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ABSTRACT

Persistent uplift means the Qinghai-Tibet Plateau
(QTP) is an ideal natural laboratory to investigate
genome evolution and adaptation within highland
environments. However, how paleogeographic and
paleoclimatic events influence the genome and
population of endemic fish species remains unclear.
Glyptosternon maculatum is an ancient endemic fish
found on the QTP and the only critically endangered
species in the Sisoridae family. Here, we found that
major transposons in the G. maculatum genome
showed episodic bursts, consistent  with
contemporaneous geological and climatic events
during the QTP formation. Notably, histone genes
showed significant expansion in the G. maculatum
genome, which may be mediated by long
interspersed nuclear elements (LINE) repetitive
element duplications. Population analysis showed
that  ancestral G. maculatum  populations

This is an open-access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http:/
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Copyright ©2021 Editorial Office of Zoological Research, Kunming
Institute of Zoology, Chinese Academy of Sciences

experienced two significant depressions 2.6 million
years ago (Mya) and 10 000 years ago, exhibiting
excellent synchronization with Quaternary glaciation
and the Younger Dryas, respectively. Thus, we
propose that paleogeography and paleoclimate were
dominating driving forces for population dynamics in
endemic fish on the QTP. Tectonic movements and
temperature fluctuation likely destroyed the habitat
and disrupted the drainage connectivity among
populations. These factors may have caused severe
bottlenecks and limited migration among ancestral
G. maculatum populations, resulting in the low
genetic diversity and endangered status of the
species today.
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INTRODUCTION

Deciphering how genomes evolve in response to dramatic
environmental change is an essential question in evolutionary
biology to understand the molecular mechanisms of
adaptations and speciation. The Qinghai-Tibet Plateau (QTP)
was formed from the collision of the Indian and Eurasian
Plates and is the youngest, largest, and highest plateau on
Earth, with an average altitude of over 4 000 m a.s.l. (Peng et
al., 2006). Continued uplift over the last 50 million years ago
(Mya) (Peng et al, 2006) and the extreme climatic
environment make the QTP an ideal and unique natural
laboratory to investigate how paleogeography and
paleoclimate have influenced endemic genome and population
evolution. The high-altitude environment of the QTP s
characterized by high ultraviolet (UV) radiation, dramatic
temperature changes, and nutritional deficiencies (Jiang et al.,
2012; Zhang et al.,, 2016). Consequently, understanding
genome and population evolution is essential to gain insight
into the molecular mechanisms underlying environmental
adaptations and to protect the wild genetic resources of
endemic endangered species in the QTP.

Research has elucidated the molecular mechanisms that
underlie the high-altitude adaptations of Tibetan people
(Petousi & Robbins, 2014; Yi et al., 2010). However, the initial
peopling of the QTP by modern humans occurred about 25 000
years ago (Beall, 2007), which is significantly more recent
than the long history of several million years for QTP
formation. Endemic animals of the plateau represent excellent
genome evolution models with long adaptive histories during
plateau uplift. In the last decade, studies on genome
sequencing in Tibetan animals (Wang et al., 2014), including
yaks (Qiu et al., 2012), pigs (Ai et al., 2014), dogs (Gou et al.,
2014), antelopes (Ge et al., 2013), and birds (Qu et al., 2013),
have broadened our understanding of genomic adaptations to
the local environment via the evolution and selection of
putatively important functional genes (Jablonski, 2017; Wei et
al., 2016). However, few studies have uncovered genome
characterizations of endemic animals. Moreover, the
relationship between the evolution of endemic species
genomes and populations and paleogeographic and
paleoclimatic events during the formation of the QTP is still
largely unknown.

The dispersal and distribution of fish strictly depend on
drainage connections, which are highly influenced by tectonic
movements and climate change (Yang et al., 2009). Thus, the
genomic evolution of freshwater fish offers an excellent
opportunity to contextualize biological evolution to changes in
QTP geology and climate (Kang et al., 2017; Xiao et al., 2020;
Yang et al., 2009). Although transcriptomic and genomic
studies on Schizothorax o'connori (Xiao et al., 2020) and
Triplophysa bleekeri (Yuan et al., 2020) have revealed
differential expression and natural selection of key genes in
QTP fish adaptations (Ma et al., 2016), research on fish

