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Chromatin accessibility profiling provides insights into
larval cuticle color and adult longevity in butterflies

Butterflies are diverse in virtually all aspects of their ontogeny,
including morphology, life history, and behavior. However, the
developmental regulatory mechanisms underlying the
important phenotypic traits of butterfies at different
developmental stages remain unknown. Here, we investigated
the developmental regulatory profiles of butterflies based on
transposase accessible chromatin sequencing (ATAC-seq) at
three developmental stages in two representative species
(Papilio xuthus and Kallima inachus). Results indicated that
15%—47% of open chromatin peaks appeared in associated
genes located 3 kb upstream (i.e., promoter region) of their
transcription start site (TSS). Comparative analysis of the
different developmental stages indicated that chromatin
accessibility is a dynamic process and associated genes with
differentially accessible (DA) peaks show functions
corresponding to their phenotypic traits. Interestingly, the
black color pattern in P. xuthus 4th instar larvae may be
attributed to promoter peak-related genes involved in the
melanogenesis pathway. Furthermore, many longevity genes
in 5th instar larvae and pupae showed open peaks 3 kb
upstream of their TSS, which may contribute to the
overwintering diapause observed in K. inachus adults.
Combined with RNA-seq analysis, our data demonstrated that
several genes enriched in the melanogenesis and longevity
pathways also exhibit higher expression, confirming that the
expression of genes may be closely related to their phenotypic
traits. This study offers new insights into larval cuticle color
and adult longevity in butterflies and provides a resource for
investigating the developmental regulatory mechanisms
underlying butterfly ontogeny.

Butterflies are diverse in virtually all aspects of their biology,
ranging from morphology, life history, behavior, and
biogeography to cellular biology and biochemistry (Baxter et
al., 2008; Boggs et al., 2003; Jiggins et al., 2001; Joron &
Mallet, 1998; Kunte, 2009; Nijhout, 1991). The study of
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butterflies has been an integral part of ecology and evolution
ever since Darwin and Wallace proposed the theory of natural
selection (Poulton, 1890; Shirataki et al., 2010; Wallace, 1865,
1871). Wing pattern in adult butterflies is considered as an
ideal model system to study evolutionary developmental
biology (evo-devo) (Beldade & Brakefield, 2002; John et al.,
2011; McMillan et al., 2002; Monteiro, 2015; Reed et al., 2011;
Zhang et al., 2017). Nevertheless, few studies have dealt with
the molecular mechanism underlying morphological evolution
in the developmental stages, e.g., larval and pupal stages,
which are important in determining the physiological and
morphological traits of adults (Futahashi et al., 2012; Shirataki
et al.,, 2010). For example, in 5th instar larvae, many pre-
pattern genes that guide morphological development in adults
are already pre-activated (Reed & Serfas, 2004), and at the
pupal stage, the body is completely remodeled for the
developing adult (Martin, 2011). Butterflies have evolved
various traits in their developmental stages, from outer
morphology (such as body color) and internal physiology to
cellular and molecular processes, to adapt to their different
habitats (Futahashi & Fujiwara, 2006; Futahashi et al., 2012).
However, the developmental regulatory mechanisms
underlying the many important phenotypic traits of butterflies
during their developmental stages remain unknown.

The genetic and molecular basis of phenotypic evolution is
a long-standing puzzle in butterfly evolutionary studies. Since
Britten & Davidson (1969) proposed the evolutionary model of
regulatory sequences, increasing evidence suggests that the
evolution of gene regulation leads to the formation of
morphological diversity (Carroll, 2000, 2005, 2008; Carroll et
al., 2005; Levine & Tjian, 2003). The profiling of open
chromatin regions is an effective way to dissect regulatory
genomic regions, as chromatin accessibility is relevant to gene
expression regulation via the binding of transcription initiation
and regulatory elements, especially in promoter regions
(Degner et al., 2012; John et al., 2011; Tsompana & Buck,
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2014). The assay of ATAC-seq was recently developed to
assess genome-wide chromatin  accessibility  using
hyperactive Tn5 transposase combined with high-throughput
sequencing technology (Buenrostro et al., 2013). It has been
applied in several butterfly species to investigate the
regulatory evolution of wings and adult brain development
(Lewis et al., 2019; Lewis & Reed, 2019; Lugena et al., 2019;
Van Der Burg et al., 2019). Based on chromatin accessibility
analysis, Lewis et al. (2019) identified five cis-regulatory
elements of the optix gene underlying color pattern variation in
Heliconius. In addition, Van Der Burg et al. (2019) observed
dynamic chromatin accessibility during Junonia coenia wing
metamorphosis and found that the spineless and EcR
transcription factors are associated with changes in
accessibility.

