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ABSTRACT

The small-eared shrew genus Cryptotis is the third
largest in the family Soricidae and occurs in North,
Central, and northern South America. In Mexico and
Central and South America, most species inhabit
geographically isolated moist, montane habitats at
middle and high elevations in a typical sky-island
pattern. The 49 recognized species have been
partitioned into as many as six species groups based
on morphological and molecular phylogenetic
studies. The relationships among these species
groups are poorly resolved, and their evolutionary
histories, including migration patterns and locomotor
adaptations, remain unclear. Herein, we provide a
new phylogeny incorporating complete mitochondrial
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genomes (mitogenomes) and supermatrix approach.
We compared different evolutionary scenarios using
approximately unbiased (AU), Kishino-Hasegawa
(KH), and Shimodaira-Hasegawa (SH) statistical
tests. The phylogenetic hypothesis based on
mitogenomes revealed novel relationships
supporting a basal position for the Cryptotis parvus-
group in the genus, and a close relationship between
C. gracilis and one clade of the C. thomasi-group.
The former relationship is consistent with the least
derived humerus morphology and northern
distribution of the species. The latter relationship
implies multiple migrations between Central and
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South America. The lack of fine resolution for the
species group relationships may be due partly to the
lack of taxon sampling. In contrast, multi-approach
analyses suggest that the unresolved relationships
may be a result of rapid diversification during the
early stages of Cryptotis evolution.
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INTRODUCTION

A robust phylogeny is a fundamental tool for testing
evolutionary hypotheses, but one that remains unavailable for
most animal taxa as few species have been sequenced and
even fewer have more than a few short gene fragments
available. Although some universally used gene fragments
(e.g., cyt b and COI for mammals) provide genetic barcode-
like information and are helpful for molecular identification of
new and existing species, they often provide insufficient
signals for phylogenetic reconstruction because of low
mutation or high saturation rates.

The small-eared shrews (Mammalia: Eulipotyphla:
Soricidae: Cryptotis) consist of 49 recognized species that are
widely distributed across North America through Central
America and the northern montane areas of South America
(Woodman, 2019). In the last 20 years, systematic studies
increased the number of species by 50%, including the
discovery of at least 15 species in isolated mountain areas
where they are vulnerable to habitat alteration and climate
change. Cryptotis is now the third largest genus of the shrew
family Soricidae after Crocidura (ca. 198 species) and Sorex
(ca. 86 species) (Burgin & He, 2018). The recognized species
of Cryptotis have been variously partitioned into three
(Choate, 1970), four (Woodman & Timm, 1998), five (He et al.,
2015), or six (Woodman, 2019) species groups based on
morphological and poorly-resolved molecular phylogenetic
studies (Supplementary Table S1). Species in two of these
groups, i.e., Cryptotis goodwini-group and Cryptotis goldmani-
group, have evolved morphologies consistent with different
levels of adaptation to a semi-fossorial lifestyle (Guevara,
2017; He et al., 2015; Woodman & Gaffney, 2014). At present,
however, the relationships between and within these groups
are incompletely resolved, and it remains unclear to what
extent they evolved independently and convergently (He et al.,
2015).

In the two most recent comprehensive phylogenetic studies
of Cryptotis (Baird et al., 2018; He et al., 2015), support values
among species groups were all below the level of significance
(Bayesian posterior probabilities (PP)<0.9 and Maximum
likelihood bootstrap support (BS)<50). In part, this likely
reflects the fact that most species are represented by only one
(in most cases mitochondrial cyt b) or a few genes, making it
difficult to resolve relationships except among closely related
species. Those genetic relationships that have been revealed,
however, have provided new and unexpected phylogenetic
relationships that conflict with the traditional species-grouping
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hypotheses (He et al., 2015; Woodman, 2019). These results
suggest that the genus has a highly complex evolutionary
history.

Most species of Cryptotis inhabit humid montane habitats at
mid to high elevations. Several species in Mexico and Central
and South America occupy relatively small areas isolated by
intervening lowlands, thus forming sky islands (He & Jiang,
2014; Heald, 1951; McCormack et al., 2009). The evolutionary
history in this genus is likely affected by complex topography
and periodic climatic fluctuations, resulting in migration and
isolation. In the current study, we investigated whether
complete mitochondrial genomes (mitogenomes) can be used
to inform and stabilize the phylogeny of Cryptotis and our
understanding of its evolutionary history. We also used a
supermatrix approach to construct a new and more complete
phylogeny of the genus.

