IJAPC Vol. 13 Iss. 1

WWW.IJAPC.COM

RESEARCH ARTICLE

www.ijapc.com e-ISSN 2350-0204

A Comparative Pharmacognostical and Physico-chemical study of *Patola* (Trichosanthes cucumerina Roxb.) Leaves Collected from Field and Market

Sonesh R Utkar^{1*} and M B Chincholikar²

¹Department of Dravyaguna Vigyan, CSMSS Ayurved College, Kanchanwadi, Aurangabad, Maharashtra, India

²Research officer, HQ CCRAS, New Delhi, India

ABSTRACT

AIM - To analyze samples collected from field and market sample of *Patola* leaves (*Trichosanthes cucumerina Roxb.*) based on Pharmacognocy and Physico- chemistry.

MATERIALS & METHODS: - It is an analytical study. In present study Collection, Procurement, Authentication, Panchabhautik parikshan, preparation, foreign matter, Moisture content, Total ash, Extractive study, HPTLC etc. were determined for pharmacological and physicochemical evaluation of samples collected from field and market.

OBSERVATIONS AND RESULTS: - Pharmacognostically and physicochemicaly, the collected samples of T.cucumerina are different from each other.

CONCLUSION: - The chemical constituents of collected samples were nearly same but in panchabhautik examination both are different. *T. Cucumerina*, it should be used in medicine being more *tikta* with all parts and *T.dioica* and *T.aguina* should be used in diet as *pathya shaka*.

KEYWORDS

T. cucumerina, Patola leaves, Pharmacognostical, Physico-chemical

Received 02/04/20 Accepted 08/06/2020 Published 10/07/2020

INTRODUCTION

Ayurvedic medicines are always in discussion of ambiguity. In present scenario, many drugs get adulterated due to high demand of drug, endangered species, seasonal plants, etc. In day-to-day life medicinal plants are get collected from vendors and not from Vaidya's from field which affects identification of plant, so drugs which are collected from vendors will authentic not be due to incorrect identification and which results in controversy. So, outcome of result from patients get affected due to adulteration.

Present study was aimed to carry out on T. cucumerina, to rule out adulteration, controversy from field and market. The purpose to select this plant is, in classical review drug Patola is described in two types. As per *Vaghbatta – Patola ,Patoli* (*Trichosanthe dioica* Roxb), *T.cucumerina Linn*. is also known as "vana Patola, Tikta Patola". In Bhavprakash nighantu, mentioned two varieties of patola "Swadu" and "Tikta patola."¹.

T.cucumerina belongs to Cucurbitaceae family, which is an annual climber. It is highly bitter in taste and is being known to contain wide range of medicinal properties. All the parts are being used as medicine².

In India there are several species of *Trichosanthes* like *T. dioica, T. cucumerina, T. aguina, T.palmata, T.*

bracteata, T. wallichi etc. In these species *T.doica, T.aguina* are used for vegetable. *T.cucumerina, T. bracteata* which are bitter in taste and used for medicinal purpose.

T. dioica gets cultivated in plains of Punjab to Assam which is edible. *T.cucumerina* is wild species which gets in South India region abundantly but rarely in North India. In present study field sample was collected from Maharashtra region and market sample was collected from North India region to compare.

Most useful parts of this species are leaf but the work on the pharmacological studies were done rarely on leaf. There is no work carried out on this species according to pharmacognostical and physicochemical aspect. So, there is need to evaluate the adulteration and substitute of *T*. *cucumerina* in market.

MATERIAL AND METHODS COLLECTION OF SAMPLES

The genuine sample was collected from Tal. Khultabad Dist. Aurangabad Maharashtra in *Sharad Rutu* (June to October) i.e. flowering and fruiting season (**Image 1**). The market sample was collected from Varanasi Uttar Pradesh in *Sharad Rutu* i.e. (June to October.)³ (**Image 2**)

AUTHENTICATION OF SAMPLE

The samples were authenticated from the B S I, Pune.

Image 1- Collected Image 2- Collected Marketfield sampleSample

PREPARATION OF THE SAMPLES

Samples of *Patola* were collected, foreign matters i.e. extraneous matter was removed. Leaves are separated from stem, well dried under shadow. In market sample foreign matter as sticks, feather, other plants leave, etc. were removed.