To explore the genetic regulatory basis of morphological
divergence among butterfly species during development, we
investigated chromatin accessibility in three developmental
stages (i.e., 4th and 5th instar larvae and pupae) (Figure 1A)
in two representative species from two different families
(Papilionidae: Papilio xuthus; Nymphalidae: Kallima inachus)
using ATAC-seq and RNA-seq. The two selected species,
which are distributed in Asia and have high-quality reference
genomes available (Li et al., 2015; Nishikawa et al., 2015;
Yang et al., 2020), exhibit many morphological and biological
differences in the larval, pupal, and adult stages. Papilio
xuthus larvae feed on Rutaceae plants (Zanthoxylum
piperitum) and have similar body color and background (black
and brown) from the 1st to 4th instar larval stages, but show
marked changes at the 5th instar stage, with the development
of a green cuticle and reduction of black coloration. This
species also exhibits diapause at the pupal stage. Kallima
inachus larvae feed on Acanthaceae plants (Strobilanthes),
and usually have a similar body color at all larval stages (1st
to 5th instar). This species usually produces three generations
each year, with a 5-7 month diapause stage during adulthood
showing excellent concealment (Zhou et al., 2005).

Here, the collected samples were first dissected, after which
the ATAC-seq and RNA-seq libraries were constructed (see
Supplementary Methods). We then obtained high-quality
ATAC-seq data for 4th instar larvae (L4), 5th instar larvae
(L5), and pupae (P) for the two butterfly species P. xuthus (Px)
and K. inachus (Kin) (Supplementary Table S1). Based on
ATAC-seq data analysis, dynamic chromatin accessibility

peaks appeared during the different developmental stages in
both species (peak numbers, Px: 20 367 (L4), 9 648 (L5), 12001
(P); Kin: 28 751 (L4), 85 433 (L5), 105 067 (P)) (Table 1). We
then performed comparative assays between stages for each
species, i.e., L4 vs. L5, L4 vs. P, and L5 vs. P (Supplementary
Table S2) to identify changes in DA peaks. Results indicated
that some accessible sites became stronger or weaker
between stages, i.e., showing increased or decreased DA
peaks, respectively. Changes in DA peaks were identified for
each instar pair in both P. xuthus and K. inachus (Px: 1 212—
5208; Kin: 24 755-30 979) (fold-change=2, P<0.05)
(Supplementary Table S2), suggesting dynamically changing
chromatin accessibility in the different developmental stages.
By analyzing the distribution of peaks in the corresponding
reference genomes (Nishikawa et al., 2015; Yang et al,
2020), 15%-47% of chromatin accessibility peaks and
11%—-36% of DA peaks appeared in associated genes located
3 kb upstream of their TSS regions (Supplementary Tables
S3, S4), and thus can be considered as promoter peaks
(Foissac et al., 2019), which play important roles in the
transcription of associated genes. These promoter peaks
showed consistent signals at the TSS regions in all
developmental stages in both species (Supplementary Figure
S1). We also observed some ATAC-seq peaks in gene bodies
(either introns or exons) and distal intergenic regions
(Supplementary Tables S3, S4). These results indicate that
ATAC-seq technology can efficiently detect both proximal and
distal intergenic regulatory regions in butterflies.

