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Abstract: Nowadays, more and more human activity recognition (HAR) tasks are being solved with deep learning 

techniques because it’s high recognition rate. The architectural design of deep learning is a challenge because it has 

multiple parameters which effect on the result. In this work, we propose a novel method to enhance deep learning 

architecture by using genetic algorithm and adding new statistical features. Genetic algorithm is utilized as an 

enhancing method to get the optimal value parameters of deep learning. Also new statistical features are appended to 

the features that are extracted automatically from CNN technique. Because the spread of the internet and its 

significance in our life, we developed Internet of Things (IoT) system. Therefore, we evaluated the performance of the 

proposed method in its system and found satisfactory results. Moreover, the proposed method was trained on two 

benchmark datasets (WISDM and UCI) and tested on the dataset, which was collected from IoT system. The results 

showed that the proposed model improved the accuracy up to 93.8% and 86.1% for user-dependent and independent. 

Keywords: Human activity recognition, Accelerometer, IoT, Genetic algorithm, Deep learning algorithms, IoT 

System. 

 

 

1. Introduction 

The deep learning (DL) is an effective machine 

learning algorithm for extracting the main features 

from data that has multiple dimensions. Those 

features are valuable in case of regression and 

classification problems [1]. Because DL trains neural 

networks from start to finish, it can extract features of 

effective value. In addition, deep generative models 

are more robust than discriminative models, 

especially in the over-fitting problem [2].  An open 

problem is improving the quality of deep learning 

technology to be effective in user-independent 

concept. We applied deep learning to HAR because 

it’s significant and it is used in many applications [3, 

4]. Also, it has many databases that are available on 

the internet and are trusted. DL models have many 

hyper-parameters that affect the entire training 

process. For example, hyper-parameters can be 

divided into two categories: Optimizer hyper-

parameters, and Model Specific hyper-parameters [5, 

6]. 

1) Optimizer hyper-parameters related more to 

the training task and optimization such as learning 

rate, batch size, and epoch’s number. Actually, the 

execution time of model’s epochs may take a long 

time to reach the ideal state, if the learning rate value 

is smaller than the ideal value. In contrast, if learning 

rate value is larger than ideal value, the model will 

exceed the ideal state. The speed of training process 

and the number of iterations is influenced by the 

value of batch size. If the bath size is large, it will 

affect the training time because it needs more 

arithmetic to multiply the matrices. And that requires 

more memory for training process. In contrast, a 

small batch size of the model leads to a lot of the 

mistakes in training process that is often an advantage 

as it does not stop the model at the local minimal [5]. 
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2) Model hyper-parameters are related to the 

model structure such as layers number, hidden units 

number, filter size, filters number, activation function, 

and dropout. The layers between the output and input 

are hidden layers. The precision is influenced by the 

number of secret units within a layer and how they 

organized. Under fitting, a smaller number of units 

can lead. Dropout parameter is regularization 

technique that is used to avoid overfitting problem. 

The activation function is responsible for the non-

linear concept in the DL model for training nonlinear 

prediction boundaries. The rectifier activation 

function is the most popular [6]. Therefore, each 

hyper-parameter has a main purpose in the DL 

architecture and its values affect the final result. Our 

proposed method provides an appropriate solution for 

selecting hyper-parameter values by using genetic 

algorithm. Genetic algorithms (GAs) depend on 

bioinspired factors, such as selection, crossover, and 

mutation. Also it has the power to find high-quality 

solutions to search and optimization problems [7]. 

This paper’s objective is adjusting DL model 

parameters for improving the accuracy of human 

activities recognition by genetic algorithm. In this 

paper, Convolution Neural Network (CNN) and 

Recurrent Neural Network (RNN) are used as DL 

models. 

To examine the impact of the real-time data in the 

proposed model performance, Internet of Things 

(IoT) system was developed. IBM Watson IoT 

platform (IWIP) was used to design IoT system for 

sending raw data of human’s activities to IBM cloud. 

Based on sensors embedded in a standard smartphone, 

we collected 3-axes accelerometers’ readings for six 

human activities: lying, sitting, downstairs, up-stairs, 

walking, and standing. Moreover, we enhanced the 

performance of IoT system’s classifier by appending 

new statistical features to the features extracted from 

deep learning technique. The main contributions of 

this paper are the following: 

Propose a novel method for finding optimized 

hyper-parameters values that are needed for building 

an accurate deep learning architecture. 

Consolidation of local features extracted from 

CNN technique along with handcrafted features. 

Develop HAR-IoT system for evaluating the 

performance of the proposed method on it. 

The paper is arranged as follows. The motivation 

and previous work of IoT frameworks and deep 

learning for human activity recognition are presented 

in section 2. Section 3 gives outlines of proposed 

HAR IoT framework design. Experimental 

preparations, results and discussion are illustrated in 

section 4. At last, Section 5 displays conclusion and 

future work. 

2. Motivations and literature review 

The sophisticated issue of recognizing human 

activity has encouraged the various groups of 

researchers using different techniques. Some used 

conventional techniques [8-10] such as Support 

Vector Machine (SVM), Decision tree, etc. S. Slim et 

al. [11] preferred to use traditional machine learning 

for recognizing human activities. While, others 

preferred to use deep learning technique. For example 

some researchers used deep learning to improve the 

performance of HAR systems [12-14]. While others 

focused on enhancing quality of DL by increasing the 

information in the training phase [15, 16] or by 

adapting the sensor data [17, 18]. Also M. Zeng et al. 

