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Abstract: Wireless sensor network (WSN) employs the mobile sink to collect the information from the sensor nodes 

that are deployed in the network environment in such a way to reduce the energy hole issues. However, the 

placement of mobile sinks optimally in the network without degrading network lifetime result in a great challenge. 

Thus, the adjacency-based cell score factor is adopted in this research in order to place the mobile sink optimally in 

WSN. Here, the network is transformed into the cell using the Voronoi transformation. For each uniform-sized cell, 

the cluster head (CH) is selected using Sparse-Fuzzy C-means clustering. The optimal placement of the mobile sink 

is carried out using the adjacency-based cell score, which effectively places the mobile sink using the constrained 

factors, such as energy, Euclidean distance, and fairness. The proposed adjacency-based cell score obtained better 

performance with a minimal distance of 22.4615m, maximal energy, fairness, network lifetime, and throughput of 

97.2182, 92.6064, 145, and 95.8852, respectively, while considering 400 nodes.  

Keywords: Cluster head (CH), Wireless sensor network (WSN), Mobile sink, Path placement, Sparse-FCM. 

 

 

1. Introduction 

      WSN consist of a large number of mobile or 

static sensors in a multihop and self-organizing 

manner. In the recent development of research, the 

WSN is commonly used in various fields, like smart 

homes, environmental monitoring, military, building 

monitoring, and medical health [1]. In water area 

detection of WSN, the terminal node forwards the 

information to the sink node through multihop [2] 

[1]. However, the multihop data transmission may 

cause the energy hole. As the nodes situated around 

the sinkhole takes many tasks to forward the data, 

the nodes may exhaust or consume a lot of energy, 

and this will damage the network connectivity in 

WSN [3, 4]. Due to the collision that caused by 

frequent data transmission and communication 

between nodes, the multihop transmission produces 

communication overhead. To solve the above issues, 

the WSN uses mobile nodes for data transmission. 

Here, the mobile terminals carry the sink nodes for 

data collection, which reduces the uneven energy 

consumption and energy hole, and increases the  

 

 

lifespan of the entire network. Thus, it helps to 

increase the reliability and flexibility of data 

transmission [1, 5]. However, the sink mobility is 

offered as a great solution for sink isolation issue. 

Mobile sink scatters the energy drainage to the 

nodes and increases the lifetime of the network by 

achieving energy consumption [6-8]. 

      To find the optimal number of the sink in WSN 

is an off-line problem, as it is mainly constrained 

with the deployment cost. However, determining the 

placement of the mobile sink optimally results in a 

more challenging task in WSN. Accordingly, the 

initial deployment of nodes in WSN can be either 

done in a planned or structured manner or in a semi-

random way. In most cases, the placement of mobile 

sinks optimally is not known as priori; hence the 

heuristic is required to facilitate the position of the 

sink at a new location [9-11]. In [12], the maximum-

minimum energy consumption approach is 

developed to find the optimal path between the sink 

nodes and the network neutron nodes. By 

introducing the mobile data collector, an algorithm 
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based on the cache mechanism is developed in [1] to 

reduce the CH overflow and to maximize the 

network lifetime. However, a mobile data collection 

mechanism is developed in [13] based on the DSDV 

routing protocol. Here, the reliability of data 

communication increases, and the lifespan of the 

network are extended [1]. In the traditional data 

collection approach, the nodes are fixed in a certain 

location in order to collect the data before it being 

transmitted to the sink node through routing 

protocol [14-16]. 

     In this research, the optimal placement of the 

mobile sink is achieved using the adjacency-based 

cell score. Here, the placement of the mobile sink is 

carried out by involving three different stages, 

namely cell network transformation, CH selection, 

and mobile sink placement. Initially, the nodes in 

the WSN are gathered together and the nodes in the 

network are transformed to the cell using the 

Voronoi partition. The CH is selected for each cell 

in order to make the data transmission easy and 

reliable. However, the selection of CH is made using 

sparse FCM. Finally, the placement of the mobile 

sink is optimally carried out using the adjacency-

based cell score.  