PANCHBHAUTIK PARIKSHAN (ORGANOLEPTIC STUDY)

Table 1 Panchbhautik Patikshan					
Characters		Field	Market		
		Sample	sample		
Shabda		Short	Short		
(Fractur	·e)				
Sparsh (Touch)		Alpa Khar	Khar		
Roop (Shapes)		Palmatifid	Cordate		
Colour	Upper	Dark Green	Yellowish		
	S.		Green		
	Lower	Greenish	Greenish		
S.		White	White		
Rasa (Ta	nste)	Tikta	Tikta		
Gandha		Non-	Non-Specific		
(Odour)		Specific			

PHYSICO-CHEMICAL ANALYSIS

In physicochemical analysis moisture content (loss on drying), ash values, elemental ash analysis, extractive values, fluorescence analysis and highperformance thin layer chromatography (HPTLC) tests were carried out as per standard protocol.

OBSERVATIONS AND RESULTS MICROSCOPY

In microscopy of both samples the cell structures like upper epidermis, lower epidermis, vascular bundles, parenchymatous cell, collenchyma cells are nearly same the differences are as- (Image 3) (Image 4)

Image 3- Microscopy of Field Sample

1 Trichomes, 2 Upper epidermis, 3 Metaxylem, 4 Protoxylem, 5 Lower epidermis, 6 Phloem, 7 Parenchyma 8, pericycle , 9collenchyma

Image 4- Microscopy of Market Sample1 Upper epidermis, 2 Metaxylem, 3 Protoxylem, 4Pericycle, 5 Phloem, 6 Lower epidermis, 7chollenchyma

1 Covering trichomes- in field sample epidermis is tangentially elongated

covering trichomes 1-2 celled but in market						
sample	epidermis	are	tangentially			
Sample	e Fiel	ld	Market			
	Sam	ple	sample			
Copper	-V6	e	-ve			
Magnesiun	n +v	e	+ve			
Chlorine	+v	e	+ve			
Sulpher	+v	e	+ve			

elongated covering trichomes 2-5 celled.

-ve

+ve

2 Pericycle cells- in field sample a below of vascular bundle the phloem cells were seen. Below the lower phloem cells, the pericycle cells were present but in market sample pericycle cells were not present.

POWDER MICROSCOPY

Pottasium

To study the presence or absence of various types of tissues or structures, the shade dried leaves are powdered using electric grinder, passed through sieve no. 60, and then subjected for microscopic studies. The findings are as mentioned in table no 2.

Table 2 Powder Microscopy	Та	ble	2	Powder	Microscopy
---------------------------	----	-----	---	--------	------------

Sample Findings	Field Sample	Market sample
Stomata	+	+
Crystals/ calcium oxalate	+	+
Trichomes	+	+
Epidermal cells	+	+
Vascular Bundles	-	+
Phloem Fibers	+	-
Veinlets	-	+

PHYSICO-CHEMICAL STUDY

In physico chemical study the results of both samples are nearly same as shown in table no 3.

Table 3 Physico-chemical study	Table	3 P	hysico	-chem	nical	study
---------------------------------------	-------	------------	--------	-------	-------	-------

Parameters	Field Sample	Market sample	API Values
Foreign	-	1gm	-
matter %			
Moisture %	8.41	8.37	-
Total ash %	18.76	20.04	-
Aqueous	14.63	14.74	-
Soluble			
Extract %			
Alcohol	5.34	6.24	-
Soluble			
Extract %			

ELEMENTAL ASH ANALYSIS

In Elemental ash analysis potassium is present in market sample rest findings are same as shown in table no 4.

Table 4 Elemental ash analysis

pH OF AQUEOUS EXTRACT

pH of both samples are nearly same as shown in table no 5.

Table 5	pH of	aqueous	extract
---------	-------	---------	---------

Samples	Ph of Aqueous
	Extract
Field Sample	7.70
Market sample	7.66

SPECIFIC GRAVITY OF AQUEOUS EXTRACT

Specific gravity of aqueous extract of both samples are nearly same as shown in table no 6.

Table 6 Specific	gravity o	of aqueous extract	
------------------	-----------	--------------------	--

Samples	Specific Gravity
Field Sample	1.00467
Market sample	1.0012

MICRO CHEMICAL TESTING OF AQUEOUS AND ALCOHOL EXTRACT

In microchemical study amino acids and alkaloids are absent in aqueous extract in both samples, whereas glycosides, carbohydrates and saponin are absent in both samples as shown in table no 7.