[19] preferred to use DL technique after comparing it 

with traditional machine learning and finding that DL 

achieved higher accuracy. S. Matsui et al. [20] 

evaluated DL technique in the user-independent and 

dependent concepts and their experiments achieved 

as desired. While T. Hayashi et al. [21] combined two 

concerns: improving the DL, by using multi-model 

signals, and then evaluating it in user-independent 

concept.  Therefore, this section is divided into three 

parts. The first part presents the last works that 

compare between deep learning and machine 

learning techniques. As well as which one is better 

than the other? And why? The second part presents 

previous works that aim to improve the deep learning 

technique. The third part presents the previous works 

of IoT systems. 

2.1 Deep and machine learning techniques 

There have been numerous studies to compare 

between two techniques [22-24]. For instance, S. 

Sarbagya et al. [22] compared between machine 

learning such as k-Nearest Neighbour (KNN), 

Decision Tree (DT), Random Forest (RF) and deep 

learning such as CNN and RNN. They focused on 

collecting accelerometer data from single and 

multiple devices. They stated that DT, logistic 

regression, and multilayer perception (MLP) 

techniques failed to recognize the climbing stairs 

activity with high accuracy.  Although the KNN is 

more accurate than other traditional machine learning 

such as DT and RF, its accuracy can be affected if the 

model is supplied during the training phase with little 

information. Their experiments have shown that deep 

learning such as CNN is a higher effectiveness than 

machine learning because it has the ability to extract 

the most important features of the data without 

needing an expert. In the light of the mentioned, T. 

Zebin et al. [23] found that deep learning classifier 

(CNN) achieved a great improvement in the 

performance of classification compared to machine 
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learning classifiers (SVM and MLP). However they 

tried to enhance the accuracy of SVM and MLP by 

increasing the number of features extracted, this 

enhancement didn’t give the desired results. Also L. 

Zhang et al. [25] recommended to use deep learning 

classifiers (CNN) in real-time activity recognition, 

which automatically extract appropriate features and 

then execute classification. They used an android 

smartphone to collect accelerometer data of seven 

activities: sitting, standing, upstairs, downstairs, and 

lying. A recent study by S. Slim et al. [24] concluded 

that most of recent researches tended to use deep 

learning techniques in order to identify human 

activities. According to their study, the overall 

average accuracy of traditional machine learning 

algorithms is 83.3%, which is less than the average 

accuracy of deep learning algorithms that can reach 

to 94.9%, although the number of studies used 

traditional machine algorithms are more than those 

used deep learning. In short, recent literature on 

recognizing human activity strongly suggests the use 

of deep learning, especially CNN, over traditional 

machine learning classifiers. A closer look at the 

literature of using CNN, however, reveals a number 

of gaps and shortcomings. For example, I. Andrey et 

al. [26] indicated that CNN has a problem of 

capturing the global properties of the signal. While R. 

Yamashita et al. [27] conducted a review of the basic 

concepts of CNN and its application, they found that 

it is hard to capture global and local context of data 

at the same time. We challenged this problem by 

capturing both the local and global features. In this 

paper local features are captured by using CNN but 

the global by appending a new layer in CNN flatten 

layer. Also, the architecture design of CNN is a 

challenge because it has multiple parameters which 

effect on the result, this is what was addressed in the 

second part. 

2.2 Parameters optimization 

Some authors have driven the further 

development of deep learning parameter optimization 

because of challenging problem which arises in deep 

learning approach is the size of hyper-parameters. For 

example C. Ronao et al. [28] focused on evaluating 

DL technique and faced that challenge. While others 

tried to overcome this challenge by using 

evolutionary algorithms [29, 30, 31], which are used 

as a parameter optimization technique for enhancing 

DL technique. For instance, S. Young et al. [29] 

proposed a method for optimizing the hyper-

parameters of CNN by using genetic algorithm. 

Nevertheless, they relied on optimizing a specific 

number of hyper-parameters which are kernel size 

and filter number for each of convolution layers. In 

addition, their work is limited to use image data. B. 

Qolomany et al. [32] also addressed this problem by 

using swarm technique to optimize both numbers of 

neurons and hidden layers for each layer of the deep 

learning algorithm. And their results reached a good 

accuracy. 

Some of works focused on using genetic 

algorithm with neural networks in order to optimize 

the hyper-parameters of shallow networks. Knowing 

that the size of hyper-parameters of shallow network 

are not larger than deep networks [30, 32]. E. Cantú-

Paz et al [30] performed an empirical evaluation of 

using genetic algorithm with shallow neural network. 

Their methodical evaluation of a large type of 

datasets focused only on small networks (31 hidden 

units and single hidden layer). A. Fiszelew et al. [31] 

proposed a method for training a GA to define the 

connectivity within a shallow neural network with 

network performance as the fitness for each 

population member. They focused on optimizing the 

structure of connectivity for that network. The 

experimental results showed that GA was able to 

create neural networks topologies that, in general 

work, better than random or fully connected 

topologies when they learn and classify a new domain 

specific data. Although studies have been conducted 

to enhance deep learning hyper-parameters by many 

authors [29, 30, 31, 32], this enhancement process is 

limited to images dataset. 

As far as we know about prior works which 

investigated in deep learning parameters optimization 

and what we have done in this paper: 

• Most of the previous research focused on using 

the genetic algorithm and they got desirable 

results. Therefore, we used the genetic algorithm 

in this research. 

• All the research focused on improving a small 

number of parameters, but we addressed this 

issue by focusing on all parameters. 

• All the research focused on applying 

enhancement process to images datasets and got 

desired results. But in this paper we used the 

acceleration data of human activities. 

3. Applied method 

In this section, we illustrate our proposed method 

and other methods used such as CNN and LISM. 