      The major contribution of this research is 

discussed below: 

• The optimal placement of the mobile sink is 

achieved using the adjacency-based cell score in 

such a way that the lifespan of the network is 

extended and the energy consumed by the nodes is 

reduced based on the factors, like the location of the 

sink, fairness, energy, and Euclidean distance. 

The paper is organized as follows: section 2 

discusses the review of various existing mobile sink 

placement methods, and section 3 elaborates the 

proposed adjacency-based cell score factor for 

placing the mobile sink in WSN. Section 4 discusses 

the result and discussion and finally, section 5 

concludes the paper. 

 

2. Motivation 

      In this section, some of the existing methods for 

mobile sink placement are discussed, which 

motivate the researchers to develop a new 

mechanism for optimally placing the mobile sink.  

2.1 Literature survey 

      Various existing techniques are surveyed in this 

section. Chao, F et al. [1] developed a mobile data 

collection mechanism in the sensor network in order 

to collect the monitoring data more flexibly and 

efficiently. It used the clustering algorithm for 

dynamically grouping the terminal nodes, which 

helped to minimize energy consumption. However, 

the angular bisector approach was used to find the 

path of unmanned aerial vehicles (UAVs). Moreover, 

the correctness and the effectiveness of this method 

were proved through the simulated results. It failed 

to verify the reliability of the path. Vijayashree, R. 

and Suresh Ghana Dhas, C [16] introduced an 

artificial bee colony (ABC) algorithm for finding the 

data collection path in the mobile sink. This 

algorithm greatly increased the lifetime of the 

network. It effectively reduced energy consumption 

and increased data collection. It increased the 

throughput and efficiently collects the data in order 

to save energy. However, it failed to use the data 

fusion approach with the sensor node. 

       Amar Kaswan et al. [19] developed a model 

named as, multi-objective particle swarm 

optimization (MOPSO), for the mobile sink 

placement. This method was used to select the best 

global and local solutions in the search space, which 

offered better results in statistical significance. The 

optimization of multiple mobile sinks was the major 

drawback of this method. Praveen Kumar et al. [20] 

proposed a method for the path determination of 

mobile sink based on the Ant Colony Optimization 

(ACO). This method offered better results in energy 

consumption and network lifetime. Anyhow, 

handling of multiple mobile sinks with non-uniform 

data constraints were difficult. 

      Saunhita Sapre, and S. Mini [21] developed an 

optimization algorithm, named Differential Moth 

Flame Optimization (DMFO), in which traversal 

strategy was used for the mobile sink placement. 

This method offered better results in energy 

consumption and network lifetime but failed to 

calculate the data latency and throughput. Elie T. 

Fute et al. [22] proposed an instantaneous clustering 

algorithm (ICP) for the determination of the target 

points from the mobile sink. The main aim of this 

method was to reduce the clustering time and 

increasing the network's lifetime. The 

communication overhead was the major 

disadvantage of this method. 

2.2 Challenges 

      Some of the challenges associated with the 

placement of mobile sink are as follows:  

      Energy hole is a major challenging issue in 

WSN as the sensor nodes situated around the sink 

node attain higher traffic load and it results in 

energy depletion [16]. Due to the limited self-energy 

of sensor nodes, the network poses a communication 

overhead problem [16]. As the nodes in WSN have 

limited energy capability and the nodes are located 
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in harsh ambiance, hence it is difficult to recharge or 

replace the node’s battery [18]. In the case of the 

static sink, the sink mobility poses a great challenge, 

as tracking the mobile sink in the area of sensing is 

hard to achieve. 

  

3. Proposed optimal placement of the mobile 

sink  

      To place the mobile sink optimally in WSN 

without degrading the network lifetime and energy 

consumption poses a major challenging task. Hence, 

an adjacency-based cell score is formed in this 

research to perform the mobile sink placement 

optimally. Initially, the nodes are simulated in the 

WSN and they are transformed into the cell. The cell 

network transformation is carried out using the 

Voronoi partition. After performing the cell network 

transformation, the CH is selected for each cell in 

the network using sparse FCM. Finally, the 

placement of the mobile sink is optimally achieved 

using the adjacency-based cell score. Fig. 1 portrays 

the schematic diagram of the optimal placement of 

the mobile sink. 