The observed peaks are open chromatin regions, which
may contain transcription factor binding sites (TFBSs) (Van
Der Burg et al.,, 2019). TFBSs play important roles in the
regulation of gene expression mediated by transcription
factors (TFs). Therefore, we identified the representative
motifs of TFBSs in accessible peaks and predicted their
potential TFs in each developmental stage and instar pair
using MEME software (v5.3.2) (Machanick & Bailey, 2011).
We identified 14, 11, and eight motifs in 4th instar larvae, 5th
instar larvae, and pupae of P. xuthus, respectively, and 14, 11,
and nine motifs in 4th instar larvae, 5th instar larvae, and
pupae of K. inachus, respectively (Table 1; Supplementary
Table S5). More motifs in DA peaks were identified in K.
inachus (12 motifs in L4 vs. L5 and 14 motifs in L4 vs. P and
L5 vs. P) than in P. xuthus (nine motifs in L4 vs. L5, 10 motifs
in L4 vs. P, and eight motifs in L5 vs. P) (Supplementary

Table 1 Summary of ATAC-seq peaks and peak-associated genes and motifs of transcription factor binding sites (TFBSs) in open peaks

and transcription factors (TFs) at three developmental stages in Papilio xuthus (Px) and Kallima inachus (Kin)

ATAC-seq peak

No. of peak-associated genes (n)

No. of motifs and

Species sDtZ\;Iopmental Average Total genes No. of peak-associated genes Ratio (%) (<3 TEs (o)
No. (n) length (bp) Total peaks (n) (=3 kb upstream) (n) kb upstream) Motifs TFs
Px L4 20367 433 42 016 7901 5246 66 14 51
L5 9648 471 4313 3093 72 11 18
P 12 001 402 5798 3695 64 8 16
Kin L4 28 751 251 219 251 9923 4067 41 14 25
L5 85433 328 13 538 9 356 69 11 22
P 105067 379 11998 10 515 88 9 20

L4: 4th instar larvae; L5: 5th instar larvae; P: Pupae.
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Figure 1 Species studied and schematic of KEGG pathways showing position of associated genes to differentially accessible (DA)
ATAC-seq promoter peaks and predicted transcription factors (TFs) at their promoter regions in Papilio xuthus (Px) and Kallima inachus
(Kin)

A: Different developmental stages of both species and their phylogenetic position at family level. Three developmental stages (L4, L5, and P) in
both species were used for ATAC-seq and RNA-seq. L4: 4th instar larvae, L5: 5th instar larvae, P: pupae. Phylogeny of seven butterfly families
follows previously reported results (Espeland et al., 2018). B: DA promoter peak-associated genes of 4th instar larvae vs. 5th instar larvae of P.
xuthus were enriched in melanogenesis pathway (ko04916). C: DA promoter peak-associated genes of 4th instar larvae vs. 5th instar larvae and
4th instar larvae vs. pupae of K. inachus were enriched in longevity pathway (ko04213). Pathway processes and involved genes are shown in same
color boxes. Genes in dotted boxes indicates that no transcription factor (TF) was identified. Genes in blue represent 4th instar larvae vs. 5th instar
larvae. Genes in brown present 4th instar larvae vs. pupae. Genes in red represent both 4th instar larvae vs. 5th instar larvae and 4th instar larvae
VS. pupae.

Tables S2, S6). After comparing the identified motifs with
known motifs in the JASPAR database (http://jaspar.
genereg.net/) using TomTom software (v5.3.2) (Machanick &
Bailey, 2011), we mined the potential TFs after combining all
motifs. In total, 71 TFs were predicted in the three
developmental stages (Supplementary Figure S2; Table 1;
Supplementary Tables S5, S7) and 43 TFs binding to TFBSs
were predicted within the DA ATAC-seq peaks among the
instar pairs in both butterfly species (Supplementary Tables
S2, S6, S8). We further analyzed the position of the DA peaks
including TFBSs related to these TFs and found that many
TFs bind to the promoter regions of genes (Supplementary
Table S9). The TFs binding to the DA peaks may therefore

616 www.zoores.ac.cn

regulate morphological changes between stages.