3.1 Convolution neural network (CNN) 

CNN is a kind of DL technique. It was considered 

an updated method from multilayer perceptions 

(MLP). MLP aims to design fully connected network 
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that links one neuron to all neurons of following layer. 

CNN performs relatively data pre-processing 

compared to other traditional machine learning 

methods. So CNN has a capability to extract the 

significant features using filters. This means that 

CNN has a major advantage because it is not 

dependent on human effort or prior knowledge for 

designing features. CNN consists of input, hidden, 

and output layers. The hidden layers have a series of 

layers that are the following: 

• Convolution layer aims to make a network to be 

deeper with little parameters by decreasing the 

number of free parameters [33]. 

• Pooling layer aims to reduce the data dimensions 

by merging the neuron outputs into one neuron of 

following layer. 

• Flatten layer aims to prepare the data so that 

dense layer can receive it. 

• Dense Layer is a fully connected layers. It acts as 

same as MLP for labelling the data. 

3.2 Long short-term memory 

Long short-term memory (LSTM) is derived 

from RNN. Mainly, LISM relies on feedback 

connections in contrast to ANN. It consists of units 

and each one is a complex cell. This complex cell has 

three gates: input, output, and forget gate. Because 

those gates flow information into the cell and out, the 

cell can remember the information for a period of 

time. Therefore it is more suitable to classify a 

problem based on time series. The most advantage in 

LISM is a memory unit cell, this cell has the capacity 

to include a forgotten part of its previous stored 

memory in addition to the new information [34]. 

3.3 The proposed method 

This part illustrates the proposed method, 

complexity time, and IoT system, which is developed  

to evaluate the performance of our proposed 

method in real live dataset. 

3.3.1. IoT system 

IoT solutions for recognizing human’s activity 

are beneficial in several applications [35, 36]. The 

proposed IoT system aims to collect data in real-time 

from different subjects for evaluating a novel method 

based on deep learning. The system uses the 

smartphone that sends raw data to IoT platform. The 

Internet is used to transfer sensor data for the subject 

to cloud storage for ongoing analysis and recognition 

of this data. There are three main elements: 

 
Figure. 1 IWIP dashboard to visualize acceleration data in 

real-time 

 

 
Figure. 2 Data flow process of node-red web application 

 

• Wearable sensor: The collected data, three axes 

of accelerometer, is sent to a cloud service via 

WiFi wearable sensor in IoT complaint vision. 

Smartphone has embedded accelerometer and 

can be carried conveniently by users and used 

as IoT sensor. 

• Web application: Node.js web application is 

developed for reading and sending the 

acceleration data of human activities to the 

cloud. 

• Cloud: It receives raw data from sensors then 

stores it in the cloudant service (database) for 

analysis and visualization. 

IBM Watson IoT platform (IWIP) was used to 

send raw data of human’s activities to IBM cloud. 

Besides, message Queuing Telemetry Transport 

(MQTT) is a protocol for connecting between 

smartphone and IWIP. In IWIP, it is applicable to 

create boards and cards to create and share 

dashboards that visualize device data in real-time as 

shown in “Fig. 1”. 

Web application is a JSON API that connects 

smartphone to IBM cloud and Watson IoT Platform. 

The acceleration data of registered devices is sent to 

the Watson IoT. We have used Node-Red to write 

Node.js code as an open source platform. “Fig. 2” 

shows the flow-code of Node-Red.json and source 

code in [37]. The first task in Node-Red flow is that 

takes the input from the IoT device. However the IoT 

device is the subject’s smartphone that was created 

and registered using Watson IoT platform services. 

Then Valid function was created to read the three 

components of acceleration and acknowledges with 

true when the acceleration data is correct, or false in 
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Figure. 3 G-CNN architecture 

 
Table 1. Time and frequency domain features 

 

a malfunction or error in the registry. Then Check 

node was used for keeping the data flow when Valid 

function returned true. Limit node was created to 

limit the rate of data transmission to the server, the 

number of limitation is used according to A. Khan et 

al [38]. Finally, three messages (three components of 

accelerometers) were sent and saved in Cloudant 

database. 

3.3.2. Classifier methodology 

In the classification process, we used a proposed 

novel method based on deep learning. Our proposed 

method aims to find optimized hyper-parameters for 

DL models by using genetic algorithm. We target two 

models of DL techniques: CNN and LSTM, it is kind 

of RNN. However, we updated the architecture of 

CNN by combining some statistical features to CNN 

flatten layer. This combination is intended to add 

global features of signal. I. Andrey et al. [26] 

indicated that CNN has a problem of capturing the 

global properties of the signal. 

While R. Yamashita et al. [27] mention that CNN 

is hard to capture global and local context of data at 

the same time. “Table. 1” shows time and frequency 

features used. 

 

 

Algorithm 1: The pseudocode of GA with RNN 

 

1: Selecting Parameters of LISM for creating 

individual 

2: Generating initial Population 

3: Function Fitness Evaluation (population) 

3.1: split dataset to train and test datasets 

3.2: while 1 to population size do training 

LISM algorithm by using training dataset 

fitness value= accuracy of LISM algorithm 

by using testing dataset 

end 

4: if Critical is satisfied? then 

4.1: return Best Individual 

4.2: Selection end 

5: Crossover 

6: Mutation 

Go To Step 3

 
 

R. Patton et al. [39] genetic algorithm structure 

was used but with different fitness function. Our 

fitness function aims to get the accuracy of the CNN 

architecture in testing data. The pseudo code of a 

genetic algorithm with LSTM is shown in Algorithm 

1. Also genetic algorithm with CNN are shown in 

“Fig. 3”. 

