. 

It is noted here that the Observed data is only 

available for 7 min period, and the Lin model is only 

available for 1 min period. Since the maximum time 

required by the phytoremediation model 

(Phytoremiation-3) is 45 min, we allocate each 

scenario in the one-hour time slot in the Thingspeak 

as given in Table 8. 

3. Results and discussion 

In the experiments, we implement the 

phytoremediation models on the embedded hardware 

(Arduino Nano 33 IoT) according to the scenario 

given in previous section. Then we run and connect 

the modules to the internet. 

To evaluate the proposed system, we examine the 

data transfer between the Arduino modules and the 

Thingspeak cloud server, and the data fitting 

(modeling) performed by the Thingspeak (and 

Matlab). Further, the comparison with the existing 

methods is also conducted. The evaluation results are 

described in the following. 

3.1 Evaluation of data transfer 

The objective of the evaluation of the data 

transfer is to analyze the performance of the proposed 

IoT system in transferring the data. It includes the 

data transfer time interval, the data transfer reliability, 

and the data visualization. 

The data transfer time interval (DTI) is defined as 

the time interval between the data received by the 

Thingspeak. Since the Arduino module sends the data 

on a specific period (see Table 7), the DTI can 

measure the inter-data transmission’s delay time to 

the Thingspeak. The DTI is calculated by averaging 

the time interval at every time slot from observing the 

timestamps data in the Thingspeak, i.e., the duration 

of data received divided by the number of data 

received during the one-hour time slot. A good 

transmission is achieved when the DTI is the same as 

the period of data sent from the Arduino module. 

The data transfer reliability (DTR) is defined as 

the success rate of the data received by Thingspeak. 

The DTR is calculated as the ratio of the number of 

data received by the Thingspeak to the number of 

data sent by the Arduino module at each time slot. A 

high DTR’s value (maximum is 100%) indicates a 

good data transfer.  

The DTI and DTR of each phytoremediation 

model are given in Table 9. From the table, it is 

obtained that the DTIs of 7 min and 15 min periods 

are similar to their periods. However, the DTI of a 1  
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Table 9. Data transfer time interval and reliability 

Phytoremediation 

model 

Period= 

1 min 

Period= 

7 (15) min 

DTI 

(min) 

DTR 

(%) 

DTI 

(min) 

DTR 

(%) 

Phytoremediation-1 1.2 85 7 100 

Phytoremediation-2 1.57 73.33 7 100 

Phytoremediation-3 1.18 85.87 15 87.5 

Total average 1.317 81.4 7(15) 95.83 

 

min period is greater than its period (1 min). By 

observing the DTR and due to the DTI is the average 

time interval at each time slot, the longer value of 

DTI is caused by the lower value of DTR, in the sense 

that since the Thingspeak receives only 81.4% of the 

data sent by the Arduino module, thus the average 

value of the time interval becomes higher than 1 min.  

The result means that the system could not perform 

well for transferring data at a period of 1 min. It may 

be caused by the internet connection between the 

access point and the Thingspeak server. The result 

also suggests that the system performs well at a 

period of 7 min. It means that the longer period is 

better for data transmission. Thus for a real  

 

 
(a) 

 
(b) 

Figure. 2 Data visualization: (a) phytoremediation model 

and (b) thingspeak (Matlab) fitting 

implementation, an hour period of real-time 

monitoring could be accomplished by the proposed 

system. 

The examples of data visualization in the 

Thingspeak are shown in Fig. 2, where Fig. 2 (a) 

shows the data visualization of the phytoremediation 

model sent by the Arduino module, while Fig. 2 (b) 

shows the data visualization of the data fitting 

performed by Thingspeak (Matlab). 

From Fig. 2 (a), we can see the visualization of 

the model for the time slot given in Table 8. The first 

four hours on the left are the models from the time 

slot of 0h to 3h (15:30h to 18:30h in the figure), 

where the period is 1 min. It is clearly shown here that 

some data points are missing as described previously. 

While the models of 7 min period are shown on the 

right side (19:30h to 21:30h), where only three data 

points are received at each time slot. From Fig. 2 (b), 

we can see that Thingspeak is able to fit the received 

data properly, even though some data are missing. 