Test performed	Reagents used	Aqueous extract of Field sample	Aqueous extract of Market sample	Alcohol extract of Field sample	Alcohol extract of Market sample
Alkaloids	Hager's	-Ve	-Ve	+Ve	+Ve
Glycosides	Mollisch	+Ve	+Ve	-Ve	-Ve
carbohydrates	Mollisch	+Ve	+Ve	-Ve	-Ve
Phytosteron	10% lead acetate	+Ve	+Ve	+Ve	+Ve
Saponin	Distilled water	+Ve	+Ve	-Ve	-Ve
Phenolics	Ferric chloride	+Ve	+Ve	+Ve	+Ve
Tanin	Ferric chloride	+Ve	+Ve	+Ve	+Ve
Protiens	Millon's	+Ve	+Ve	+Ve	+Ve
Amino acids	Ninhydrin	-Ve	-Ve	+Ve	+Ve
Reducing sugar	Benedict	+Ve	+Ve	+Ve	+Ve
Starch	Iodine	+Ve	+Ve	+Ve	+Ve

Table 7 Microchemical testing

FLUORESCENCE **ANALYSIS** OF **AQUEOUS EXTRACT**

In fluorescence analysis under 245 band, field sample is visualized as green colored non fluorescence but in market sample it is visualized light green colored non fluorescence and under 365 band dark vellow fluorescence visualized in both samples. As shown in table no 8.

Table 8 Fluorescence	analysis					
Tests	Field Sample	e		Market Sa	mple	
	Visual	245	365	Visual	245	365
Extract + Alcohol	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
			FL		NF	Yellow FL
Extract + Ethyl	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
acetate			FL		NF	Yellow FL
Extract +	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
Benzene			FL		NF	Yellow FL
Extract +	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
Methanol			FL		NF	Yellow FL
Extract +	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
Fluroglucinol			FL		NF	Yellow FL
Extract + pet	Yellow	Green NF	Dark Yellow	Yellow	Light Green	Dark
ether			FL		NF	Yellow FL

CROMATOGRAPHIC (HPTLC) STUDY

In chromatographic study samples shows similarity in R_f value at 5µl, whereas at 10µl values are variable. As shown in table no 9.

Table 9 Chromatographic study

Sr.	Sample	$\mathbf{R}_{\mathbf{f}}$	Area	Area
No.	_	Value	at 254	at 366

			nm	nm
1	Field 5 µl	0.2	11996	11550
		0.92	31424	4851
2	Field 10 µ1	0.2	17408	17239
		0.92	15820	5079
3	Market	0.2	14551	13171
	5µl			
		0.88	23326	4400
4	Market	0.2	19434	20955
	10µ1			
		0.88	20984	5339

DISCUSSION

There are no classical references of the drug *Patola* in Vedic period, but many references are available in *Samhitas period*. In Bhavprakash nighantu, patola is mentioned as of two varieties, swadu and tikta patola. According to Vd. P.V. Sharma and Vd. K. C. Chunekar shastri the authentic source of *Patola* is *T.dioica Roxb*. (4), *Vana /Tikta Patola is T.cucumerina Linn.*, is used in South India as Patola for medicinal purpose, which is bitter in taste.

For the present study the leaves collected from field and market." were assessed to find the controversies and adulteration between the different species of *Trichosanthes*, which is used in medicine.

In pharmacognostical study, it is observed that the market and field samples are market sample shows different. the resemblance of T. doica. No standard values (i.e. API Values) were not found to compare the observed values. In physico chemical study readings of field and market samples are nearly same but in chromatographic study samples, shows similarity in Rf value at 5 µl, whereas at 10µl values are variable.

SUBSTITUTES AND ADULTERANTS

T.cucumerina and T. Dioica, *T. aguina* are used under the name of *Tikta Patola* and *Swadu Patola* respectively. Other species of *Trichosanthes* which shows similarity in morphological characters hence added as adulterants which are *T. palmata, T. cordata, T. cucumerina.*

CONCLUSION

The chemical constituents of collected samples are nearly same but in panchabhautik examination both are different. *T. Cucumerina*, it should be used in medicine being more *tikta* with all parts and *T.dioica* and *T.aguina* should be used in diet as *pathya shaka*.

REFERENCES

 Chunekar, K C. *Bhavprakash nighantu*.
 varanasi : Chaukhambbha Bharati Academy, 2013.

2. Shyamsundarachary Rudroju, Samatha Talari, Rajinikanth Marka, Srinivas Penchala and Rama Swamy, *Phytochemical Analysis Of Trichosanthes Cucumerina L.*, Indo American Journal of Pharmaceutical Research, p. 3359, 2013.

 Yelne, P.C. Sharma and M.B. *Database* on Medicinal Plants used in Ayurveda Vol 1ST Edition. Delhi : Govt. of India-Central Council for Research in Ayurveda & Siddha, 2008.

 P.V.Sharma, Acharya. Dravyagun Vidnyan. Vol.-2. 1st Varanasi: Chaukhambha Bharti Accadmy, Varanasi., 1995.