
Received: July 18, 2020. Revised: November 5, 2020. 95

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

A Bacterial Foraging Algorithm with Random Forest Classifier for Detecting the

Design Patterns in Source Code

Srinivasa Suresh Sikhakolli1* Asha Kiran Sikhakolli2

1Faculty of Engineering Science, Vishwakarma University, Laxmi Nagar, Kondhwa, India

2Department of MBA, Rajarshi Shahu College of Engineering, Tathawade, India
* Corresponding author’s Email: sssuresh74@gmail.com

Abstract: A program design can be understood by the developers through detecting the design patterns in object-

oriented programming source code. The main advantage of the design pattern detection includes maintainability,

understand-ability and reusability of object-oriented programs. An object-oriented program is used as the input to the

design pattern detection techniques, which judges the candidate roles of the patterns. The existing pattern detection

techniques use the machine learning (ML) techniques, namely Support Vector Machine (SVM) and Decision Tree

with all feature metrics (more than 70 metrics) to identify patterns, which increases the computation time. To minimize

the issues of using all feature metrics, an effective feature selection technique is used in the research study. The most

important relevant features are selected by proposed Bacterial Foraging Algorithm (BFA) and given as input to

ensemble classifiers namely SVM, Decision Tree and Random Forest (RF) classifier to design pattern detection. By

using BFA technique, the method used only five metrics for the identification of patterns, where existing techniques

uses 70 to 80 metrics for same pattern detection. The simulations are conducted to test the effectiveness of BFA with

ensemble classifiers on the Python Software platform in terms of average accuracy and precision. The results stated

that BFA-RF achieved 88.57% of average accuracy, where BFA-SVM technique achieved 81.43% of average accuracy,

which shows the RF achieved better results among other ensemble classifiers.

Keywords: Design patterns, Feature selection, Machine learning, Python software, Source code.

1. Introduction

A design pattern is defined as an abstract,

repeatable solution to a typical software development

problem in a specific context. The object-oriented

design is typically known as partial design consisting

of classes to define the measures and capabilities of

objects [1]. The design patterns in software

development provide several benefits, like increased

reuse, modularity, quality, consistency between

project and implementation, and the relationship

between a development team and developers [2].

Basically, the design patterns are superior kind of

software construction that deliver system information

at a higher end of abstraction, while software design

patterns offer information on a low end of abstraction

[3]. The identification of design patterns from source

code is an important task in the reverse engineering

process and it provides huge benefits of

understanding program code when documentation is

inadequate or missing, provides project information

to help restore the software architecture and enable

verification of source code compliance and design [4].

The existing third-party programs and open source

software may take a long time to understand for

developers, because the models can be applied

without explicit class names, comments or

attachments. The study samples should improve the

clarity of the program [5, 6] for its better

understanding to the developers. However, manual

sampling in existing programs is inefficient and

sampling can be excluded. To overcome the

aforementioned problems, the static characteristics of

the samples are used in many studies on the

identification of the samples [7, 8]. This static

analysis makes it difficult to identify the patterns in

which the structures are similar. Therefore, it is

Received: July 18, 2020. Revised: November 5, 2020. 96

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

necessary to define the role of the candidate class and

the models that help to understand and support the

initial design decision of the application [9, 10]. In

this study, the sample codes for pattern identification

is implemented on the Python Software, where in the

existing SVM, the decision tree uses the sample code

on JAVA platform [11]. The reason for choosing

Python is highly productive and interpreted language

with elegant syntax than JAVA and it is a good option

for rapid application development and scripting.

Moreover, the existing techniques included all

feature metrics nearly 70 metrics to detect patterns

which leads high computation time. The research

study uses the BFA as feature selection technique to

solve the issues of existing techniques by selecting

the important feature metrics based on their

correlation towards the targeted design pattern type

as the fitness function. While comparison with

traditional techniques, the BFA with ensemble

classifiers required only five feature metrics from the

input source code for pattern identification. The

proposed BFA is validated with ensemble classifiers

namely Naïve Bayes (NB), SVM, RF and decision

tree and also studied the importance of classes as a

case study.

The organization of the research study is given as

follows: Section 2 illustrates the study of various

existing techniques for design pattern detection. The

explanation of proposed BFA-RF is presented in

Section 3. The simulations are conducted as a case

study, quantitative analysis and comparative study of

proposed feature selection are given in Section 4. The

conclusion of the research study is explained in

Section 5.

2. Literature review

This section presents the design patterns of source

code in existing techniques with its key benefits and

limitations;

Dwivedi [11] developed three classifiers namely

Artificial Neural Network (ANN), RF and SVM to

detect the software design patterns. The two phases

such as developing the dataset based on metrics and

identifying the design patterns were considered in the

study. The design patterns such as bridge, adapter,

template, abstract factory and composite were used in

this study. The open software sources JUnit,

JHotDraw and QuickUML were used to test the

efficiency of the developed scheme and the results

stated that it achieved better accuracy by reducing the

total number of candidate classes. The main

drawback of the study was that it does not provide the

correct instances of patterns due to unavailability of

standard benchmark.

Chihada et al. [12] designed a ML based model (i.e.

Extension of SVM) to detect the design patterns. The

various versions of design patterns were identified by

the proposed ML technique by extracting the

information from the instances of design patterns.