genome and population evolution in relation to environmental
change and uplift of the QTP remains limited. The family
Sisoridae in the order Siluriformes, which contains
glyptosternoid and non-glyptosternoid species, is one of the
main taxonomic groups of fish in the basin waters of the QTP
(Peng et al., 2006). The evolution and speciation of sisorid
catfish are thought to have been profoundly influenced by
QTP uplift (Guo et al., 2005; He et al., 2001). Glyptosternon
maculatum is one of the most ancient species within
Glyptosterninae and is distributed at altitudes from 2 800—4 200
m in the Yarlung Zangbo River (Zhang et al.,, 2010).
Consequently, due to its peculiar ecological distribution and
evolutionary history (Zhang et al., 2011), G. maculatum is an
ideal species to explore genome and population evolution
during the formation of the QTP and to evaluate how genomic
changes contributed to the environmental adaptations of
sisorid catfish on the QTP.

To this end, we performed G. maculatum genomic analysis
and revealed episodic transposon bursts, which may have
facilitated functional gene expansions and thus contributed to
the speciation and environmental adaptation of G. maculatum.
Population genetic analyses based on whole-genome variants
were performed to address how contemporaneous
environmental changes may have influenced ancestral
populations. We revealed that both QTP uplift and climatic
events likely imposed immense natural stress on G.
maculatum and limited migration among populations, leading
to the low genetic diversity and endangered status of G.
maculatum today.

MATERIALS AND METHODS

Chromosomal construction and transcriptome assembly
for phylogenetic analysis
We used Hi-C techniques for chromosomal assembly of G.
maculatum based on contig sequences assembled from a
previous study (Edgar, 2004). Muscle samples from the same
G. maculatum fish used for genome sequencing were used for
Hi-C library construction following prior research (Gong et al.,
2018). The Hi-C libraries were controlled for quality and
sequenced on the lllumina Hiseq X Ten platform (lllumina,
USA) (Supplementary Table S1). The contig sequences of G.
maculatum were scaffolded into chromosomes using the
bioinformatics method in Gong et al. (2018) (Supplementary
Table S2 and Figure S1).

Transcriptomes of muscle tissue from 16 QTP catfish
(Supplementary Tables S3, S4), including 15 Sisoridae fish
(Exostoma labiatum, Pareuchiloglanis feae, Pareuchiloglanis

kamengensis, Glyptothorax quadriocellatus, Glyptothorax
fukiensis honghensis, Glyptothorax interspinalum,
Glyptothorax cavia, Glyptothorax dorsalis, Glyptothorax

laosensis, Glyptothorax zainaensis, Glyptothorax trilineatus,
Glyptothorax ~ minimaculatus, = Bagarius  yarrelli, and
Pseudecheneis sulcatus) and one Bagridae fish (Leiocassis
longirostris), were sequenced using the lllumina HiSeq X Ten
platform (lllumina, USA). In total, 66 Gb of raw RNA-seq data
were generated. The RNA-seq reads of these fish were
assembled by Trinity v2.8.6 (Kumar et al, 2016)
(Supplementary Table S4).
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Phylogenetic analysis among sisorid catfish

The unigenes of the 16 catfish were translated into protein
sequences. Protein sequences longer than 50 amino acids
were clustered with the whole proteome of G. maculatum
using OrthoMCL v2.0.9 (Li, 2011). We obtained 167 single-
copy genes with a total length of ~232 kb after gene family
clustering. MUSCLE v3.8.31 (Li & Durbin, 2009) was used to
generate multiple sequence alignments for protein sequences
in each single-copy family with default parameters. The
alignments of each family were concatenated to a super
alignment matrix, which was used for phylogenetic tree
reconstruction with RAXML v8 (Li et al., 2003). Divergence
time between fish species was estimated using MCMCTree in
Phylogenetic Analysis by Maximum Likelihood (PAML) v4
(Lieberman-Aiden et al., 2009), with the options “correlated
molecular clock” and “JC69” model. Markov Chain Monte
Carlo analysis was run for 20 000 generations using a burn-in
of 1000 iterations. Four calibration points were applied:
Glyptosternon and Exostoma divergence time (5.5-8.8 Mya),
Glyptosternon and Glyptothorax divergence time (7.7—
12.2 Mya), Glyptosternon and Pseudecheneis divergence time
(7.7-12.2 Mya), and Sisoridae and Bagridae divergence time
(41-143 Mya). These calibration points were traced from
TimeTree (http://www.timetree.org/) (Supplementary Figure
S2).