Our ATAC-seq data provide important insights into the
molecular mechanism underlying larval color pattern changes
in 4th instar larvae (L4) to 5th instar larvae (L5) in P. xuthus
(i.e., from black to green) (Figure 1A). Larval pattern switch is
an important adaptive strategy and regulated by juvenile
hormones during the early L4 stage (JH-sensitive period)
(Futahashi & Fujiwara, 2008). Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis indicated that
the DA ATAC-seq promoter peak-associated genes
(XP_013161585.1 and XP_013164165.1) in L4 vs. L5 were
significantly related in the melanogenesis pathway (ko04916)
(Supplementary Figure S3A and Table S10). However, we
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failed to identify hormone-related genes with the DA ATAC-
seq promoter, which may be because hormones often play
key roles during specific developmental time periods, and our
sampling focused on different instar larvae, not specific time
points. DA ATAC-seq peak analysis showed that the
accessible promoter peaks of XP_013161585.1 had strong
signals in the L4 stage but no signal in the L5 stage
(Supplementary Table S11). The accessible promoter peaks
of XP_013164165.1 had signals in both the L4 and L5 stages,
but the signals were stronger in L5 (Supplementary Table
S11). Based on motif and TF analysis in L4 vs. L5 in P.
xuthus, one motif (CCYWYCCCYHYHMCYACCCCC) and one
TF (btd) were identified on the promoter region of the gene
XP_013164165.1, while no motif or TF was identified on the
gene XP_013161585.1 (Figure 1B; Supplementary Table
S12). Combined with RNA-seq analysis, XP_013161585.1
and XP_013164165.1 showed slightly higher expression in L4
than in L5 (Supplementary Figure S4A), suggesting that high
promoter peak accessibility may promote gene expression.
Furthermore, XP_013161585.1 is annotated as a histone
acetyltransferase (HAT) p300 and binds to Creb-binding
protein (CBP), constituting an important regulatory factor in
the Wnt signaling pathway (Li et al., 2007). The signaling
ligand WntA, a member of the Wnt family, controls variation in
melanin patterning across Heliconius and other butterfly
species (Kronforst & Papa, 2015; Van Belleghem et al., 2020).
XP_013164165.1 is annotated as protein kinase C (PKC) and
indirectly promotes the synthesis of melanin (Figure 1B). Our
data indicate that the two genes and open peaks in their
promoter regions likely play important roles in the black
patterns of the epidermis in 4th instar larvae of P. xuthus. We
checked the chromatin accessibility patterns for several well-
known genes (ebony, black, laccase, prophenoloxidase, and
yellow) encoding enzymes involved in melanin biosynthesis.
Results showed that the genes exhibited different open peaks
in the three developmental stages in P. xuthus
(Supplementary Table S13).

Interestingly, ATAC-seq analysis also provided molecular
evidence for the longevity of diapaused adults. Butterflies can
hibernate, in the form of diapause, during different
developmental stages, but most commonly during the larval
and pupal stages (Danks, 1987). Previous study on 290
butterfly species from North America found that diapause is
more common in the larval and pupal stages (58% and 24%,
respectively) than in the egg and adult stages (13% and 5%,
respectively) (Scott, 1979). Further research on 110
Lepidopteran species reported similar results, with diapause
predominantly occurring in the larval and pupal stages (93%)
and more limitedly in the egg and adult stages (7%)
(Saunders, 2002). For example, egg diapause is common in
Parnassius species, such as P. apollo, P. bremeri, and P.
glacialis (Elwes, 1886; Muscarella, 2010; Weiss, 1999); larval
diapause is common in certain Nymphalidae species, such as
Limenitis Archippus, and in several Pieridae species, such as
Colias alexandra (Clark & Platt, 1969; Hayes, 1982); pupal
diapause is most common in Papilionidae species, such as
Papilio xuthus, and in Pieridae species, such as Pieris rapae
(Kaneko & Katagiri, 2004; Yamanaka et al., 2004); and adult
diapause is found in Nymphalidae species, such as K. inachus