 
3.1 Cell Network Transformation 

Initially, the nodes in the WSN are grouped 

together in order to transform the nodes of the cell 

network. The network is transformed into various 

cells using Voronoi partition, which determines the 

optimal partitioning of cells in the WSN 

environment. The collection of different cell regions 

are specified as 𝐴𝑚 such that(1 ≤ 𝑚 ≤ 𝑃) , which 

indicates that there exist 𝑃  regions are generated 

based on the𝑀1,…𝑀𝑛. However, the network that is 

transformed using the Voronoi partition is termed as 

a cell network. The transformed cell network is then 

passed to the CH selection phase in order to select 

the CH from each partitioned region. Table 1 depicts 

the symbols and the definition of those symbols 

used in this paper. 

 

 

Figure. 1 Schematic diagram of optimal placement of the 

mobile sink  

Table 1. Symbol Table 

Notation Definition 

𝑢 Number of data points 

𝑣 Number of attributes 

𝑝 Weight of the attributes 

𝐿 Cluster center 

𝑐𝑎𝑟𝑑(𝑞) Cardinality of set𝑞 

𝛽 Dissimilarity measure 

𝑝𝑟 Objective function 

𝐺𝑙 Class 

𝑇 Number of cells 

𝐹𝑜 Placement of sink at 𝑜𝑡ℎ cell 

𝐹𝑠 Placement of sink at 𝑠𝑡ℎ cell 

𝐻(. ) Euclidean distance 

𝐿𝑜𝑐0 Location of sink at 𝑜𝑡ℎcell 

𝐿𝑜𝑐𝑠 Location of sink at 𝑠𝑡ℎcell 

𝑇𝑒 Maximum number of nodes 

sharing resources equally 

𝐸𝑠 Fairness 

𝑑 Tuning parameter 

 
3.2 CH Selection Using Sparse-FCM 

    Voronoi transformation then, it is required to 

select the CH in each region in order to make the 

placement of the mobile sink more optimal. Here, 

the CH selection is carried out using sparse FCM, 

which is derived with the inclusion of the FCM 

algorithm with sparse regularization. The Sparse-

FCM solves the issues associated with the data 

clustering.  

 
Algorithm. 1 Pseudo code of Sparse-FCM for CH 

selection 

Sl. No Sparse-FCM for CH selection 

1 Input: 𝑥cluster, and data matrix as 𝑋𝑏 =
𝑊𝑦𝑧

𝑏 = 𝛽𝑢×𝑣 

 

2 Output: cluster centroid 𝐵 =
{𝐵1,𝐵2, … . 𝐵𝑖 , … . 𝐵𝑥}and 𝑝𝑎 

3 Begin 

4 Initialize 𝑝 = 𝑝1
𝑎 = 𝑝2

𝑎 = ⋯ = 𝑝𝑣
𝑎 =

1

√𝑣
 

 

5 Compute 𝑅 

6 Specify 𝑆 

7 Fix 𝑆and 𝑅and calculate 𝐺𝑙 

8 Compute 𝑝∗ 

9 Terminate 
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However, the cluster centroids ( 
𝐵) generated using Sparse-FCM is represented in Eq. 

(1). 

 

𝐵 = {𝐵1,𝐵2, … . 𝐵𝑖 , … . 𝐵𝑥}                (1) 

 

Let us consider the data matrix as 𝑋𝑏 = 𝑊𝑦𝑧
𝑏 =

𝛽𝑢×𝑣  such that (1 ≤ 𝑦 ≤ 𝑢)  and(1 ≤ 𝑧 ≤ 𝑣) . The 

dimension of 𝑏𝑡ℎ data matrix is specified as [𝑢 ×
𝑣]and the rows and columns of 𝑋𝑏is represented as 

𝑊𝑦
𝑏𝜖𝛽𝑣 and𝑊𝑧

𝑏𝜖𝛽𝑢, respectively. The Sparse-FCM 

selects the CH based on the minimum distance 

between the cluster centroid and individual data 

points. However, the algorithmic steps involved in 

the Sparse-FCM are specified in algorithm 1. 