MATERIALS AND METHODS

Sampling and mitogenome sequencing

We sequenced 13 samples representing 11 recognized
species of Cryptotis. We included two samples each of
Cryptotis merriami and Cryptotis parvus as these species
were previously discovered to contain two genetically distinct,
but morphologically cryptic, lineages (He et al., 2015). Tissue
samples were obtained from the Center for Conservation
Genomics and the National Museum of Natural History,
Smithsonian Institution, Washington, DC (loan no.: #2067019;
Supplementary Table S2). We used a capture hybridization
approach to obtain the complete mitogenomes (Chen et al.,
2018). In brief, we extracted total DNA using a DNeasy Blood
& Tissue Kit (Qiagen, USA) and sheared the DNA into small
fragments to generate genomic DNA libraries. We generated
biotin-linked homemade mitogenome probes using long-range
polymerase chain reaction (PCR) amplicons. The DNA
libraries and probes were incubated to capture mitochondrial
libraries. The enriched libraries were amplified and sequenced
using the lllumina high-throughput sequencing platform. We
used FastQC v0.11.9 (Andrews, 2010) and Trimmomatic
v0.32 (Bolger et al., 2014) for quality control and data
trimming, respectively, and mapped the reads to mitogenomes
of Blarina brevicauda, Blarina hylophaga, Blarinella
quadraticauda, Blarinella wardi, and Pantherina griselda using
Geneious R11 v11.05 (Biomatters Ltd., New Zealand) (Ripma
et al., 2014). Blarina is the sister genus to Cryptotis, and
Blarinella+Pantherina is sister to Blarina+Cryptotis (He et al.,
2018). We mapped the reads to each of the reference
mitogenomes iteratively up to 25 times before generating the
consensus sequences (Kearse et al., 2012). To confirm and
improve our assemblies (i.e., reconciliation; Zimin et al,,
2008), we repeated the mapping three times, and aligned the
15 consensus mitogenomes. Any missing data and
incongruent positions were carefully checked by eye before
generating the final consensus assemblies. Finally, we used
the annotation transferring function in Geneious R11 to
generate annotations for each mitogenome. The newly
obtained mitogenomes are deposited in GenBank (accession
Nos. MZ457409-MZ457421).
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Mitogenome phylogeny and hypothesis testing

We used the 12S, 16S rRNA, and coding genes (except ND6,
which is on the light chain of the mitogenome) to estimate
maximum-likelihood (ML) and Bayesian gene trees (Duchéne
et al,, 2011). We included one mitogenome per species
representing B. brevicauda, B. hylophaga, Bl. quadraticauda,
Bl. wardi, and P. griselda as the outgroups for Cryptotis, and
included six Sorex species and six Nectogalini shrews for
comparison. We used Crocidura palawanensis and Suncus
murinus, representing two ancient lineages in Crocidurinae, to
root the tree (Supplementary Table S2; Hutterer et al., 2018).
We grouped the data by gene and codon positions and used
PartitionFinder v2.1.1 (Lanfear et al., 2017) to determine the
best partitioning scheme under the GTR+G model based on a
greedy algorithm, resulting in a nine-partition scheme
(Supplementary Table S3). RAxML v8.2.12 (Stamatakis,
2014) was used to estimate the ML tree and CIPRES Science
Gateway was used for implementation (Miller et al., 2015). We
conducted rapid bootstrap analysis and searched for the best-
scoring ML tree without the use of the BFGS searching
algorithm (parameter: -f a --no-bfgs). BEAST v2.6 was used to
estimate the Bayesian gene tree (Bouckaert et al., 2014).
Mitogenome alignment was partitioned as mentioned above.
We used a relaxed lognormal clock model, a Birth-Death
model for the tree prior, and ran Markov chain Monte Carlo
(MCMC) simulations for 50 million generations, with sampling
every 5 000 generations. Analyses were conducted twice and
Tracer v1.7 was used to examine the posterior distribution of
each parameter in the log file to ensure that analyses reached
a stationary state. The first 15% of MCMC samples were
removed before the generation of the consensus tree. The
RAXML and BEAST trees were identical except for two poorly
supported nodes (see Results section). We also tested
several alternative partitioning schemes and compared the
results using the Shimodaira-Hasegawa (SH) test in RAxML
(parameter: -f H) (Shimodaira & Hasegawa, 2001).