Our proposed method is divided into six phases: 

1) Selecting the parameters, it aims to determine 

the form and the size of individuals. The gene in 

individual is a deep learning parameter, which needs 

to be optimized. Our proposed method has capability 

to select all or specific parameters to be optimized. 

Therefore all CNN parameters, such as input layer 

size, filter number for every convolution layer, 

epochs number, convolution layers number, batch 

size number, learning rate, filter size, and finally the 

pooling layers number have been prepared to act as 

genes. Also, this proposed method was applied on 

RNN. Therefore the parameters of RNN, such as 

Time features Frequency features 

• Mean 

• Standard deviation 

• Median 

• Largest value 

• Smallest value 

• Signal magnitude area 

• Energy measure 

• Signal entropy. 

• Index of largest 

magnitude, 

• Weighted average 

• Skewness 

• Kurtosis 

• Energy of frequency 

interval within the 64 

bins of the FFT. 
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hidden nodes number, layers number, epoch’s 

number, and finally batch size number, were prepared 

to act as genes to be optimized. 

2) Initial population, it is the second phase in 

genetic algorithm to generate the parameters which 

were selected in the previous phase. 

3) Fitness evaluation, the fitness value for each 

individual is calculated by computing the accuracy of 

the network for testing data after training it. Before 

calculating fitness, we must first train the network 

according to Individual values, contains selected 

parameters to optimize, using training data. The steps 

of CNN training are shown in “Fig. 3”. The first layer 

in CNN is input layer - that is taken from training 

dataset. Followed by convolution, pooling, flatten, 

dense, and the output layers respectively. In this work, 

we proposed to add some another general handcrafted 

features to flatten layer such as signal entropy, 

smallest and largest values, energy measure, standard 

deviation, signal magnitude area, smallest value, 

largest value, median absolute deviation, and mean in 

time domain features. Also, some handcrafted 

frequency domain features have proposed to be added 

such as largest magnitude index, energy of 64 

frequency bins (it is interval between samples in 

frequency domain) of each window, skewness, 

kurtosis, Weighted average to calculate a mean 

frequency. Those features were used in several 

researches and introduced acceptable results. Such as 

I. Andrey et al. [26] used some statically features 

such as mean, variance, sum of the absolute values 

and the histogram for improving the accuracy of DL. 

While Davila et al. aimed to enhance the 

classification by extracting the kinematics feature 

such as signal magnitude. Some of researches 

extracted both time and frequency domain features 

[10, 40, 41] and their results were acceptable. For 

example M. Saeed et al. [10] improved the classifier's 

accuracy with percentage 4%. In time domain they 

extracted mean, standard deviation, median, 

correlations, and signal magnitude vector. In 

frequency domain they extracted energy of each axis 

in different frequency bands, magnitude of specific 

range, and weighted average. As well as D. Anguita 

et al. [41] used the most common features for 

recognizing human activity. Those features were 

 
Table 2. The mutation range values for CNN parameters 

mean, standard deviation, median, large and small 

values, signal magnitude, signal entropy, correclation 

coefficient, largest frequency component, skewness, 

kurtosis, energy of frequency interval, and angle 

between two vectors. S. Slim et al. [24] also worked 

a survey and stated the most used features, which give 

desired results, are those mentioned in research D. 

Anguita et al.[41]. After getting the trained network, 

the fitness value is calculated by using the testing 

dataset on the trained network for getting the fitness 

value or the accuracy.  

4) The critical satisfaction is checked, if valid, the 

best individual is generated and the optimization 

process will be finished. The critical satisfaction is 

determined by the number of iterations. If the critical 

satisfaction is invalid, the selection process will begin. 

There are various ways for the selection process [7] 

but roulette wheel technique is selected. The critical 

satisfaction is checked, if valid, the best individual is 

generated and the optimization process will be 

finished. The critical satisfaction is determined by the 

number of iterations. If the critical satisfaction is 

invalid, the selection process will begin. There are 

various ways for the selection process [7] but roulette 

wheel technique is selected. When an individual’s 

fitness value is high, its choice increases. In crossover 

phase, the probability of selecting an individual is 

quoted from J. Jebari et al. [42].  

5) Crossover, Parental chromosomes are divided 

at a randomly specified crossover point when 

conducting a crossover. Thereafter, by combining 1st 

part of parent1 to 2nd part of the parent2, a new child 

genotype is formed. We used a single point of 

crossover. 6) Mutating is the last phase. The 

permutation representation is used in this work, 

therefore it is preferred to use point mutation [7, 42]. 

The point mutation is executed by randomly choosing 

gene in the individual and then mutating it. 

The mutation of the gene is executed by selecting a 

random value in specific range. The range values of 

CNN parameters according to many surveys [24, 43] 

in HAR field are displayed in “Table. 2”. Following 

to mutation process the fitness evaluation phase is 

executed again according to new population 

3.3.3. Time complexity 

In our proposed model, GA and CNN are 

combined so that we calculate the complexity for 

each one. GAs runs in iterations. Initially, a set of 

solutions S are generated randomly (S is called a 

population). The costs of the solutions of S are 

computed. Some operations are done over the 

solutions in each iteration such as crossover, 

mutation, selection, and fitness function. The best K 

Parameters Start End 

Segment Size 150 200 

Filters Number 100 200 

Layers Number 1 10 

Epochs 100 200 

Batch size 100 250 
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solutions in S are kept and we continue as previous. 

After the last iteration, the best solution is assigned. 