The number of candidate design patterns was greatly

reduced from a given source code by developing a

novel method pre-processing technique. The

developed method was applied on the open source

codes to detect the six various design patterns in the

simulations. The classification accuracy was

minimized and computation time was also increased,

while predicting metrics from the source code.

Zanoni [13] implemented a Metrics and

ARchitecture Reconstruction PLugin for Eclipse

(MARPLE) to solve the problem of design pattern

identification. A pattern samples contained a variable

number of classes that were represented by

leveraging a design pattern modeling. The MARPLE

method used five patterns such as Factory Method,

Adapter, Singleton, Decorator and Composite on ten

open source software systems. The validated results

stated that MARPLE methods have significant

performance on four patterns, but it showed lower

performance on the Composite patterns.

Dwivedi [14] recognized the design patterns by

implementing the ANN and logistic regression

models. In the process of identification, the

developed method used six various types of metrics

on three open source platforms namely Quaqua,

JRefactory and JUnit. The parameters' quality of the

learning methods was improved by retrieving the data

from the source code. The simulation results proved

that the number of candidate patterns was minimized

to achieve better recognition accuracy. However, the

computation time of the supervised learning model

was high due to the absence of optimization

techniques.

Mhawish and Gupta [15] implemented a tree-

based ML algorithm to detect the software metrics

and design patterns. For each role, the metrics were

calculated and extracted the design patterns roles to

develop the dataset called P-MARt repository. The

input parameter of tree-based algorithm was

optimized by designing a Grid Search Algorithm

(GSA). The redundant features were removed and the

knowledge of software metrics was improved by

introducing the Genetic Algorithm based NB and

correlated features of the target class (CFS). The

developed method used only two design patterns in

simulations such as Adapter/ConcreteCommand and

Adaptee/Receiver. This method failed to analyse the

quality and presence of design patterns.

Uchiyama [16] proposed a ML algorithm and

used the source code metrics for pattern detection

Received: July 18, 2020. Revised: November 5, 2020. 97

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

technique. According to the metrics, candidates were

analysed by using the developed technique and the

patterns were identified from the relations of classes.

The simulations used the small scale and large-scale

programs from the JAVA library as sample data to

validate the performance of this method. But, the

scheme had more false positives, because strict

conditions were not used in this scheme.

Abd Manaf [17] implemented a hybrid Simple

Linear Iterative Clustering (SLIC)-Extra Tree (ET)

algorithm for object-based image analysis (OBIA)

containing two phases, namely object-based

classification and fast segmentation. In the first stage,

three segmentation algorithms were used, namely

Felzenszwalb (Felz), Quickshift (QS), and SLIC, to

segment a Landsat image into superpixels. The

second step involves applying object extraction to the

images in the section to extract several important

functions. Therefore, a series of experiments were

conducted using 15 mL methods to classify the

images in the section. The results proved that the

classification of ETs in a combination of three

segmentation algorithms Felz, QS and SLIC were the

most accurate classifier for OBIA-based image

segmentation, achieving maximum total accuracy.

The results proved that SLIC produced compact

superpixels which effectively minimized the

computational overhead of the classification process.

Huang [18] developed a Feature Clustering SVM

with Recursive Feature Elimination (FCSVM-RFE)

to enhance SVM-RFE for gene selection by

incorporating the K-means clustering method. The

FCSVM-RFE has three phases: gene clustering, gene

presentation and gene sequencing and it used to

reduce the complexity and redundancy among the

genotypes. The gene clustering was implemented

using K-mean clustering to find representative genes

for genetic clusters. The SVM-RFE has been used to

sequence representative genes. The simulation results

showed that FCSVM-RFE achieved better

classification performance and less computational

complexity than the other existing methods. The

FCSVM-RFE requires high run time on Breast

Cancer dataset than other datasets.

From the analysis of existing techniques, it is

clearly stated that optimization technique is required

to select the important features and these existing

techniques used only JAVA software platform for the

design pattern detection. To overcome

aforementioned issues, this research study

implements the BFA with RF to choose the relevant

features and increase the classification accuracy. The

proposed BFA is validated in terms of average

accuracy, precision, recall and F-measure, the other

feature selections namely ET classifier [17] and RFE

Figure.1 Working Procedure of Proposed Methodology

[18] are and these algorithms are also implemented

on the collected metrics used in research study.

The proposed BFA method uses the Python

software platform to identify design patterns, which

is explained in following section.

3. Proposed methodology

An object-oriented program plays a major role in

improving the understandability, maintainability, and

reusability through the detection of patterns. Many

traditional methods rely on static study to detect the

pattern instances and use rigorous situations based on

structure class data. It is complex to identify and

differentiate the scheme patterns in which class

arrangements are parallel. To overcome this problem,

a method of recognizing the design model that

optimizes the metrics of the source code using BFA

and then, a ML algorithm called RF predicts the

design patterns from the source code. The working

procedure of the proposed method is presented in Fig.

1.