The algorithmic steps involved in the Sparse-

FCM to select the CH from the partitioned cell 

region are elaborated as follows: 

i) Initialization: Let us initialize the weights of 

the attributes as, 𝑝 = 𝑝1
𝑎 = 𝑝2

𝑎 = ⋯ = 𝑝𝑣
𝑎 =

1

√𝑣
 

ii) Update partition matrix: Let us specify the 

p and 𝐿such that 𝛽is minimized using the following 

condition shown in Eq. (2). 

 

   𝑅𝑗𝑤 =

{
 
 

 
 
1

𝑔𝑗
 ;  𝐾𝑤 = 0, 𝑎𝑛𝑑 𝑔𝑗 = 𝑐𝑎𝑟𝑑(𝑞)

0; 𝐾𝑤 ≠ 0 𝑏𝑢𝑡 𝐾𝑗𝑡 = 0
1

∑
𝐾𝑤
𝐾𝑗𝑡

1
𝑓−1ℎ

𝑡=1

   ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2) 

 

However, the distance measured in the sparse 

FCM is mathematically denoted in Eq. (3). 

 

𝐾𝑤 = ∑ 𝑝𝑟(𝑆𝑤𝑟 − 𝑆𝑗𝑟)
2ℎ

𝑗=1                               (3) 

 

The distance between the data points and the 

cluster center is computed using the above equation.  

iii) Update the cluster center:  Let 𝑝and 𝛽be the 

set and 𝜀(𝐵)is minimized if 

 

𝐵 = {

0       ;   𝑖𝑓 𝑝𝑟 = 0
∑ 𝑅𝑗𝑤−𝑆𝑤𝑟
ℎ
𝑡=1

∑ 𝑅𝑗𝑤
ℎ
𝑗=1

; 𝑖𝑓 𝑝𝑟 ≠ 0
               (4) 

 

Where, 𝑗 = 1,… . 𝑥. 

iv) Compute the class: The class value is 

calculated based on 𝑅 and 𝐵 . However, the 𝐺𝑙 is 

represented as, 𝑚𝑎𝑥∑ 𝑝𝑙 . 𝐺𝑙
𝑣
𝑖=1 such that ∥ 𝑝 ∥2

2≤

1, ∥ 𝑝 ∥𝑘
𝑘≤ 𝑑 and compute𝑝∗.  

      v) Terminate: The above steps are repeated until 

the solution is obtained or met the stopping criteria. 

Therefore, the cluster centroid obtained using the 

Sparse-FCM is specified in Eq. (5). 

 

  
     ∑ |𝑝𝑙

∗−𝑝𝑙
𝑎|𝑣

𝑙=1

∑ |𝑝𝑙
𝑎|𝑣

𝑙=1
< 10−4                                     (5) 

 

3.3 Optimal Placement of mobile sink node  

       Once the CH is selected using sparse FCM then, 

the placement of the mobile sink process is 

performed optimally in WSN. The optimal 

placement of the mobile sink is achieved using the 

adjacency based cell score, which effectively places 

the mobile sink using the constrained factors, such 

as energy, Euclidean distance, and fairness. By 

using this, the lifespan of the network is extended 

and the energy consumed by the nodes is reduced. 

Also, this method uses the minimum distance, which 

leads to reduce energy consumption. Let us consider 

𝑇 and 𝑇CH’s in the network, which is represented in 

Eq. (6). 

 

 𝐹 = {𝐹1, 𝐹2, … . . 𝐹𝑜, … . 𝐹𝑇}; 1 ≤ 𝑜 ≤ 𝑇            (6)    

         

However, the placement of sink from 𝐹𝑜to 𝐹𝑠is 

based on the adjacency-based cell score and is 

specified in Eq. (7). 