Therefore the time cost of an iteration depends on the 

inner operations (e.g. crossovers, mutation, finding 

best k distinct solutions, generating random solutions, 

calculating cost of the solutions of S). The time cost 

can be deduced using the formula of GA complexity 

[44]: 

 

𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝐺𝐴 = 𝑂(𝑆 ×  𝐼 ×  𝑂(𝐹) ×

((𝑝𝑐 ×  𝑂(𝐶))  +  (𝑝𝑚 ×  𝑂(𝑀)))       (1) 

 

Here I is iteration number, F is the fitness 

function, Pc is probability of crossover, Pm is 

probability of mutation, C is crossover function, and 

finally M is mutation function. Besides, the execution 

time of a GA depends on the number of iterations [45] 

we will ignore the cost of iteration number because it 

is fixed in our model. If we ignore the complexity of 

mutation and crossover function because they are 

constant, that really simplifies GA complexity to: 

 

𝑇𝑖𝑚𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝐺𝐴 = 𝑂(𝑆 ×  𝑂(𝐹))   (2) 

 

Therefore our genetic method depends mainly on 

the cost of fitness function which was illustrated in 

Fig. 3 for CNN. All convolution layers time 

complexity is calculated by [46]: 

 

𝑇𝑖𝑚𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝐶𝑁𝑁 = 

𝑂(∑ 𝑛𝑙−1 × 𝑓𝑙
2 × 𝑛𝑙 × 𝑚𝑙

2𝑑
𝑙=1 )         (3) 

 

Here l is a convolution layer index, and d is a 

convolution layers number (depth). nl is a width 

(filters number) of l-th layer. nl−1 is used to determine 

input channels numbers of the l-th layer. fl is the filter 

length. ml is output feature map size. Note this time 

complexity, though with a different scale, refers to 

both training and testing time. The training is 

approximately three times testing time (forward 

propagation takes one and backward propagation 

takes two) [46]. This time of genetic and CNN is 

executed in the training phase after that we don’t need 

this time in testing phase. Therefore we can conclude 

the time complexity of our proposed method in the 

Eq. (4).  

 

𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑 =

  𝑂 (S ×  𝑂(∑ 𝑛𝑙−1  ×  𝑓𝑙
2  ×   𝑛𝑙 × 𝑚𝑙

2𝑑
𝑙=1 ))   (4) 

4. Datasets 

Our experiments were conducted on two public 

Datasets, WISDM [47] and UCI [41], which were 

used for training the proposed model. Moreover, we 

undertake the empirical evaluation using live dataset 

collected in IoT system. 

4.1 WISDM dataset 

Smartphone was used for collecting the 

acceleration and gyroscope sensor data. The dataset 

was recorded from twenty-nine volunteer subjects. 

The accelerometer data every 50ms was collected for 

the subject’s activities: walking, sitting, jogging, 

ascending, standing, and descending [47]. 

4.2 UCI dataset 

Samsung Galaxy S II smartphone was used for 

collecting six activities daily life (Walk, Sit, Stand, 

Lie, walk and downstairs, walk and upstairs). UCI 

dataset [41] recorded accelerometer and gyroscope 

sensors data with sampling rate 50 Hz for 30 subjects. 

4.3 Live dataset 

With the aim of testing our model from a substantive 

point of view, we have to get a live dataset. Hence, a 

web application was created for collecting the data. 

Rather than constructing a mobile application, 

creating a web application may be a more appropriate 

way. To begin with, web application helps volunteers 

to collect the data in a comfortable way. The 

volunteers who have portable can get into web 

application by means of the internet browser and it’ll 

adjust to whichever gadget the volunteer is viewing 

them on. Besides, web application isn’t local to a 

specific framework, and ought not to be downloaded 

or installed just navigate to the URL [48]. Also 

constructing application is functional and not 

expensive. Browsing the web application means a 

new device. That creates it simpler to urge get to a 

more prominent sum of data. In addition, it roles a 

fundamental stage for our future work of constructing 

a HAR framework. We obtained 6 typical activities, 

including lie, upstairs, downstairs, sit, and stand in a 

normal environment from 6 healthy subjects. For the 

purpose of unifying the Data gathering, the subjects 

have to use a mobile placed in front pants leg pocket. 

Also three axes accelerometer was collected from 

android system. Because of the operating system, it is 

difficult to stabilize the sampling rate of the 

accelerometers at specific value. According to our 

knowledge, 100Hz sampling rate is an acceptable 

value. A. Khan et al [38] found that 100Hz is the 

optimal sampling rate in a massive comparison that 

collected seven public and huge datasets. 

The segmentation process was applied to split all 

acceleration signals to 2 seconds with overlap 50%.  
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Figure. 4 Comparative error rate of our proposed method with other methods 

 

 
Figure. 5 Comparative accuracy of combining time or/and frequency features with CNN extracted features 

 

Because 100Hz sampling rate is used, every sample 

is a matrix with the size of 200x3 (2 seconds * 

sampling rate * 3D acceleration). In noise reduction 

phase, 20 Hz cutoff frequency was applied for both 

3rd order low-pass butter worth filter and a median 

filter. Just like David et. al performed in UCI dataset 

[41] and achieved a high accuracy. 

5. Experimental results and analysis 

In order to test optimization parameters method, 

genetic algorithm, and editing CNN flatten layer of 

our proposed method, we have conducted two 

experiments. The first experiment objective is to 

show the ability of genetic algorithm for finding a 

good DL architecture when it is compared with 

different shallow deep learning. The second 

experiment objective is to compare between time and 

frequency statistical features, that were combined 

with CNN flatten layer. In order to see how external 

data affects the proposed model, we performed the 

third experience. The experiments are completely 

based on using genetic with CNN with 2s segment 

size and for both CNN1 and CNN2, 1.28S segment 

size was used according to the module of H. Nweke 

et al [43]. The first and the second experiment used 

both UCI and WISDM datasets with percentages 

80%, 20% as training, validation data respectively. In 

the third experiment, UCI is used as a training dataset 

and tested the model by live dataset. 