3.1 Creation of dataset

In the first step, a metrics-based data set is created

to train the classifiers based on the training and

testing samples used in this study. The seven types of

patterns namely Singleton, Adapter, Facade, Factory,

Proxy, State and Template patterns are selected to

create a dataset. The concept of a design model is

often defined in terms of many aspects such as

problem, consequences, motivation, structure and

behaviour. To extract the patterns instance, source

code from the selected software (Python) is used as

input to extract pattern instances.

Received: July 18, 2020. Revised: November 5, 2020. 98

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

3.2 Feature selection using bacterial foraging

algorithm

Once the dataset is developed, the important

features 'print_cnt', 'Class_cnt', 'condition_cnt',

'loop_cnt', 'def_counts', 'import_cnt', 'comment lines',

'code lines', 'blank lines', 'lines', are given as input to

BFA that leads to effectively improve the

classification accuracy of ensemble classifier. The

BFA is a bio-inspired global optimization mostly

taken in the control problem then the distributed

optimization. The BFA is based on the intellectual

behaviour of society and collaboration in Escherichia

coli bacteria.

It represents the activities of communal type

bacteria Escherichia coli bacteria lives in the human

gut. The individual bacterial movement of

Escherichia coli is supported by a series of pulling

flagella. The Escherichia coli alternated two main

bacterial operations running and falling in the human

intestines during feeding [19]. The aim of the

optimization strategy used in BFA is to apply a

distorted random shift for every one bacterium and it

increa ses the concentration of nutrients, avoid

Figure. 2 Working procedure of BFA

harmful substances and immediately leave the neutral

environment. During this behaviour, the four main

operations are considered while bacterial feeding, i.e.

chemotaxis, mutation of tumble and swarms process,

reproduction and elimination of variance [20]. The

flow chart for working process of BFA is presented

in Fig. 2 [22].

3.2.1. Chemotaxis

Each and every individual in the BFA are

simulated by Chemotaxis process. Chemotaxis is the

movement of a moving cell or portion of it in a way

that corresponds to the gradient of growing or falling

concentrations of nutrients or toxic matters. The steps

of chemotaxis are communicated to a tumble

followed by a run or a tumble followed by a tumble.

The following Eq. (1) represents the case.

𝛷(𝑖) = (∆𝑇(𝑖)∆(𝑖))
−1

2⁄
× ∆(𝑖) (1)

Where ∆(𝑖) = {∆1(𝑖), ∆2(𝑖) … , ∆𝑝(𝑖)} ∈ ℝ𝑝 is a

randomly engendered vector living in 𝑀 and having

at smallest unit norm, whose every element

∆𝑚(𝑖), 𝑚 = 1,2, … . , 𝑝 is a randomly taken in [−1,1].
The experimental chemotaxis is expressed in the Eq.

(2) based on the movement of the bacterium.

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖) × 𝛷(𝑖) (2)

Where, 𝑖, 𝑗, 𝑘 𝑎𝑛𝑑 𝑙 are the parameter of BFA.

𝐶(𝑖) represents the size of the steps taken in the

random direction that is specified by the tumble.

3.2.2. Swarming

It is a group of bacteria that organize themselves.

The group was monitored for mobile bacteria,

including Escherichia coli, to achieve self-organizing

activity. The Cell-cell signalling can be achieved

through attractiveness and a diffusion pattern

between bacteria. The purpose of this process is to

inform each other about nearby nutrients and

pollution. Cell-cell signalling is modeled by the next

Eq. (3).

𝐽𝐶𝐶 (𝜃, 𝜃𝑖(𝑗, 𝑘, 𝑙)) = −𝑑𝑎 × 𝑒𝑥𝑝 (−𝑤𝑎 ×

∑ (𝜃𝑚 − 𝜃𝑚
𝑖)

2𝑝
𝑚=1) + ℎ𝑟 × 𝑒𝑥𝑝 (−𝑤𝑟 ×

∑ (𝜃𝑚 − 𝜃𝑚
𝑖)

2𝑝
𝑚=1) (3)

Where 𝑑𝑎 is the attractant’s depth which is

released by the cell, 𝑤𝑎 is the attractant signal’s

width, ℎ𝑟 = 𝑑𝑎 is the repellant effect height, and 𝑤𝑟

Received: July 18, 2020. Revised: November 5, 2020. 99

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

is the repellant width. The objective function is to be

added to the actual objective function to acquire a

time changing objective function which is given in

the following Eq. (4).

𝐽𝐶𝐶(𝜃, 𝑃(𝑗, 𝑘, 𝑙)) = ∑ 𝐽𝐶𝐶 (𝜃, 𝜃𝑖(𝑗, 𝑘, 𝑙))𝑆
𝑖=1 (4)

Where, 𝑃(𝑗, 𝑘, 𝑙) = {𝜃𝑖(𝑗, 𝑘, 𝑙), 𝑖 = 1,2, … 𝑆}

represents the sum of optimized variable. 𝜃𝑖(𝑗, 𝑘, 𝑙)

is the position of every separated bacteria in the

population of the 𝑆 bacteria at the 𝑗𝑡ℎ chemotactic

phase, 𝑘𝑡ℎ reproduction phase and 𝑙𝑡ℎ elimination–

dispersal result. The actual fitness function 𝐽(𝑖, 𝑗 +
1, 𝑘, 𝑙) is calculated by adding the last value 𝐽𝑙𝑎𝑠𝑡 of

𝐽(𝑖, 𝑗, 𝑘, 𝑙), the cell-to-cell attractant–repellant profile

to pretend the swarming manners. The fitness

function is computed in Eq. (5) and the rate of

𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙) is computed in the following Eq. (6)

[19].