 

 𝑚𝑖𝑛 𝐴𝑑𝑠 = 𝐽𝑠 +𝐻𝑠 + (1 − 𝐸𝑠)                       (7) 

 

Where, 

 

 𝐽𝑠 =
1

𝑡
∑ 𝐽𝑙𝑜𝑠𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡(∝)𝑡
∝=1                                    (8) 

 

𝐻𝑠 = 𝐻(𝐿𝑜𝑐𝑜, 𝐿𝑜𝑐𝑠)                                         (9) 

 

Moreover, the 𝐸𝑠 is represented in Eq. (10). 

 

 𝑬𝒔 =
𝑇𝑒

𝑇
                                                                        (10) 

 

4. Results and discussion 

      The results and discussion obtained by the 
proposed adjacency-based cell score is discussed in 
this section with respect to the performance metrics.  
 

4.1 Experimental setup 

The implementation of the proposed adjacency-

based cell score for placing the mobile sink in WSN 

is carried out in the network simulator-2 (NS-2) 

using 200, 300, and 400 nodes by varying the 

simulation rounds.  
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4.2 Evaluation metrics 

The performance improvement of the proposed 
approach is evaluated using the metrics, such as 
distance, residual energy, normalized fairness, 
network lifetime, and normalized throughput, 
respectively. 

 

4.3 Comparative methods 

     The performance of the proposed model is 

revealed by comparing the proposed with the 

existing methods, like Ant Colony Optimization-

based Mobile Sink Path determination (ACO-

MSPD) [20], Multi-Objective Particle Swarm 

Optimization (MOPSO) [19], Differential Moth 

Flame Optimization (DMFO) [21], and 

Instantaneous clustering algorithm (ICP) [22], 

respectively. 

     ACO-MSPD [20]: In this method, the paths of 

the mobile sinks are determined based on the ACO, 

in which the near-optimal sets of rendezvous points 

are calculated. OPSO [19]: In this method, the paths 

of the mobile sinks are calculated based on the 

derivation of a proficient multi-objective fitness 

function and the particle encoding scheme. Also, the 

MOPSO is used to calculate the global and local 

best solutions of the particles. 

     DMFO [21]: In this method, a traversal strategy 

for the mobile sink is considered for the collection 

of sensed data. The sink movement is calculated 

based on the exponential complexity of the 

Traveling Salesman Problem (TSP).ICP [22]: In 

this method, the path of the mobile sink is calculated 

based on the circumference visit method, which is 

used to minimize the clustering time and increase 

the network lifetime. 

4.4 Comparative analysis 

The comparative analysis of the proposed 
adjacency-based cell score is discussed in this 
section by varying the number of rounds with 
respect to the simulation rounds. 

a) Analysis based on 200 nodes 

     Fig. 2 portrays the comparative analysis of the 

proposed adjacency-based cell score using 200 

nodes. Fig. 2 (a) represents the analysis of distance 

with respect to the number of rounds. The minimum 

distance is considered as the best performance. At 

round-500, the distance of the mobile sink is 44.533 

for ACO-MSPD, 44.314 for MOPSO, 38.585 for F-

ROA, 41.320 for DMFO, 41.063 for ICP, and 

35.243 for the proposed adjacency-based cell score. 

At round 1000 the mobile sink distance of the 

proposed method is 70.847, which is 14.22%, 7.25%, 

4.86%, 9.33%, and 5.99%, better than the existing 

methods, such as ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP, respectively. 

     Fig. 2 (b) represents the analysis of residual 

energy with respect to the number of rounds. At 

round-500, the energy consumed by the mobile sink 

is 86.188 for ACO-MSPD, 89.200 for MOPSO, 

88.6737 for F-ROA, 91.5856 for DMFO, 91.4917 

for ICP, and 92.1331 for the proposed adjacency-

based cell score. Similarly, for 750 rounds, the 

proposed method has a maximum residual energy of 

76.933. The percentage of improvement with the 

existing methods, such as ACO-MSPD, MOPSO, 

DMFO, and ICP, is 2.89%, 2.67%, 2.97%, and 

2.64%, respectively. 