and Polygonia c-aureum (Hiroyoshi & Reddy, 2018; Protas &
Patel, 2008; Zhou et al., 2005). Based on KEGG enrichment
analysis, we identified several K. inachus genes enriched in
the longevity regulating pathway (ko04213) in the L4 vs. L5
(18 genes) and L4 vs. P (25 genes) comparisons, which were
distributed throughout the whole pathway (Supplementary
Figure S3B, C and Table S10). In addition, we identified five
motifs and 17 TFs on the promoter regions of five out of the 18
identified genes in L4 vs. L5, and five motifs and seven TFs on
the promoter regions of three out of the 25 identified genes in
L4 vs. P (Figure 1C; Supplementary Table S12). Among the
18 genes identified from the L4 vs. L5 comparison, two DA
promoter peaks of one gene (Kin_11440) showed significantly
stronger signals in L4 larvae, but no signal in L5 larvae, while
another 18 DA promoter peaks near 17 genes showed
significantly stronger signals in L5 (Supplementary Table
S11). Based on combined RNA-seq analysis, three genes (Kin_
10196, Kin_11440, and Kin_13522) out of the 18 identified
genes showed significantly higher expression in L5
(Supplementary Figure S4B). Kin_13522 is annotated as an
alpha crystallin/heat shock protein, which comes from a family
of large and dynamic oligomers that are highly expressed in
long-lived muscle, lens, and brain cells (Augusteyn, 2004,
Bagneris et al., 2009). Among the 25 genes identified from the
L4 vs. P comparison, two DA promoter peaks near two genes
showed significantly strong signals in the L4 stage but no
signal in the P stage, while 29 DA promoter peaks in 25 genes
showed significantly stronger signals in the P stage
(Supplementary Table S11). Based on combined RNA-seq
analysis, six (Kin_07423, Kin_13471, Kin_13473, Kin_13532,
Kin_13535, and Kin_14010) out of the 25 identified genes
showed significantly high expression in the P stage
(Supplementary Figure S4C). Several of these highly
expressed genes (Kin_07423, Kin_13473, Kin_13532,
Kin_13535, and Kin_13471) are annotated as alpha
crystallin/heat shock proteins and heat shock protein 70,
which are closely related to organismal growth and
development, metabolic activity, apoptosis, and longevity
(Bagneris et al., 2009; Lee et al., 2005; Seddigh, 2019;
Shilova et al., 2018; Vos et al., 2016). Comparing the larval
and pupal stages of K. inachus, we found that more genes
were enriched in the longevity regulating pathway in pupae.
These data suggest that, compared with the L4 stage, more
accessible promoter peaks with longevity-related genes were
open in the L5 and P stages, and most showed higher
expression. Notably, the number and expression of genes
enriched in the longevity regulating pathway were markedly
higher in the pupae of K. inachus. The results demonstrate
that adult diapause and overwintering could be attributed to
the regulatory expression of longevity genes in 5th instar
larvae and pupae. Thus, our data lay a novel foundation for
future investigations on adult overwintering in butterflies.
Taken together, we revealed the chromatin accessibility
profiles of three developmental stages in two butterfly species
from Papilionidae and Nymphalidae. Our results showed that
chromatin accessibility is a dynamic process across all
developmental stages and is highly correlated with phenotypic
traits. Furthermore, we showed that two genes in 4th instar
larvae, which function in the melanogenesis pathway, had
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open peaks at their promoter regions and may play key roles
in the cuticle color of such larvae in P. xuthus. We also found
that longevity in diapaused adults may benefit molecularly
from the expression of longevity genes in 5th instar larvae and
pupae. This study not only provides novel insights into larval
cuticle color and adult longevity, but also provides an
important data resource for investigating developmental
regulatory mechanisms in butterfly ontogeny.
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