𝐽(𝑖, 𝑗, 𝑘, 𝑙) = 𝐽(𝑖, 𝑗, 𝑘, 𝑙)

+𝐽𝐶𝐶 (𝜃𝑖(𝑗, 𝑘, 𝑙), 𝑃(𝑗, 𝑘, 𝑙)) (5)

𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙) = 𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙)

+𝐽𝐶𝐶 (𝜃𝑖(𝑗 + 1, 𝑘, 𝑙), 𝑃(𝑗 + 1, 𝑘, 𝑙)) (6)

Where, 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) is the cost at 𝐽(𝑖, 𝑗 +
1, 𝑘, 𝑙) is better when compared to 𝜃𝑖(𝑗, 𝑘, 𝑙) . By

using the Eq. (5 and 6), the important features are

obtained.

3.2.3. Reproduction:

The Reproduction procedure is established on

bacterial health resulting from the superiority of the

food. The healthy or unhealthy bacteria die, where

healthy bacteria provide excellent value for the target

activity and can be differentiated into two bacteria

located in the same location. This course retains the

size of Escherichia coli constant. The 𝑆𝑟 bacteria

with the maximum 𝐽ℎ𝑒𝑎𝑙𝑡ℎ values die and the

residual 𝑆𝑟 bacteria share the greatest values. The

BFA does this by assigning copies made in the

similar location as their parents. 𝑁𝑟𝑒 repeats the play

step once as shown in Eq. (7).

𝐽ℎ𝑒𝑎𝑙𝑡ℎ
𝑖 = ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)𝑁𝐶+1

𝑗=1 (7)

Where 𝑁𝑐 is the sum of chemotactic stages.

3.2.4. Dispersal and elimination:

Escherichia coli bacteria show quick variations in

the human intestines for several reasons. The number

of people with high nutritional gradients is decreasing

due to an increase in local temperature and this

occurrence is termed as elimination course. The

elimination and diffusion are the result of chemotaxis

support, as bacteria are dispersed near good food

sources. Some bacteria are killed by the minor

probability 𝑃𝑒𝑑 , while the novel substitutes are set

over the search space. Here, the number of population

is 50 and initialize the space dimension as 3. At first,

the elimination-dispersal process will be carried out

to select only the nutrient bacteria for the

reproduction process. In this study, the probability of

the elimination-dispersal process is 1.15, if the

population is less than 1.15, it will be eliminated from

the group. If the population is higher than this

probability, it will assist chemotaxis the movement,

according to Eq. (2). E. coli moves from one place to

another via flagella in this chemotaxis step. Its

motions are considered in two different ways

according to its biological view, where two ways

includes either swim or tumble. In this research study,

the swimming length is set to 12 and tumble value is

set to 0.2, where chemotactic steps is set to 2. Identify

the better cost by Eq. (5) and save this as 𝐽𝑙𝑎𝑠𝑡 and

actual fitness function is identified by using Eq. (6).

If the element value m is less than swimming length,

add 𝑚 = 𝑚 + 1 and if the actual fitness value is less

than 𝐽𝑙𝑎𝑠𝑡, then Eq. (2) is used to compute the new

actual fitness function or else set 𝑚 = 12. If 𝑗 is less

than chemotactic, this process will be continued,

since the life of the bacteria is not over. In order to

identify the healthy bacteria, Eq. (7) is used and the

total iteration of the algorithm is set to 100. By

repeating the process, the best fitness value is stored

and the output will be optimal feature metrics. The

important features 'def_counts', 'object_counts',

'import_cnt', 'comment lines' and 'code lines', are

given as an input to the ensemble classifiers, which is

studied in following section.

3.3 Classification using ensemble classifier

After achieving the optimal feature values from

BFA, ensemble classifier is implemented in this

research study to classify the design patterns. A

suitable kernel in SVM is selected to solve the

overfitting problems, where those kernel parameters

are fine-tuned and applied it to the k-fold cross

validation. The main advantage of SVM is that it

automatically selects its model size. However, the

number of features used in SVM is small, therefore,

Received: July 18, 2020. Revised: November 5, 2020. 100

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

model complexity is increased in the SVM. In the

decision tree, nodes are splits according to the rules

of splitting for every specific feature. From root to

leaves, the data are passed in the decision tree and

values of features are separated according to splitting

rules and it predicts the class, when the stopping

criteria reaches. The hyper parameters of maximal

depth and split criterion must be optimized using the

techniques of parameter optimization.

The RF is a superior classification technique to

train a large dataset, because it uses only the low

number of feature values to classify the patterns [21].

Additionally, the undertaken classification technique

is a non-parametric pattern technique that

significantly diminishes the issue of density of

continuous random variables or probability density

complexity. In RF, each tree is assumed as a distinct

classifier, which are used to achieve better decision

making and the growth rules of each tree is examined

to develop a robust RF classifier.