     Fig. 2 (c) represents the analysis of normalized 

fairness with respect to the number of rounds. At 

round-500, the normalized fairness of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 76.475, 77.703, 78.905, 75.917, 

and 78.149, while the proposed adjacency-based cell 

score achieved the normalized fairness of 86.22, 

respectively. Likewise, the maximum normalized 

fairness attained by the proposed method is 58.029, 

for 1500 rounds. For the same round the existing 

methods, such as ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP, is attain the normalized fairness of 

53.96, 51.794, 55.116, 49.023, and 51.84, 

respectively, which is minimum than the proposed 

method. 

     Fig. 2 (d) represents the analysis of network 

lifetime with respect to the number of rounds. The 

maximum value is considered as the best 

performance of network lifetime. At round-500, the 

network lifetime of the existing methods, like ACO-

MSPD, MOPSO, F-ROA, DMFO, and ICP is 37, 38, 

40, 36.886, and 39.37, while the proposed 

adjacency-based cell score have the network lifetime 

of 41, respectively. Similarly, for 750 rounds, the 

network lifetime attained by the methods, such as 

ACO-MSPD, MOPSO, F-ROA, DMFO, ICP, and 

the proposed adjacency-based cell score is, 36, 34, 

36, 33.072, 35.955, and 37, respectively, in which 

the proposed method offers maximum network 

lifetime. 

     Fig. 2 (e) represents the analysis of normalized 

throughput with respect to the number of rounds. At 

round-500, the normalized throughput obtained by 

the existing methods, like ACO-MSPD, MOPSO, F-

ROA, DMFO, and ICP is 84.056, 85.194, 87.965, 

84.977, and 87.43, while the proposed adjacency-

based cell score obtained better throughput of 

88.222, respectively. Likewise, by considering 2000 

rounds, the normalized throughput obtained by the 

proposed adjacency-based cell score 54.255. For the  
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

Figure. 2 Analysis based on 200 nodes:  (a) distance (b) 

residual energy (c) normalized fairness (d) network 

lifetime (e) normalized throughput 

same round the normalized throughput obtained by 

the existing methods, such as ACO-MSPD, MOPSO, 

F-ROA, DMFO, and ICP is 52.156, 53.49, 53.259, 

50.256, and 52.285. Here, the maximum value is 

considered as the best normalized throughput. 

b) Analysis based on 300 nodes 

      Fig. 3 portrays the comparative analysis of the 

proposed adjacency-based cell score using 300 

nodes. Fig. 3 (a) represents the analysis of distance 

with respect to the number of rounds. At round-500, 

the distance of the mobile sink is 42.609 for ACO-

MSPD, 49.280 for MOPSO, 43.704 for F-ROA, 

41.814 for DMFO, 38.997 for ICP, and 38.594 for  
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

Figure. 3 Analysis based on 300 nodes: (a) distance (b) 

residual energy (c) normalized fairness (d) network 

lifetime (e) normalized throughput 

the proposed adjacency-based cell score. At round-

750, the distance of the mobile sink is 59.029 for 

ACO-MSPD, 53.914 for MOPSO, 57.362 for F-

ROA, 49.754 for DMFO, 56.686 for ICP, and 

47.786 for the proposed adjacency-based cell score. 

     Fig. 3 (b) represents the analysis of residual 

energy with respect to the number of rounds. At 

round-500, the energy consumed by the mobile sink 

is 87.673 for ACO-MSPD, 89.1209 for MOPSO, 

89.5694 for F-ROA, 92.222 for DMFO, 93.055 for 

ICP, and 93.278 for the proposed adjacency-based 

cell score. At round-750, the energy consumed by 

the mobile sink is 78.409 for ACO-MSPD, 76.566 

for MOPSO, 79.825 for F-ROA, 77.626 for DMFO, 

78.762 for ICP, and 79.709 for the proposed 

adjacency-based cell score. 
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      Fig. 3 (c) represents the analysis of normalized 

fairness with respect to the number of rounds. At 

round-500, the normalized fairness of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 84.966, 82.698, 85.901, 82.604, 

and 84.492, while the proposed adjacency-based cell 

score achieved the normalized fairness of 87.281, 

respectively. Similarly, at round-750, the normalized 

fairness of the existing methods, like ACO-MSPD, 

MOPSO, F-ROA, DMFO, and ICP is 82.93, 77.85, 

81.471, 77.458, and 80.938, while the proposed 

adjacency-based cell score achieved the normalized 

fairness of 86.8723, respectively. 