Expanded gene families and positively selected gene
detection

The phylogenetic tree and divergence times of G. maculatum
and other species were analyzed using CAFE v5 (De Bie et
al., 2006) to infer changes in gene family size using a
probabilistic model. Gene Ontology (GO) enrichment analysis
was performed on the G. maculatum expanded genes using
the topGO v2.36.0 package (Alexa et al., 2006). MUSCLE
v3.8.31 was used for multi-protein sequence alignment of the
G. maculatum genes and their orthologs. Conserved CDS
alignments of each single-copy gene family were extracted by
Gblocks v0.91b (Talavera & Castresana, 2007) and used for
further identification of positively selected genes. The ratios of
nonsynonymous to synonymous substitutions (Ka/Ks, or w)
were estimated for each single-copy orthologous gene using
the codeml program with the branch-site model implemented
in PAML v4 (Guindon et al., 2010). A likelihood ratio test was
conducted, and false discovery rate (FDR) correction was
performed for multiple comparisons. Genes with corrected
P<0.01 were defined as naturally selected genes.

Phylogeny and burst time estimation of LINE RTE-BovB
and L2 type

Repetitive sequences in the G. maculatum genome were
identified by a combination of homology searching and ab
initio prediction. For homology-based prediction, we used
RepeatMasker v4.1.2 (Bergman & Quesneville, 2007) and
ProteinMask to search against RepBase. For ab initio
prediction, we used Tandem Repeats Finder (TRF) v4.04
(Benson, 1999), LTR_FINDER v1.0 (Xu & Wang, 2007),
PILER v1.3.11 (Edgar & Myers, 2005), and RepeatScout
v1.0.5 (Price et al., 2005) with default parameters. We found
that at least 32% of the G. maculatum assembly was
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composed of repetitive elements (Supplementary Table S5).
The identified repeats were annotated using RepBase v23.04
(Jurka et al., 2005) with RepeatMasker v4.1.2 (Bergman &
Quesneville, 2007) against this database. Other species,
including Astyanax mexicanus, Cyprinus carpio, Danio rerio,
Ictalurus punctatus, Oncorhynchus mykiss, Oryzias latipes,
Pelteobagrus fulvidraco, and Poecilia formosa, were also
detected using the same pipeline (Supplementary Tables S5,
S6 and Figures S3, S4). Interestingly, we found that long
interspersed nuclear elements (LINE) content was much more
abundant in the G. maculatum genome.

The times of transposon bursts were estimated using
previously published methods (Albertin et al., 2015). We dated
transposable elements longer than 500 bp with RepeatMasker
and adjusted the distances for multiple substitutions using the
Jukes-Cantor formula:

JK=-3/4xlog(1-4xd/3) (1)

where d is the distance estimated by RepeatMasker v4.1.2.
Using an estimate of 0.0036 JK/myr for synonymous
substitutions per million years (Albertin et al., 2015; Xu et al.,
2014), the divergence time of the repeats was then estimated.

Population genetic analysis for G. maculatum using
whole-genome data

Ten living individuals were collected from 2900, 4100-1, and
4100-2 using gill nets. All individuals were narcotized with MS-
222 (Solarbio, China) for a few minutes before sampling
muscles. For each individual, the muscle samples were
immediately frozen in liquid nitrogen after dissection and
stored at —80 °C until DNA extraction. Muscle samples from
the outgroup, E. labiatum, were also collected.

For each sample, genomic DNA was extracted and used for
library construction. Sequencing libraries were generated
using a Truseq Nano DNA HT Sample Preparation Kit
(lumina, USA) following the manufacturer’s
recommendations. Fragments with a length of 350 bp were
selected, end polished, A-tailed, and ligated with the full-length
adapter for lllumina sequencing. After polymerase chain
reaction (PCR) amplification, all products were purified
(AMPure XP system) and analyzed for size distribution using
an Agilent2100 Bioanalyzer (Agilent Technologies, USA) and
quantified using real-time PCR. Sequencing was implemented
by the lllumina Hiseq 2000 platform (lllumina, USA) and
millions of 150 bp paired-end short reads were generated.