To examine potentially conflicting phylogenetic signals
between genes, we calculated the partitioning Bremer support
for each mitochondrial gene on each internal node of the best
RAXML gene tree (Baker & Desalle, 1997) using PAUP
v4.3.99.169.0 (Swofford, 2003) and a Tcl script (Goker et al.,
2009). To test the rapid diversification hypothesis, we
collapsed the two poorly supported nodes (i.e., C. mexicanus
and C. goldmani; see Results section) on our best ML tree
using TreeView v1.66 and generated all 15 possible
dichotomic trees using the function “resolve_polytomy” in the
ETE Toolkit v3.0 (Huerta-Cepas et al., 2016). We then
calculated the site-wise log-likelihood supports using RAXML
(-f G) and performed approximately unbiased (AU)
(Shimodaira, 2002), Kishino-Hasegawa (KH) (Kishino &
Hasegawa, 1989), and SH tests using CONSEL v0.20
(Shimodaira & Hasegawa, 2001).

Sequence data matrix and hypothesis testing

We downloaded two mitochondrial (cyt b, 16S rRNA) and two
nuclear (ApoB and BRCA1) genes of the Cryptotis species
and all outgroup species included in the mitogenome analyses
from GenBank. We used these four genes and the
mitogenomes to generate a gene matrix. The sequence

manipulation is described in detail in the Supplementary Text.
We obtained a sequence matrix of 136 samples and 14 955
bp in the alignment. The mitochondrial genes were partitioned
as mentioned above and each nuclear gene was considered
as one partition. To test alternative scenarios regarding the
monophyly of known species groups, we constrained their
monophyly, estimated the ML tree using RAxML, and
performed AU, KH, and SH analyses as mentioned above.

RESULTS

Mitogenome phylogeny

The sequence alignments were uploaded to the GitHub
repository (github.com/yinbingiu/Cryptotis_phy). The
mitogenome ML and Bayesian trees were congruent and
generally well supported (BS>90, PP>0.95; Figure 1A).
Relationships among all Sorex species were strongly
supported, as were the relationships between Blarinellini and
Blarinini and between Blarina and Cryptotis (i.e., BS=100,
PP=1.0). Within Cryptotis, there was strong support for the
monophyly of the C. nigrescens-group (C. nigrescens, C.
mayensis, and C. merriami), C. parvus-group (C. parvus and
C. tropicalis), and for a clade consisting of three species of the
C. goodwini-group (C. lacertosus, C. mam, and C. oreoryctes),
which has been recovered previously (Baird et al., 2018; He et
al., 2015). Our analysis recovered two novel relationships
supporting: (i) the C. parvus-group as one of the first branches
in Cryptotis (BS=100, PP=1.0), and (ii) a close relationship
between the C. gracilis and C. nigrescens-groups (BS=93,
PP=1.0). These two relationships have not been observed in
previous studies. He et al. (2015) and Baird et al. (2018)
showed the C. mexicanus group (including C. magnus+C.
phillipsii) as the first but weakly supported branch. Cryptotis
gracilis was previously embedded in the C. goldmani-group
but only supported by Bayesian analysis, which can be
overestimated (Baird et al., 2018; He et al., 2015). We also
observed several unresolved relationships: (i) the sister
relationship of Soricini and Nectogalini+Anourosoricini in our
outgroups was moderately supported, although this was not
unexpected (see He et al., 2021); (ii) the relationships among
Nectogalini water shrews were not resolved as observed by
He et al. (2010); and (iii) within Cryptotis, the phylogenetic
positions of two species, C. mexicanus and C. goldmani, were
not resolved (BS<56, PP<0.94).

Because a suboptimal partitioning scheme may produce
highly supported but incorrect nodes in a tree (Kainer &
Lanfear, 2015), we first tested whether the phylogenetic
relationships, especially the novel relationships, were due to a
suboptimal partitioning scheme. We estimated the ML trees
using two alternative partitioning schemes (Supplementary
Table S3). All analyses resulted in similar topologies and did
not affect the phylogenetic positions of either the C. parvus-
group or C. gracilis (data not shown), suggesting that the
novel relationships were not attributable to the partitioning
scheme but may be the result of conflicting or poor
phylogenetic signaling.