     Fig. 3 (d) represents the analysis of network 

lifetime with respect to the number of rounds. At 

round-500, the network lifetime of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 69, 70, 74, 69.83, and 73.73, 

while the proposed adjacency-based cell score has 

the network lifetime of 76, respectively. Likewise, 

the network lifetime of the existing methods, like 

ACO-MSPD, MOPSO, F-ROA, DMFO, and ICP is 

68, 69, 68, 67.382, and 65.614, while the proposed 

adjacency-based cell score has the network lifetime 

of 71, respectively, for the rounds 750. 

     Fig. 3 (e) represents the analysis of normalized 

throughput with respect to the number of rounds. At 

round-500, the normalized throughput obtained by 

the existing methods, like ACO-MSPD, MOPSO, F-

ROA, DMFO, and ICP is 86.662, 84.671, 88.850, 

83.299, and 88.508, while the proposed adjacency-

based cell score obtained better throughput of 92.13, 

respectively. Similarly, at round-1000, the 

normalized throughput obtained by the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 75.76, 80.659, 80.443, 80.191, 

and 80.245, while the proposed adjacency-based cell 

score obtained better throughput of 81.9227, 

respectively. 

c) Analysis based on 400 nodes 

     Fig. 4 portrays the comparative analysis of the 

proposed adjacency-based cell score using 400 

nodes. Fig. 4 (a) represents the analysis of distance 

with respect to the number of rounds. At round-500, 

the distance of the mobile sink is 58.032 for ACO-

MSPD, 46.101 for MOPSO, 47.15 for F-ROA, 

34.783 for DMFO, 36.807 for ICP, and 31.589 for 

the proposed adjacency-based cell score. Similarly, 

at round-750, the distance of the mobile sink is 

62.515 for ACO-MSPD, 65.573 for MOPSO, 

57.668 for F-ROA, 56.84 for DMFO, 52.663 for 

ICP, and 49.327 for the proposed adjacency-based 

cell score. Here, the minimum value is considered as 

the best distance.  

Fig. 4 (b) represents the analysis of residual 

energy with respect to the number of rounds. At 

round-500, the energy consumed by the mobile sink 

is 91.550 for ACO-MSPD, 92.4006 for MOPSO, 

90.093 for F-ROA, 94.743 for DMFO, 95.258 for 

ICP, and 95.413 for the proposed adjacency-based 

cell score. Likewise, at round-750, the energy 

consumed by the mobile sink is 81.525 for ACO-

MSPD, 81.713 for MOPSO, 81.427 for F-ROA, 

82.347 for DMFO, and 83.595 for ICP, and 84.535 

for the proposed adjacency-based cell score. 

Fig. 4 (c) represents the analysis of normalized 

fairness with respect to the number of rounds. At 

round-500, the normalized fairness of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 81.165, 86.951, 90.342, 85.993, 

and 90.235, while the proposed adjacency-based cell 

score achieved the normalized fairness of 91.24, 

respectively. At round-750, the normalized fairness 

of the existing methods, like ACO-MSPD, MOPSO, 

F-ROA, DMFO, and ICP is 80.876, 85.0939, 

88.8419, 85.017 and 88.711, while the proposed 

adjacency-based cell score achieved the normalized 

fairness of 89.22 respectively. 

 Fig. 4 (d) represents the analysis of network 

lifetime with respect to the number of rounds. At 

round-500, the network lifetime of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 113, 115, 112, 112.428, and 

110.6, while the proposed adjacency-based cell 

score has the network lifetime of 114, respectively. 

At round-750, the network lifetime of the existing 

methods, like ACO-MSPD, MOPSO, F-ROA, 

DMFO, and ICP is 106, 107, 108, 102.826, and 

107.135, while the proposed adjacency-based cell 

score has the network lifetime of 111, respectively, 

which is maximum than other existing methods. 