The RF is one of the best ensemble classification

technique that works based on the principle of

bagging and uses decision tree as a base classification

technique. Initially, extracted feature vectors are

randomly sampled for training sets 𝑁. Next, select

the sub feature values from the extracted feature

vectors if 𝑚(𝑚 < 𝑀) , where 𝑀 is indicated as

extracted feature vectors. At last, selects 𝑚 feature

vectors from the 𝑀 feature values and then split the

nodes using best spilt on the 𝑚 dimensional feature

vectors.

The error rate of RF classifier’s depends on two

factors:

• Tree strength needs to be high in order to

diminish the error rate.

• The error rate can be reduced by lowering

the correlation among the trees.

Pseudo code of random forest

Input:

Number of trees in random forest “n”

Number of feature vectors “M”

Training samples “N”

Proportion of feature vectors considered to build tree

“m”

Output:

 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 "𝑚"
1. 𝐸 ← 0

2. For 𝑖 = 1 to 𝑛 do

3. 𝑁𝑖 → 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑁)
4. 𝐴𝑖 → 𝑅𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚)

5. 𝐶𝑖 → 𝐵𝑢𝑖𝑙𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 (𝑁𝑖 , 𝐴𝑖)

6. 𝐸𝑈{𝐶𝑖} → 𝐸

7. End for

8. Return 𝐸

9. End algorithm

The overfitting is one of the critical problems that

may affect the results worse, but for RF algorithm, if

there are enough trees in the forest, the classifier

won't overfit the model. The main advantages RF

classifier are it can handle the missing values and

modelled the categorical values compared to other

ML algorithms, namely SVM and Decision Tree. The

final output of RF has Role agreement value, Relation

agreement value, Pattern agreement value to identify

the candidate role. These three values are defined as

follows:

• Role agreement value: The values of a rolling

contract above a threshold considered in the

candidate roles.

• Relation agreement value: The relationship

agreement was introduced to understand the

variance between interface implementation,

inheritance, and aggregation relationships.

• Pattern agreement value: The relation

agreement and the role agreement value are used

to gain the pattern agreement value.

These candidate values are combined with the

patterns and finally identify the design patterns as

detection outputs namely creational, behavioural and

structural patterns. That is, a singleton of creativity

models, an adapter of structure models and a template

model of behaviour models. The results and

discussion of proposed BFA-RF with other ensemble

techniques given as follows.

4. Results and discussion

The validation of proposed BFA-RF technique is

carried out with other existing techniques namely

SVM, decision tree and NB in terms of accuracy,

precision, recall and F-score. The system with Intel

i5 processor, 8GB RAM with 500GB hard disk is

used to implement the proposed BFA-RF. The results

section consists of case study, quantitative analysis of

proposed BFA-RF technique and comparative study

of BFA-RF with other ensemble techniques.

4.1 Parameter evaluation

The detection of software design patterns is

measured with accuracy, recall, precision and F-

measures (i.e., Harmonic average of precision and

recall), as shown in the Eq. (8) to (11), respectively,

where “NDP” in these equations indicates the number

of instances of the patterns. A true positive result (TP)

Received: July 18, 2020. Revised: November 5, 2020. 101

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

Table 1. Class description used in the research study

Class Number Description of Class

1 Adapter

2 Facade

3 Factory

4 Proxy

5 Singleton

6 State

7 Template

determines the patterns available in the dataset based

on metrics that the classifier correctly determined.

The False Positive (FP) identifies instances of

patterns that does not exist in the metric-based dataset,

and the classifier correctly identified them. The False

Negative (FN) defines instances of the pattern in a

dataset based on metrics that the classifiers do not

identify correctly. The high value of the F-score

indicates greater accuracy in the design pattern

determination process.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖+𝑇𝑁𝑖

𝑁𝐷𝑃
𝑖=1

∑ 𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
𝑁𝐷𝑃
𝑖=1

 (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖

𝑁𝐷𝑃
𝑖=1

∑ 𝑇𝑃𝑖+𝐹𝑃𝑖
𝑁𝐷𝑃
𝑖=1

 (9)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖

𝑁𝐷𝑃
𝑖=1

∑ 𝑇𝑃𝑖+𝐹𝑁𝑖
𝑁𝐷𝑃
𝑖=1

 (10)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11)

Where, True Negative is defined as TN.

4.2 Case study

The research study consists of seven classes as

input to validate the performance of proposed BFA-

RF, which are described in Table 1. Two different

kinds of case studies: Adapter and Singleton are

discussed in this section. The research study selected

only two classes as case study, this is because more

number of instances are presented in Adapter as Case

Study 1 and optimized (i.e. less) instances are

presented in Singleton as Case Study 2.

4.2.1. Case study 1

The example implementation of Adapter class in

Python software is given as follows:

/* This is our Adapter, a third party implementation

of

This is our Adaptee Class

class Adapter:

 def adaptee_request(self):

 print("Adapter function called.")

This is our Target Interface

class Target(ABC):

 """

 Interface for Client

 """

 def __init__(self):

 self._adapter = Adapter()

 @abstractmethod

 def request(self):

 pass

This is our Adapter Class

class Adapter(Target):

 def request(self):

 self._adapter.adapter_request()

adapter = Adapter()

adapter.request()

The sample code shows Adapter class that has

Adapter class, target interface and Adapter class. In

the class Adapter, at least one method inherited from

Target should call a method inherited from Adaptee.