We next examined whether the unresolved relationships of
C. mexicanus and C. goldmani may be due to conflicting
phylogenetic signals or a lack of any signal based on
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assigned to eight clades best reflecting species groups (Supplementary Table S1). C. goodwini-group, C. mexicanus-group, and C. thomasi-group
are paraphyletic, and C. gracilis is supported within a C. thomasi-group clade.

partitioned Bremer values of all genes for each node
(Supplementary Figure S1). None of the genes supported or
rejected the position of C. goldmani (i.e., partitioned Bremer
support (PBS)=0; Supplementary Table S4). The phylogenetic
position of C. mexicanus was supported by seven genes,
including the 12S rRNA and six coding genes (1<PBS<9), but
was rejected by the other seven genes (-5<PBS<-1). We
therefore split the mitogenome alignment into two sub-
datasets based on PBS support for the position of C.
mexicanus (i.e., PBS+ and PBS- alignments) and estimated
the best ML trees individually. While the genes characterized
by PBS+ recovered the same topology among Cryptotis
species (Supplementary Figure S2A), the genes characterized
by PBS- supported different phylogenetic relationships among
C. gracilis, C. mexicanus, and C. goldmani with very low BS
values (Supplementary Figure S2B). The PBS+ genes
rejected this alternative tree based on SH analysis at a
significance level of 0.05, whereas the PBS- genes could not
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significantly reject the best ML gene tree. Collectively,
although we observed conflicting support over the
phylogenetic position of C. mexicanus (but not C. goldmani)
among the different genes, the genes causing the conflict did
not strongly support an alternative phylogeny nor did they
reject the best phylogenetic hypothesis. Thus, the poorly
resolved relationships are unlikely due to strong conflicting
signals.

We then asked whether the undetermined phylogenetic
relationships were likely due to rapid diversification, and thus
“hard polytomy”. We evaluated all alternative phylogenetic
positions of C. mexicanus and C. goldmani using the AU, KH,
and SH tests. Among the 14 alternative trees, only two
supported C. mexicanus and C. goldmani on the basal
branches after the C. parvus-group, and they were
significantly worse than the best ML tree at the 0.05 level in all
three tests (Supplementary Figure S3; Supplementary Table
S5). Because the mitogenome data could not reject the
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alternative hypothesis, these results suggest that a rapid
diversification scenario is plausible.

Multi-locus comprehensive phylogeny

Based on the mitogenome-nuclear gene concatenation tree
(comprehensive tree hereafter), eight clades were recovered
in Cryptotis (Supplementary Table S1), seven of which were
well supported (Figure 1B; BS=90); clade lll, supporting the
monophyly of the C. goldmani-group, was only weakly
supported (BS=55). The comprehensive tree was congruent
with the mitogenome gene tree in supporting both the basal
position of the C. parvus-group (BS=78) and a close
relationship between C. gracilis and the C. nigrescens-group
(BS=90).

In addition to the non-monophyletic C. goodwini-group, two
other hypothesized species groups, i.e., C. mexicanus- and C.
thomasi-groups, were each determined to be paraphyletic
(Supplementary Table S1). We tested whether the monophyly
of these two species groups could be rejected using the AU,
KH, and SH tests. Unsurprisingly, the monophyly of the C.
mexicanus-group could not be rejected as the BS values
supporting the paraphyletic relationships were low
(Supplementary Table S6). Congruent with the mitogenome
results (Supplementary Figure S3), we also could not reject
the sister relationship between the C. goldmani-group and C.
goodwini-group, which were previously considered part of the
same species group (He et al., 2015; Woodman & Timm,
1998). We also could not reject the grouping of C. gracilis with
species from the C. thomasi-group (clade VIII)
(Supplementary Table S6). Thus, based on the above
analyses, the current six-species-group scenario is not
violated (except for C. gracilis (see below)).

Fossorial morphology is becoming a common theme in the
evolutionary trajectory of Cryptotis (He et al., 2015; Woodman
& Wilken, 2019). Species in the widely separated clades lll
and VI (C. goldmani- and C. goodwini-groups, respectively)
are characterized by enlarged forefeet and claws and a
modified humerus. We tested whether these animals could
instead be part of a monophyletic clade and thus support the
hypothesis of a single evolutionary transition to fossoriality.
Our analysis could not reject this hypothesis statistically
(Supplementary Table S6); thus, whether there was a single
or multiple trajectories toward greater fossoriality remains
unresolved.