      Fig. 4 (e) represents the analysis of normalized 

throughput with respect to the number of rounds. At 

round-500, the normalized throughput obtained by 

the existing methods, like ACO-MSPD, MOPSO, F-

ROA, DMFO, and ICP is 90.414, 92.3718, 90.714, 

92.002, and 90.617, while the proposed adjacency-

based cell score obtained better throughput of 

94.561, respectively. Likewise, at round-1000, the 

normalized throughput obtained by the existing 

methods, like ACO-MSPD, MOPSO, F-ROA 

DMFO, and ICP is 79.261, 83.985, 83.658, 82.733, 

and 82.377, while the proposed adjacency-based cell 

score obtained better throughput of 84.798 

respectively. 
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Figure. 4 Analysis based on 400 nodes: (a) distance (b) 

residual energy (c) normalized fairness (d) network 

lifetime (e) normalized throughput 

4.5 Comparative discussion 

     The comparative analysis is carried out by 

considering the 200, 300, and 400 nodes, in which 

the best performance occurs at 250 rounds. In the 

proposed method, the minimum distance occurs, 

when considering the 200 nodes. For 200 nodes, the 

distance of the proposed method is 20.429, which is 

37.83%, 42.65%, 5.49%, 3.24%, and 13.02%, better 

than the existing methods, such as ACO-MSPD, 

MOPSO, F-ROA, DMFO, and ICP, respectively. By 

considering the metrics, such as residual energy, 

normalized fairness, network lifetime, and 

normalized throughput, the maximum that is 400 

nodes offers the best performance. The maximum 

residual energy attained by the proposed method is 

97.2182. The percentage of improvement of the 

proposed method with the existing methods, such as 
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ACO-MSPD, MOPSO, F-ROA, DMFO, and ICP, is 

4.97%, 1.32%, 0.62%, 0.3%, and 0.22%, 

respectively. For normalized fairness, in the existing 

method, F-ROA attained the maximum performance 

of 92.0208, but the proposed system is 0.63%, better 

than the existing F-ROA. Similarly, the existing 

method MOPSO offered maximum normalized 

throughput of 94.3683, but the proposed method is 

1.58% better than the existing MOPSO. Thus, the 

proposed adjacency-based cell score method 

outperforms than the existing methods, such as 

ACO-MSPD, MOPSO, F-ROA, DMFO, and ICP, 

respectively. 

     In the proposed method, the network is 

transformed into various cells using Voronoi 

partition, which determines the optimal partitioning 

of cells in the WSN environment. Also, the CH 

selection is carried out using sparse FCM, which is 

derived with the inclusion of the FCM algorithm 

with sparse regularization. The optimal placement of 

the mobile sink is achieved using the adjacency 

based cell score, which effectively places the mobile 

sink using the constrained factors, such as energy, 

Euclidean distance, and fairness. By using this, the 

lifespan of the network is extended and the energy 

consumed by the nodes is reduced. Also, this 

method uses the minimum distance, which leads to 

reduce energy consumption. Thus, the proposed 

method offers better results, than the existing 

methods. 

 

5. Conclusion 

       In this research, the optimal placement of the 

mobile sink is dealt with the adjacency-based cell 

score using the factors, like energy, distance, and 

fairness. Initially, the nodes are simulated in the 

WSN environment. The sensor nodes in the network 

are transformed into the cell with uniform size and 

shape such that the cell network transformation is 

carried out using the Voronoi partition. Thereby, the 

CH is selected for each uniform-sized cell in the 

network in order to make the data transmission more 

reliable and effective. The selection of CH is carried 

out using the sparse FCM. After selecting the CH, 

the optimal placement of the mobile sink is 

performed using the adjacency-based cell score. 

However, the placement of the mobile sink is done 

based on the factors, like energy, Euclidean distance, 

and fairness. The proposed adjacency-based cell 

score obtained better performance with a minimal 

distance of 22.4615m, maximal energy, fairness, 

network lifetime, and throughput of 97.2182, 

92.6064, 145, and 95.8852, respectively, for 

considering 400 nodes. Environmental monitoring, 

Border protection, and crowd management are some 

of the applications of the proposed method. In the 

future, the performance of the proposed system will 

be further enhanced by using a recent optimization 

algorithm. 
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