In the object Adapter, the field referencing the

Adaptee may not be changed before its usage by the

Target method overridden implementation: in other

words, the state of the Adaptee field should be

immutable. Therefore, this class consists of more

number of instances than other classes. Moreover,

Adapter contains three roles in a single (root) level

and singleton described the patterns in one role,

where all the remaining patterns are multi-level, i.e.

they have at least one child level below the root one.

4.2.2. Case study 2

The case study-2 shows the sample code for

Singleton class, which is implemented in Python

software.

class Singleton(object):

 def __new__(cls):

 if not hasattr(cls, 'instance'):

 cls.instance = super(Singleton,

cls).__new__(cls)

 return cls.instance

Received: July 18, 2020. Revised: November 5, 2020. 102

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

Table 2. Performance analysis of adapter (case 1) and singleton (case 2) for various classifiers

Classifiers with

BFA

Adapter Singleton

Precision (%) F-Measure (%) Precision (%) F-Measure (%)

Decision Tree 100 100 73 84

SVM 97 99 70 78

NB 97 99 62 76

Proposed RF 100 100 73 84

Table 3. Performance analysis of proposed BFA-RF in terms of precision (%) for seven classes

Classifiers Without Feature Selection Proposed BFA

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Decision Tree 40 46 55 50 46 48 47 73 96 47 68 93 80 100

SVM 38 36 40 36 35 43 41 70 93 45 79 100 58 97

NB 42 46 47 28 60 39 55 62 96 50 92 87 88 97

Proposed RF 41 43 55 50 49 53 50 73 100 50 83 100 89 100

Table 4. Analysis of different classifiers with BFA by means of recall (%)

Classifiers Without Feature Selection Proposed BFA

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Decision Tree 42 46 52 49 47 46 39 100 79 100 65 59 100 100

SVM 37 35 43 38 35 43 39 88 79 100 65 59 88 100

NB 40 45 48 30 55 44 45 100 79 100 52 91 88 100

Proposed RF 46 45 50 55 47 48 45 100 88 100 65 82 100 100

Table 5. Performance of various classifiers with and without BFA on the basis of F-measure (%)

Classifiers Without Feature Selection Proposed BFA

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Decision Tree 41 42 50 49 45 48 44 84 87 64 67 72 89 100

SVM 34 38 45 31 39 45 40 78 85 62 71 74 70 99

NB 41 43 45 32 58 46 43 76 87 67 67 89 88 99

Proposed RF 43 46 51 57 46 44 49 84 94 67 73 90 94 100

s1 = Singleton()

This sample code shows that the Singleton has

only one instance (i.e. optimized class) called object

instance. The performance of different classifiers

namely SVM, NB, RF and decision tree on only

Adapter and Singleton in terms of Precision and F-

Measure is illustrated in Table 2. The feature

selection BFA is implemented with SVM, NB, RF

classifiers and shows the validated results.

The validated results shown in Table 2 prove that

the proposed RF with BFA achieved better

performance, even when the data samples has more

number of instances. The RF achieved 100% of

precision and recall, where SVM and NB achieved

97% of precision and 99% of F-measure on adapter

class for more number of instances. The validation on

optimized instances is low, when compared with

more number of instances.

The proposed RF achieved 73% of precision and

84% of F-measure, where the decision tree achieved

only 73% of precision and 84% of F-measure for the

singleton class instance. This proves the efficiency of

proposed RF with BFA will not affected with more

number of instances.

4.3 Quantitative analysis of proposed BFA-RF

technique

In this section, the performance of proposed BFA

with RF technique is compared with other existing

classifiers namely SVM, decision tree and NB on

seven class metrics in terms of precision, recall and

F-measure. The comparative study of three classes’

adapter, singleton and Factory of RF with other

classifiers is also discussed in the following section.

4.3.1. Performance of proposed BFA-RF in terms of

precision

Table 3 describes the analysis of precision on

seven classes for the different classifiers with and

without feature selection technique. In the following

Received: July 18, 2020. Revised: November 5, 2020. 103

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

Table 3 to 5, the numbers 1 to 7 represents the class

numbers.

The different classifiers without feature selection

technique provides poor precision for all classes. For

instance, SVM, NB and RF achieved 43%, 39% and

53% of precision for the class 6. This is because, all

the collected features metrics are given as input for

design pattern prediction, which leads high

computation time. In order to address these issues, the

feature selection technique called BFA is introduced

in the research study and experiments is conducted on

every class. Therefore, the existing SVM, NB and RF

with BFA achieved 58%, 88% and 89% of precision

for class 6. This shows that the proposed BFA-RF

technique achieved higher performance in terms of

precision for all seven classes. Table 4 shows the

performance analysis of various classifiers with BFA

on the basis of Recall for seven classes.

The existing decision tree, SVM and NB with

BFA achieved only 79%, 79% and 79% of recall,

where proposed RF with BFA achieved 88% of recall

for the class 2. This is because, RF handles the

missing values and categorical data, where other

classifiers are insufficient to handle those data. The

RF effectively identifies the design patterns from the

source code and RFA without BFA achieved 55% of

recall, where Decision tree, SVM and NB without

BFA achieved 49%, 38% and 30% for the class 4

respectively. Table 5 presents the performance of

classifiers with and without feature selection

technique by means of F-measure on all seven classes.