Species in the C. thomasi-group are mainly distributed in
montane areas of northern South America but also in Costa
Rica and Panama (Woodman & Timm, 2017). We identified a
paraphyletic relationship for the C. thomasi-group, as reported
previously (Zeballos et al., 2018), with monophyly statistically
rejected (Supplementary Table S6). However, when
constraining the monophyly of C. thomasi-group+C. gracilis
(i.e., clades V and VIII), this hypothesis could not be rejected,
even though the wunconstrained comprehensive tree
moderately supported a sister relationship between clades VI
and VIII (Figure 1B; BS=76). Cryptotis gracilis is mainly
distributed in the mountains of Panama and Costa Rica in
southern Central America. Thus, our results suggest that
either the C. thomasi-group species migrated to South
America multiple times, or the ancestor of C. gracilis migrated

in the reverse direction from South America to Central
America. The latter is a plausible scenario given the
distributions of two members of the C. thomasi group, i.e., C.
endersi in Panama and C. monteverdensis in Costa Rica,
(Pine et al., 2002; Woodman & Timm, 2017).

DISCUSSION

Our results revealed novel relationships supporting a basal
position for the C. parvus-group. The humerus of C. parvus is
the least derived among living Cryptotis (Woodman & Gaffney,
2014). Although this does not necessarily signify that C.
parvus is the most primitive species of the genus, it is a
plausible hypothesis.

The non-monophyletic relationships of the C. thomasi-group
suggest their ancestors may have migrated to South America
multiple times or that reverse migration to Central America
also occurred. We have not yet included C. colombiana or C.
brachyonyx, the two Colombian members of the C.
nigrescens-group, in our taxon sampling. Combined with more
robust results from analyses of the C. thomasi group, the C.
nigrescens group provides important insights regarding
patterns of mammalian migration between Central and South
America. Exchanges between these two regions are likely to
have occurred several times and could be more complicated
than currently understood. Although divergence dating
estimates could help clarify the timing of South American
colonization (de Abreu-Jr et al., 2020), there are few Cryptotis
fossils prior to the late Pleistocene. These are exclusively from
the US, and their relationship with modern species is unclear
(www.paleobiodb.org, last accessed 29 July 2021).

Despite the limited number of species sampled (11 of 49
recognized species), the use of mitogenomes undoubtably
improved overall support of the phylogenetic relationships.
Improving taxon sampling, especially for three of the eight
major clades that were missed in the comprehensive gene
tree, may better resolve these relationships. Although
phylogenomic data are generally recommended, such data
are more costly to obtain and may be hampered by the
presence of non-orthologous sequences (Andermann et al.,
2020). However, as the costs of next-generation sequencing
(NGS) continue to decrease, using whole-genome shotgun
sequencing to obtain mitochondrial sequences has become
more economical (Gan et al., 2014). NGS also makes it
possible to obtain complete mitogenomes from museum
specimens up to 120 years old (de Abreu-Jr et al., 2020). This
is highly recommended for Cryptotis as many species are only
represented by old museum specimens (Woodman, 2019).

Several relationships, such as the positions of C. mexicanus
and C. goldmani (Figure 1A), could not be finely resolved,
even with the availability of mitogenome data. This is due to
insufficient rather than conflicting phylogenetic signals
embedded within the data, as supported by partitioned Bremer
analysis (Supplementary Figure S2) and SH tests
(Supplementary Figure S3). Similarly, the relationships among
species groups in the comprehensive tree were not well
supported, nor could they be rejected statistically
(Supplementary Table S6). The “hard polytomy”-like structure
may be due to rapid diversification events. Many Cryptotis
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species inhabit high elevational habitats (Supplementary
Figure S4) restricted to small montane areas and isolated by
lowlands (Woodman, 2019; Zeballos et al., 2018). These sky
islands can facilitate allopatric isolation and speciation (He &
Jiang, 2014; McCormack et al., 2009). In addition, species can
migrate and colonize new mountains during cool, humid
periods (e.g., glacial periods), which could potentially result in
rapid diversification, such as observed in the recent radiation
of Crocidura shrews (Giarla & Esselstyn, 2015). The speciose
Cryptotis group is a good model for understanding how
geographic and climatic changes have shaped species
diversity in the sky island mountains of Central and northern
South America. In addition, their high elevational habitat and
limited distribution means these animals are more vulnerable
to the effects of anthropogenically induced global warming and
habitat destruction. As such, more attention should be paid to
the ecology and conservation of these enigmatic small
montane mammals.
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