5.1 Optimal parameters 

This experiment was performed to prove the 

capability of GA for enhancing the performance of 

deep learning architecture. The proposed method was 

compared with two different architectures for shallow 

CNN [43]. As well as genetic algorithm is used to 

optimize RNN parameters. RNN with genetic 

algorithm was evaluated by comparing it with 

LSTM-RNN architectures. 

“Table. 3” displays the parameters of the two 

shallow CNN architectures. “Table. 4” displays the  

 
Table 3. Two different CNN architectures values 

Parameters CNN1 CNN2 

Input Size 128 128 

No filters 100000 100000 

Batch size 200 200 

Filter size 12 16 

No layers 4 1 



Received:  November 21, 2020.     Revised: December 24, 2020.                                                                                    228 

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021           DOI: 10.22266/ijies2021.0430.20 

 

Table 4. The parameters value of RNN architectures 

Parameters Values 

No units 32 

Learning rate 0.0025 

Lambda loss amount 0.0015 

Batch size 1500 

No iterations 300 

Input size 128 

 

properties of LSTM-RNN which was used. 

Fig. 4 shows the error rate of Genetic with CNN 

(G-CNN), two different shallow CNN architectures, 

CNN1 and CNN2, Genetic with RNN (R-CNN), and 

shallow RNN architecture. 

According to this comparison results, we found 

that error rate of proposed model is less than CNN1 

and CNN2 to both UCI and WISDM. As well as 

genetic with RNN (G-RNN) error rate is less than 

RNN for two datasets. Therefore the outcomes 

indicate that GA was able to get optimized output for 

CNN and RNN parameters. Besides, results are 

analyzed from different points of view such as the 

number of layers affects efficiency of CNN [49]. 

As G. Montavon et al [50] illustrated that when 

CNN layers number increases, the accuracy increases 

because more layers aid to extract more features. 

However there is limitation to increase the layers 

number more than a certain point, it tends to overfit 

the data. Therefore CNN1 error rate is less than 

CNN2 because the number of layers for CNN1 is 

more than CNN2. Also, G-CNN accuracy is better 

than the others (CNN1, CNN2, RNN, and G-RNN) 

and the different architectures of CNN (CNN1, 

CNN2, G-CNN) are better than the different 

architectures of RNN (RNN, G-RNN) and that was 

proved by the experiments of N. Hammerla et al. [51].  

Moreover, we found that GA obtained the optimal 

value of segment size was 2 second.  This result is 

matched with study of O. Baños et al [52]. How the 

segment size affects the efficiency of HAR systems 

has been studied By O. Baños et. al. From their 

assessment, the interval 1-2s provides the finest 

trade-off between recognition accuracy and speed. 

Because our genetic algorithm focused on finding the 

highest accuracy regardless of time, it found two 

seconds is the optimal segment size value. To 

investigate the performance of G-CNN throughout 

genetic iterations, the best and average individual 

accuracy of each iteration were presented in “Fig. 6”. 

We found that the accuracy is almost constant after 

finding the best individual accuracy. Therefore the 

experiment in twenty two iterations was stopped. 

However, the individuals’ accuracy is random in the 

first iterations and the best individual is found in 

iteration eighteen and thirteen to G-CNN and G-RNN 

respectively. We can summarize our proposed 

method contributes over others [14, 29, 31-32], as 

two reasons. The first: GA algorithm is able to find 

the best values of hyper-parameters that improved the 

accuracy of the proposed method than in study [14]. 

The second: we focused on improving the values of 

the most of hyper-parameters and the proposed 

method is not limited to a specific number of hyper-

parameters such as [29, 31-32]. 

5.2 Statistical features 

To prove how the adding statistical features to 

flatten layer affects CNN performance, it is required 

to find the most appropriate features for both time and 

frequency domains. 

For this purpose, we investigated the most public 

features that were used in many researches and 

achieved high results as mentioned before in section 

methodology. Those features were presented in 

“Table. 1”. To show significantly how those features 

affect CNN accuracy, we compared time and 

frequency statistical features. The results of this 

comparison are shown in “Fig. 5”. Even though deep 

learning has a great power to extract the features 

automatically [43], we appended handcrafted features 

to CNN flatten layer. Besides, our results show a 

significant improvement in CNN accuracy. That’s 

consistent with the results of I. Andrey et al. [26]. 

They were capable of getting a good CNN accuracy 

when they stacked the output of flatten layer with 

additional statistical features. Those features 

arevariance, mean, histogram of data channel and 

sum of absolute values. Our results show a significant 

improvement in using features of both time and 

frequency. As well as the least accuracy when using 

frequency features in both UCI and WISDM datasets. 

On the opposite side, when we combined both 

domain features in WISDM dataset, we found that 

CNN1 without combining any features accuracy is 

better than when combining both domain features. 

Because CNN1 layers number is large and that means 

the huge features were extracted, no need to combine  

 

 
Figure. 6 Best and average individuals’ accuracy for each 

G-CNN and G-RNN iterations. 
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more features in CNN flatten layer to increase the 

accuracy. In short, when we added a new layer to 

CNN, we could improve the accuracy. Because this 

layer can extract global features which is a drawback 

of CNN. 

5.3 User-independent 

The main purpose of this experiment was to test 

our proposed model on a live dataset that does not 

depend on the training data (User-Independent). This 

experiment is based on trained models (G-CNN, 

CNN1 and CNN2) that depend on UCI dataset in the 

previous experiments. 

To investigate the purpose of this experiment, we 

compared G-CNN with CNN1 and CNN2, the results 

are shown in “Fig. 7”.  