Raw data were appraised using FastQC v.0.10.1 and
filtered using fastp v0.20.0 (Chen et al., 2018). The remaining
high-quality paired-end reads were mapped to the genome
using BWA6 v0.7.8 (Li & Durbin, 2010) with the command
“‘mem -t 4 -k 32 -M”. To reduce mismatches generated by
PCR amplification before sequencing, duplicate reads were
removed by SAMtools v1.9 (Li, 2011). Single nucleotide
polymorphism (SNP) calling was performed following the
Genome Analysis Toolkit (GATK) v4.1.9.0 best practices
(McKenna et al., 2010). Annotations were performed using the
ANNOVAR package (v2013-05-20) (Wang et al., 2010).

Based on the identified SNPs, a neighbor-joining tree
representing the relationships of each individual was
constructed using TreeBeST v1.9.2  (http://treesoft.
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sourceforge.net/treebest.shtml) with 100 bootstrap
resamplings. Based on the same data, the population genetic
structure was estimated using the Bayesian computer
algorithm with the R package LEA v3.13 (Frichot & Frangois,
2015). Principal component analysis (PCA) was also
implemented using R v4.1.0.

Demographic history of G. maculatum

The population history of three populations of G. maculatum
was constructed using the multiple sequentially Markovian
coalescent (MSMC) approach v1.1.0 (Schiffels & Durbin,
2014) with a generation time of 6 and mutation rate of
3.51x107° per year per nucleotide (Yang et al., 2016). MSMC
uses a hidden Markov model to analyze patterns of
heterozygosity along genome sequences. We also applied the
Generalized Phylogenetic Coalescent Sampler (G-PhoCS)
v1.2.3 (Gronau et al., 2011). The prior distributions over model
parameters were defined by Gamma distributions (Gronau et
al.,, 2011). Markov chain was run for 100 000 iterations and
population parameter values were sampled every 10
iterations.

RESULTS

Genome and transcriptome assembly for phylogenetic
analysis of sisorid catfish

Based on the contigs assembled from the PacBio long reads
(Liu et al., 2018), Hi-C sequencing was applied with the same
G. maculatum sample collected in the Tibet Plateau to obtain
a high-quality chromosomal genome. A 704.8 Mb genome
was obtained with a contig and scaffold N50 of 878.4 kb and
27.8 Mb, respectively. More than 91.7% of the sequences
were anchored on chromosomes at the base level, resulting
into 2 083 genomic sequences longer than 2 kb
(Supplementary Table S2 and Figure S1). The GC content of
the G. maculatum genome was 39.6%. The transcriptomes of
16 sisorid catfish and Leiocassis longirostris were sequenced
and assembled for the following analyses (Supplementary
Table S3).

The phylogenetic relationships of G. maculatum to the other
16 sisorid catfish species were constructed using the
transcriptome data (Figure 1; Supplementary Table S3), with
L. longirostris used as the outgroup species (Figure 2A).
Pseudecheneis was the earlier diverging genus among
Sisoridae, and glyptosternoid and non-glyptosternoid fish
clearly formed two sister groups. Glyptosternon and Exostoma
were primitive taxa among the glyptosternoid fish, while
Bagarius was primitive in the non-glyptosternoid group. The
Pseudecheneis genus diverged from the common ancestor of
Sisoridae ~9.7 Mya and glyptosternoid and non-glyptosternoid
fish separated ~8.1 Mya.

Protein-coding genes were used to reconstruct a genome-
based phylogeny for G. maculatum among teleosts
(Figure 2B). The analysis supported a close evolutionary
relationship between I. punetaus and P. fulvidraco, consistent
with the traditional taxonomy of Siluriformes. From our
phylogenetic analysis, G. maculatum diverged from their
common ancestor with . punetaus and P. fulvidraco 37—43
Mya (Supplementary Figure S2), a time that roughly
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Figure 1 Sampling sites (red spot) for fish species on the
Qinghai-Tibet Plateau

Altitude is represented by color bar. Species abbreviations are:
labiatum  (EL),
Pareuchiloglanis feae (PF), Pareuchiloglanis kamengensis (PK),
Glyptothorax quadriocellatus (GQ), Glyptothorax fukiensis honghensis
(GFH), Glyptothorax interspinalum (Gl), Glyptothorax cavia (GC),
Glyptothorax  dorsalis (GD), Glyptothorax zainaensis (GZ),
Glyptothorax trilineatus (GT), Glyptothorax minimaculatus (GMN),
Glyptothorax laosensis (GL), Bagarius yarrelli (BY), Pseudecheneis
sulcatus (PS), and Leiocassis longirostris (LL).