3.2 Evaluation of data fitting 

The data fitting evaluation objectives are to verify 

the data fitting techniques performed by Thingspeak 

and find the best data fitting technique. The 

coefficient of determination (R2) is used as the 

evaluation criteria, where the higher value indicates 

the goodness of fitting.  

In this work, the data fitting techniques used by 

the Thingspeak are the exponential model (Exp-2) 

and the second-order polynomial model (Poly). For 

the evaluation, we configure the Thingspeak to apply 

both data fitting techniques using the five scenarios 

given in Table 7. The evaluation results are given in 

Table 10.  

Referring to Table 10, we obtain several findings 

as follows: 

 In the Phytoremediation-1 and 

Phytoremediation-2, the Poly model achieves 

better fitting than the Exp-2 model for both 1 

min and 7 min periods. It is also shown that even 

though the data on the Arduino modules are built 

using the Exp-1 and Exp-2 models, the Poly 

models performed by the Thingspeak achieve 

the high values of 0.999. Meanwhile, when the 

Poly models are built in the Arduino, the Exp-2 

models performed by the Thingspeak only 

achieve values about 0.8. 

 In the Phytoremediation-3, both the Exp-2 and 

Poly models show similar results, i.e., R2=0.999. 

It means that both fitting techniques are suitable 

for the monitored data in the Phytoremediation-

3. 
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Table 10. Data fitting evaluation 

Phytoremediation 

model 

(Implemented Arduino 

module) 

R2 

Period= 

1 min 

Period= 

7 (15) min 

Exp-2 Poly Exp-2 Poly 

Phytoremediation-1     

Observed data NA NA 0.817 1 

Lin model 0.851 0.993 NA NA 

Exp-1 model 1 0.999 1 1 

Exp-2 model 1 0.999 1 1 

Poly model 0.844 1 0.817 1 

Average-1 0.924 0.998 0.909 1 

Phytoremediation-2     

Observed data NA NA 0.833 1 

Lin model 0.840 0.993 NA NA 

Exp-1 model 1 0.999 1 1 

Exp-2 model 1 0.999 1 1 

Poly model 0.851 1 0.831 1 

Average-2 0.923 0.998 0.916 1 

Phytoremediation-3     

Observed data NA NA 0.999 0.999 

Lin model 0.981 0.997 NA NA 

Exp-1 model 1 0.999 0.999 0.999 

Exp-2 model 1 0.999 0.999 0.999 

Poly model 0.999 0.999 1 1 

Average-3 0.995 0.999 0.999 0.999 

Total Average 0.947 0.998 0.941 0.999 

 

 By examining the three phytoremediation 

models' average values, it can be concluded that 

the polynomial fitting provides a better model 

than the exponential fitting.   

Comparing the results of 1 min period and 7 min 

(or 15 min) periods, it is obtained that the R2 of both 

periods are almost the same. It is worth noting here 

that even though the data transfer reliability of a 1 

min period is 81.4% (see Table 9), it is able to build 

a model with good fitting. 

The comparison results of the data fitting are 

illustrated in Figs. 3 and Fig. 4. Fig. 3 shows the data 

fitting of the Phytoremediation-1, where the plant is 

the Kale, the pollutant is NO3, and the data transfer 

period is 7 min. In the figure, the blue, red, and purple 

lines represent the Observed data, the Exp-2 model 

(Thingspeak), and the Poly model (Thingspeak), 

respectively. It is clearly shown that the Poly model 

is better fitting than the Exp-2 model. 

Fig. 4 shows the data fitting of the 

Phytoremediation-2, where the plant is the E. 

crassipes, the pollutant is P, and the data transfer 

period is 1 min. In the figure, the blue, aqua, orange,  

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3 Data fitting of phytoremediation-1 (7 min 

period) 

 

 
 

Figure. 4 Data fitting of phytoremediation-2 (1 min 

period) 

 

red, and green lines represent the Lin model, the 

Exp-2 model (Thingspeak), the Poly model 

(Thingspeak), the Exp-2 model (Arduino), and the 

Poly model (Arduino), respectively. It is clearly 

shown that the Poly model is better fitting than the 

Exp-2 model. The figure also shows that the model 

obtained by the Thingspeak is similar to the Arduino.  