We can conclude that our experiments results 

show three significant different point of views: 

– GA was able to find the optimized values of 

CNN. Because G-CNN accuracy is better than 

CNN1, CNN2 in both user dependent and 

independent approaches. In independent real 

dataset, CNN1, CNN2 and G-CNN accuracy is 

approximately 83%, 82%, and 86% respectively. 

Otherwise, the accuracy of CNN1, CNN2, G-

CNN in the dependent dataset are 92%, 91%, 

94%. 

– CNN1 is better than CNN2 in both user 

dependent and independent approaches. That is 

similar to deduction of M. Sebastian et al. [18]. 

While they compared CNN with two layers and 

CNN with three layers by using public dataset 

(PAMP2 [53]) and their dataset, they found that 

the accuracy of CNN with large number of layers 

is better than the other in both datasets. 

– All three techniques in user dependent are better than 

in user independent approach because the three 

techniques have never been trained in the subjects' 

activities before. That's consistent with the several 

experiments [15, 54-55]. 

 

 
Figure. 7 Dependent and independent accuracy for G-

CNN, CNN1, CNN2 

 

For further clarification, H. Ponce et al [54] 

compared 19 techniques in case of user dependent 

and independent, and found that their average 

accuracy was 93.3% and 80.9%, respectively. In the 

same study, L. Bai et al [55] compared C4.5 and 

random forest techniques with their proposed model 

based on deep learning and they found that those 

techniques accuracy is higher in dependent than 

independent dataset with range 2.2%, 2.8%, and 14% 

respectively. Further study about user independent, 

some of researches used leave-one-subject-out (L1O) 

technique such as B. Almaslukh et. al [15]. C. 

Almaslukh et al. collected ADL activities (walk, 

jump, lie, sit, downstairs, upstairs, stand and run) 

from 15 volunteers using smartphones (Samsung 

Galaxy S4). They used CNN techniques for 

comparing the accuracy between subject-dependent 

and subject-independent and found that subject-

dependent accuracy is higher than subject-

independent with range 7%. 

To analyze the outcome in more detail, “Fig. 8” 

displays the confusion matrix for CNN1 and our 

proposed model. After a closer analytical look, we 

found that around the diagonal, that includes the true 

positive, false predictions are approaching in CNN1 

and G- CNN. According to confusion matrix results, 

our model has a significant improvement in the 

accuracy of lying and walking activities reach to 

93.3 % and 96.6% respectively. In a similar study, M. 

Sebastian et. al [18] found that lying and walking 

activities are the highest accuracy up to 83% and 84% 

respectively even though their percentage are less 

than ours. In contrast, Y. Liang et al [56] found that 

the lowest accuracy of activities is walking. 

However, there are trends in many studies to 

suggest that there are two problems in activities 

confusions [12, 16-19, 56-57]: Group1 (walking, up 

and downstairs) and Group2 (sit, stand). For more 

explanation, experiments results of J. Lee et al. [57] 

showed that 6% of ascending activity was incorrectly 

classified as walking but 5% of walking activity was 

incorrectly classified as ascending stairs. As well as 

A. Murad et. al [12] used UCI dataset for evaluating 

RNN and they found that there is misclassification 

between Group1 activities and Group2. It is not 

surprising that G-CNN and CNN are once again 

struggling to recognize a sitting from the standing 

activity. Many researchers [12, 16, 17, 18] contend 

that this misclassification could be a common issue. 

One of the core strengths in our proposed model 

is its ability to classify between walking and down 

stairs activities with accepted accuracy however, it is 

a common misclassification problem of Group1 

activities. On the contrary, our proposed model failed 

to classify distinctly between standing and sitting 
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Figure. 8 Confusion matrix of CNN1 and G-CNN of independent real dataset 

 

Table 5. Comparison between our proposed model and other researches 

Ref Algorithm Accuracy Dataset Testing Techn. 

*[13] CNN 94.7% UCI[41] Dependent 

Our Method G-CNN 94.5% WISDM[47] Dependent 

Our Method G-CNN 93.8% UCI[41] Dependent 

[14] CNN 93.8% Their dataset[14] Dependent 

[15] CNN 93.5% RealWorldHAR[58] Dependent 

[54] Nearest Shrunken Centroids 93.3% Turk[59] Dependent 

[60] Hierarchical Continuous HMM 93.18% UCI[41] Dependent 

[61] Stacked Autoencoders + SVM 92.16% UCI[41] Dependent 

[57] SVM 92.1% Their Dataset[57] Dependent 

[61] PCA-SVM 91.82% UCI[41] Dependent 

[62] HMM 91.76% UCI[41] Dependent 

[55] RandomForest 91.54% HHAR[63] Dependent 

[54] Model Averaged ANN 91% Turk[59] Dependent 

[19] CNN 90.88% Actitracker[64] Dependent 

[40] RandomForest 90.3% Their Dataset[40] Dependent 

[55] KNN 90.21% HHAR[63] Dependent 

[28] CNN 90% UCI[41] Dependent 

[65] DTW 89% UCI[41] Dependent 

[66] Handcrafted features + SVM 89% UCI[41] Dependent 

[55] RandomForest 88.75% Their Dataset[55] Independent 

[16] CNN 88.56% PAMAP[53] Dependent 

[20] CNN 88.2% Their Dataset[20] Dependent 

[19] PCA-ECDF 87.85% Actitracker[64] Dependent 

[17] CNN 87.82% UCI[41] Dependent 

[55] RNN 87% HHAR[63] Dependent 

[55] C4.5 86.91% HHAR[63] Dependent 

[67] Convolutional LSTM 86.78% PAMAP[53] Dependent 

[54] AdaBoost 86.6% Turk(L1O)[59] Independent 

[19] CNN 86.19% Skoda[68] Dependent 

Our Method G-CNN 86.1% Our Dataset Independent 

[18] CNN 85.5 % PAMAP[53] Dependent 

[69] Handcrafted features + Dropout 85.36% WISDM[47] Independent 
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activities because those activities have a high 

variance in z-axis and our model is based on three 

axes acceleration. Therefore, we think the quality can 

be enhanced by appending additional features 

especially for Z-axis to CNN flatten layer.   