By implementing the BFA in different classifiers,

the performance of these classifiers is increased in

terms of F-measure for seven classes. The results of

F- measure proves that the importance of selecting

relevant metrics from the input data that leads higher

performance of various classifiers, for example,

decision tree, SVM, NB and RF with BFA achieved

87%, 85%, 87% and 94% of F-measure, where the

classifiers without BFA achieved only 42%, 38%,

43% and 46% for the class 2 respectively.

4.4 Comparative study of proposed feature

selection technique (BFA)

In this section, the performance of proposed

BFA-RF is compared with other existing feature

selection techniques namely ET classifier [17] and

RFE [18]. The other classifiers namely SVM,

decision tree and NB are also implemented with these

feature selection techniques on the collected dataset

in terms of average accuracy, which is shown in

Table 6.

From the Table 6, the validated results showed

that the proposed feature selection BFA achieved

better performance with the RF classifier than other

classifier techniques. The existing ET and RFE

feature selection techniques are implemented in this

research study with other classifiers even when the

proposed RF classifier achieved low average

accuracy 48.66% without feature selection

techniques. When implementing the ET and RFE

with RF, the average accuracy is nearly 58% to 59%,

this is because the source code samples have more

important features and it’s not effectively selected by

the ET and RFE eliminates many code samples from

the data, which leads poor accuracy. Table 7 shows

the comparative analysis of BFA, ET and RFE on the

basis of average precision.

The existing SVM classifier is implemented with

ET, RFE and proposed BFA and achieved the

average precision as 55% and 57% for existing ET,

Table 6. Comparative study of proposed BFA-RF in

terms of average accuracy (%)

Classifier Without

Feature

selection

ET

[17]

RFE

[18]

Proposed

BFA

Decision

Tree

46.33 54.77 56.32 82.86

SVM 37.36 47.44 51.52 81.43

NB 44.88 54.16 56.88 85.00

Proposed

RF

48.66 58.52 59.98 88.57

Table 7. Comparative study of BFA-RF on the basis

of average precision (%)

Classifier Without

Feature

selection

ET

[17]

RFE

[18]

Proposed

BFA

Decision

Tree

47.00 55.00 57.00 87.00

SVM 38.00 48.00 53.00 87.00

NB 45.00 55.00 57.00 89.00

Proposed

RF

49.00 59.00 60.00 92.00

Table 8. Comparative analysis of proposed BFA with

various classifiers in terms of average recall (%)

Classifier Without

Feature

selection

ET

[17]

RFE

[18]

Proposed

BFA

Decision

Tree

46.00 54.00 56.00 83.00

SVM 38.00 47.00 53.00 81.00

NB 44.00 54.00 56.00 85.00

Proposed

RF

48.00 58.00 59.00 89.00

Received: July 18, 2020. Revised: November 5, 2020. 104

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

Table 9. Comparative analysis of proposed BFA with

different classifiers on the basis of average F-Measure

(%)

Classifier Without

Feature

selection

ET

[17]

RFE

[18]

Proposed

BFA

Decision

Tree

46.00 54.00 56.00 83.00

SVM 38.00 47.00 53.00 82.00

NB 44.00 54.00 56.00 85.00

Proposed

RF

48.00 58.00 59.00 89.00

RFE, but SVM with BFA achieved 87% of average

precision. Similar to SVM technique, the Decision

tree with BFA achieved higher 87% of average

precision than ET and RFE techniques. The RF with

BFA is achieved 92% of average precision which is

high when compare to other classifiers namely

decision tree, SVM and NB. The proposed RF

handles the missing values, where other classifiers

are insufficient to handle those missing values or

instances. Table 9 presented the comparative study of

different features selections with various classifiers

by means of average recall.

5. Conclusion

In this study, an effective feature selection (BFA)

technique with RF classifier is proposed to detect the

design patterns from the sample input codes. The

existing techniques namely decision tree, NB and

SVM are not incorporated with optimization

technique to detect the patterns that lead less accuracy.

The research study developed the BFA to overcome

aforementioned issues and choose the relevant

metrics from the seven classes. The optimal features

were given as an input to ensemble classifiers for

final pattern detection. The simulated codes of this

research were implemented in the Python software,

where the existing techniques were implemented in

JAVA software. Therefore, the decision tree, SVM

and NB are also implemented on the simulated codes

of this research study. The validated results proved

that the proposed BFA-RF achieved 88.57% of

average accuracy, 92% of average precision, 89% of

average recall and 89% of average F-measure, where

Decision tree with BFA achieved 82.86% of average

accuracy, 87% of average precision, 83% of average

recall and 83% of average F-measure. The

experimental results proved that the BFA-RF

achieved 100% of precision, where RF without BFA

achieved only 43% on Facade class. At last, a case

study with more number of instances and less number

of instances were also discussed in the experimental

section. In the future work, the proposed BFA-RF

extends the process of pattern detection in various

open-source software to improve the accuracy values.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing-original draft

preparation, writing-review and editing, visualization,

have been done by 1st author. The supervision and

project administration, have been done by 2nd author.