3.3 Comparison with the existing methods 

The comparison with the existing methods is 

conducted by evaluating the models’ goodness, the 

measurement system accuracy, and the total cost. 

Comparing the goodness of fitting of the models is 

obtained from the previous section and is given in 

Table 11. In the table, the existing method (Ext) uses 

the existing data time interval of 7 days for the 

Phytoremediation-1 and Phytoremediation-2, and 15 

days for the Phytoremediation-3, and the exponential 

model (Exp-2) for data fitting. The proposed method 

(Prop) uses the data time interval of 1 day 

(interpolated from the existing data using the Lin 

model), and the polynomial model (Poly) for data 

fitting. 

Table 11 shows that the Prop achieves a higher R2 

than the Ext in the Phytoremediation-1 and 

Phytoremediation-2 and almost the same as Ext for 

the Phytoremediation-3. From the table, it is obtained  
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Table 11. Comparison of the goodness of the model 

Phytoremediation 
R2 

Ext Prop 

Phytoremediation-1 [6] 0.817 0.993 

Phytoremediation-2 [4] 0.833 0.993 

Phytoremediation-3 [3] 0.999 0.997 

Average 0.883 0.994 

 

Table 12. Comparison of the accuracy and cost 

 Ext Prop 

1. Measurement accuracy 98% 95% 

2. Cost   

a. Initial cost NA USD    640 

b. Measurement cost per day USD   50 USD     0.5 

c. Total cost-A (Day=0,7,14) USD 150 USD 641.5 

d. Total cost-B (Day=0 - 14) USD 750 USD 647.5 

 

that the average value of R2 of the Prop is higher 

than the Ext. It means that our proposed method 

provides a better model compared to the existing ones. 

To compare the measurement accuracy and the 

total cost, we evaluate the Phytoremediation-1 [6] 

only due to the accuracy and cost data availability. 

The comparison results are given in Table 12. Since 

the pollutants' concentration is measured at the 

laboratory in the Ext, the accuracy of the 

spectrophotometric method is measured. While in the 

Prop, the accuracy of the ion-selective electrode 

sensor is measured. As shown in the table, the 

accuracy of the Prop is slightly lower than the Ext. 

The cost shown in Table 12 is described in the 

following. The initial cost is the cost for the sensors 

and IoT systems installation. Thus it is applicable for 

the Prop only. The measurement cost per day is a 

daily cost for conducting the data collection and 

measurement. In the Ext, it consists of the labor and 

accommodation costs for collecting data on the site 

and the measurement cost at the laboratory. In the 

Prop, the measurement cost is the data 

communication (internet) subscription fee. The total 

cost-A is the total cost when the measurement is 

conducted in a 7 days interval (the day of 0th, 7th, and 

14th). The total cost-B is the total cost when the 

measurement is conducted every day (the day of 0th 

to 14th). It is obtained from the table that the total 

cost-A of the Prop is higher than the Ext. However, 

the total cost-B of the Prop is lower than the Ext. 

The above results suggest that for one-day 

interval monitoring system, our proposed method 

promises a better solution in terms of the best model, 

the low cost, and the acceptable accuracy. 

 

4. Conclusion 

Real-time monitoring of the phytoremediation 

using the Thingspeak IoT platform is proposed. The 

IoT system is connected to the embedded hardware, 

where the mathematical model of the 

phytoremediation is implemented. Several 

phytoremediation models could be developed and 

monitored in real-time using the IoT application 

using the proposed system. The data transfer 

evaluation yields the average data transfer time 

interval of 1.317 min, 7 min, and 15 min when the 

data transfer periods are 1 min, 7 min, and 15 min, 

respectively. The average data transfer reliability is 

81.4% and 95.83% when the data transfer periods are 

1 min and 7 min (and 15 min), respectively. The 

evaluation of data fitting shows that a polynomial 

model achieves better fit than the exponential model. 

Further, the proposed one-day interval real-time 

monitoring system promises an acceptable accuracy 

with a lower cost than the existing methods. 

In the future, the implementation of the 

monitoring system on the real phytoremediation plant 

will be conducted. Further, advanced data analysis 

techniques will be developed to address the real 

application. 
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