5.4 Comparison with similar methods 

The main focus of the experiment was to prove 

the effectiveness of our proposed model by 

comparing it with a few existing strategies, “Table. 5” 

displays the results. To investigate CNN accuracy 

statistically we calculated the average of CNN 

accuracy of user dependent and independent in 

“Table. 5” researches. Thus, we found that CNN’s  

Table 6. The comparison between our and I. Andrey et. al 

study [26] 

Property Our Andrey 

Training UCI WISDM 

Testing Live UCI 

Dependency independent independent 

Technique G-CNN CNN 

Accuracy 86.1% 82.76% 

 

average accuracy is 81.69% and 77.33 to user-

dependent and independent and that is matched with 

the second experiment (User-Independent). For more 

analysis, we arrange the accuracy of this researches 

[19] log-linear Markov Random Field 85.21 Actitracker[64] Dependent 

[54] Multivariate Adaptive Regression  85.15% Turk(L1O)[59] Independent 

[70] CNN 85.1% OPP[71] Dependent 

[15] CNN 85% RealWorldHAR(L1O)[58] Independent 

[55] C4.5 84.63% Their Dataset[55] Independent 

[13] CNN_EF 84.57% PAMAP[53] Dependent 

[19] PCA-ECDF 83.78% Skoda[68] Dependent 

[72] HMM 83.51% UCI[41] Dependent 

[20] CNN 83.5% Their Dataset[20] Independent 

[40] KNN 83.5% Their Dataset[40] Dependent 

[96] Handcrafted features + RF 83.46% WISDM[47] Independent 

* [26] CNN 82.76% UCI[41]& WISDM[47] Independent 

[54] SVM with Radial Basis Function  81.33% Turk(L1O)[59] Independent 

[54] Rule-Based Classifier 81.23% Turk(L1O)[59] Independent 

[73] SVM 80.4% OPP[71] Dependent 

[54] C4.5-Decision Trees 80.07% Turk(L1O)[59] Independent 

[70] MV 79.5% OPP[71] Dependent 

[54] Naive Bayes 79.06% Turk(L1O)[59] Independent 

[40] Naive Bayes 79% Their Dataset[40] Dependent 

[69] Handcrafted features + RF 77.81% UCI[41] Independent 

[70] DBN 77.8% OPP[71] Dependent 

[69] Handcrafted features + Dropout 76.26% UCI[41] Independent 

[8] SVM 76.04% OPP[71] Dependent 

[55] KNN 75.73% Their Dataset[55] Independent 

[19] PCA-ECDF 75.63% OPP[71] Dependent 

[19] log-linear Markov Random Field 75.36% Skoda[68] Dependent 

[54] Model Averaged ANN 75.04% Turk(L1O)[59] Independent 

[18] CNN 75% Their Dataset[18] Independent 

[54] k-Nearest Neighbors 74.91% Turk(L1O)[59] Independent 

[19] CNN 74.9% OPP[71] Dependent 

[19] log-linear Markov Random Field 73.58% OPP[71] Dependent 

[55] RNN 73% Their Dataset[55] Independent 

[73] 1NN 72.3% OPP[71] Dependent 

[40] SVM 69.9% Their Dataset[40] Dependent 

[18] RF 64% Their Dataset[18] independent 

[54] Artificial Neural Networks 61.38% Turk(L1O)[59] Independent 

[26] BasicFeatures+RF 46.5 % UCI[41]& WISDM[47] Independent 

[26] KNN 38.47% UCI[41]& WISDM[47] Independent 

[26] PCA+RF 38.2 % UCI[41]& WISDM[47] Independent 
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in descending order and found that our proposed 

model is the second one. Because of C. Ronao et. al 

[13] (market by star in “Table. 5”) trained CNN on a 

larger dataset, their CNN accuracy is the highest. 

There is a similarity between our study and other 

researches for example the study of I. Andrey et. al 

[26] (market by star in “Table. 5”). Table. 6” shows 

the comparison between our study and Andrey et. al 

study. However our proposed model obtained higher 

accuracy than Andrey et. al. 

6. Conclusion 

Identifying people’s activities is a huge challenge. 

Therefore, we focused on improving deep learning 

performance to be more powerful for classifying 

human activity data in real time. A genetic algorithm 

was used for optimizing CNN and RNN hyper-

parameters. As well as some handcrafted features 

were combined with features, that were extracted 

automatically by deep learning technique. The 

proposed model was evaluated by using two datasets: 

public dataset (UCI) and real dataset. We trained and 

tested the proposed model by using UCI and real 

dataset respectively. We developed IoT system to 

collect live dataset for evaluating the proposed 

method in user independent dataset. Our experiments 

have shown that the accuracy is enhanced for both 

user-dependent and independent with percentage 

93.8% and 86.1% respectively. Future research 

should be devoted to the development of HAR-IoT 

system to identify the humans ‘activities in real-time. 

Besides, we are going to solve to enhance the 

proposed classification method by appending Z-axis 

features on CNN flatten layer for solving the problem 

activities of upstairs and downstairs confusion. 
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