References

[1] S. M. H. Hasheminejad and S. Jalili, “Design

patterns selection: An automatic two-phase

method”, Journal of Systems and Software, Vol.

85, No. 2, pp. 408-424, 2012.

[2] F. A. Fontana and M. Zanoni, “A tool for design

pattern detection and software architecture

reconstruction”, Information Sciences, Vol. 181,

No. 7, pp. 1306-1324, 2011.

[3] A. Wierda, E. Dortmans, and L. Somers, “Pattern

detection in object-oriented source code”,

Software and Data Technologies, Springer,

Berlin, Heidelberg, pp. 141-158, 2007.

[4] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides,

and S. T. Halkidis, “Design pattern detection

using similarity scoring”, IEEE Transactions on

Software Engineering, Vol. 32, No. 11, pp. 896-

909, 2006.

[5] A. K. Dwivedi and S. K. Rath, “Formalization of

web security patterns”, INFOCOMP Journal of

Computer Science, Vol. 14, No. 1, pp.14-25,

2015.

[6] B. B. Mayvan and A. Rasoolzadegan, “Design

pattern detection based on the graph

theory”, Knowledge-Based Systems, Vol. 120, pp.

211-225, 2017.

[7] H. Zhu and I. Bayley, “On the composability of

design patterns”, IEEE Transactions on Software

Engineering, Vol. 41, No. 11, pp. 1138-1152,

2015.

[8] A. K. Dwivedi and S. K. Rath, “Incorporating

security features in service-oriented architecture

using security patterns”, ACM SIGSOFT

Software Engineering Notes, Vol. 40, No. 1, pp.

1-6, 2015.

[9] G. Rasool and P. Mäder, “A customizable

approach to design patterns recognition based on

feature types”, Arabian Journal for Science and

Received: July 18, 2020. Revised: November 5, 2020. 105

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.09

Engineering, Vol. 39, No. 12, pp. 8851-8873,

2014.

[10] I. N. IssaouiBouassida and H. Ben-Abdallah,

“Using metric-based filtering to improve design

pattern detection approaches”, Innovations in

Systems and Software Engineering, Vol. 11, No.

1, pp. 39-53, 2015.

[11] A. K. Dwivedi, A. Tirkey, and S. K. Rath

“Software design pattern mining using

classification-based techniques”, Frontiers of

Computer Science, Vol. 12, No. 5, pp. 908-922,

2018.

[12] A. Chihada, S. Jalili, S. M. H. Hasheminejad, and

M. H. Zangooei, “Source code and design

conformance, design pattern detection from

source code by classification approach”, Applied

Soft Computing, Vol. 26, pp. 357-367, 2015.

[13] M. Zanoni, F. A. Fontana, and F. Stella, “On

applying machine learning techniques for design

pattern detection”, Journal of Systems and

Software, Vol. 103, pp. 102-117, 2015.

[14] A. K. Dwivedi, A. Tirkeyand, S. K. Rath,

“Applying learning-based methods for

recognizing design patterns”, Innovations in

Systems and Software Engineering, Vol. 15, No.

2, pp. 87-100, 2019.

[15] M. Y. Mhawish and M. Gupta “Software Metrics

and tree-based machine learning algorithms for

distinguishing and detecting similar structure

design patterns”, SN Applied Sciences, Vol. 2,

No. 1, pp. 11, 2020.

[16] S. Uchiyama, A. Kubo, H. Washizaki, and Y

Fukazawa, “Detecting design patterns in object-

oriented program source code by using metrics

and machine learning”, Journal of Software

Engineering and Applications, Vol. 7, No. 12, pp.

983, 2014.

[17] S. Abd Manaf, N. Mustapha, M. N. Sulaiman, N.

A. Husin, H. Z. M. Shafri, and M. N. Razali,

“Hybridization of SLIC and Extra Tree for Object

Based Image Analysis in Extracting Shoreline

from Medium Resolution Satellite Images”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 1, pp. 62-72, 2018.

[18] X. Huang, L. Zhang, B. Wang, F. Li, and Z.

Zhang, “Feature clustering-based support vector

machine recursive feature elimination for gene

selection”, Applied Intelligence, Vol. 48, No. 3,

pp. 594-607, 2018.

[19] K. M. Passino, “Biomimicry of bacterial foraging

for distributed optimization and control”, IEEE

Control Systems Magazine, Vol. 22, No. 3, pp.

52-67, 2002.

[20] W. N. E. A. W. Afandie, T. K. A. Rahman, and

Z. Zakaria, “Comparative Analysis of Bacterial

Foraging Optimization Algorithm and

Evolutionary Programming for Load Shedding in

Power System”, International Journal of

Simulation--Systems, Science & Technology, Vol.

17, No. 41, 2016.

[21] B. Xu, X. Guo, Y. Ye, and J. Cheng, “An

Improved Random Forest Classifier for Text

Categorization”, JCP, Vol. 7, No. 12, pp. 2913-

2920, 2012.

[22] I. Ullah, Z. Khitab, M. N. Khan, and S. Hussain,

“An efficient energy management in office using

bio-inspired energy optimization

algorithms”, Processes, Vol. 7, No. 3, pp. 142,

2019.