Glyptosternon  maculatum (GM), Exostoma

corresponds to the collision of the ancient Indian and Eurasian
plates in the Cenozoic era (Li et al., 2015).

Repetitive elements in G. maculatum genome

More than 30% of the G. maculatum genome was composed
of repetitive sequences (Supplementary Table S5). The
abundance of whole genomic repeats in the G. maculatum
genome was comparable to that of other teleost fish, but the
abundance of long interspersed elements (LINEs) comprised
>23.1% and >66.3% of the genome and repetitive elements,
respectively, significantly higher than that observed in other
teleost fish (Figure 2B; Supplementary Table S4). LINEs
(primarily LINE/L1 types) comprise ~18.9% of the human
genome (Li et al., 2001), but do not dominate repeat regions in
other teleost genomes (Supplementary Table S6). The two
most abundant LINE transposons in the G. maculatum
genome were RTE-BovB (93.4 Mb long and 12.3% of the
genome) and L2 (57.9 Mb and 7.6%) (Supplementary Table
S6). The abundance of long terminal repeats (LTRs) was also
slightly higher in the G. maculatum genome relative to the
other teleosts, but DNA transposon abundance was lower
(Supplementary Table S6).

Timing of LINE expansions in G. maculatum genome

The timing of LINE transposon expansions was estimated
from sequence comparisons of LINE RTE-BovB and L2. The
estimated time for expansion bursts indicated a multi-stage
expansion pattern for both types (Figure3; Supplementary
Figures S3, S4). The first stage of expansion occurred slowly
during the late Eocene and early Oligocene ~30 Mya. The
second stage exhibited an even more substantial expansion
during the early Miocene ~20 Mya. The third stage showed a
sharp expansion starting from 3 Mya in the Pleistocene. We
observed remarkable associations of tectonic movements and
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Figure 2 Phylogeny among sisorid catfish on Qinghai-Tibet Plateau and repeat content comparison of Glyptosternon maculatum to other

teleosts

A: Phylogeny of QTP sisorid fish collected using transcriptome data and G. maculatum genome. Species highlighted by colors from glyptosternoid
and non-glyptosternoid belong to Sisoridae, while other species are not from the family. Speciation divergence periods are labeled at branches with
95% confidence interval in parentheses. Divergence periods with red points were used for time recalibration. B: Repeat content in genomes of
species closely related to G. maculatum and detailed repetitive element categories, including LINE (red), LTR (green), DNA transposon (blue), and

other (blank).

global surface temperature fluctuations to the historical RTE-
BovB and L2 bursts (Figure 3A, B).

Expanded and selected functional genes for high-altitude
environmental adaptation

Using whole-genome protein-coding gene clustering of close-
related fish species, we identified expanded gene families in
the G. maculatum genome. The functions of the expanded
genes were investigated by enrichment analysis
(Supplementary Tables S7, S8). We observed a large-scale
expansion of gene families related to chromosome
organization, including DNA  packing, nucleosome
organization, chromatin assembly, nucleosome assembly,

DNA conformational changes, and folate metabolism
(Figure 4A).
Detailed analysis revealed that genes involved in

nucleosome organization were mainly core histone proteins,
including H2A, H2B, H3, and H4. In the G. maculatum
genome, we identified 61, 85, 68, and 81 genes for the H2A,
H2B, H3, and H4 histones, respectively, which were
significantly higher than their copies in the P. fulvidraco and I.
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punetaus genomes (Figure 4B). Interestingly, most duplicated
histone genes resided in the LINE/L2 elements. In contrast,
few histones in the P. fulvidraco and I. punetaus genomes
were found in LTR/Gypsy, simple repeat, DNA/TcMar-Tc1,
and most histones did not overlap with any repetitive elements
(Figure 4B). The mosaic structure of the histone with LINE/L2
demonstrated that histone proteins were expanded through
the LINE/L2 bursts in the G. maculatum genome. Strikingly,
based on the timing of the expansion of the LINE/L2 elements
with histone genes, we found that those repetitive elements
were duplicated ~2—1 Mya (Figure 4C) during the latest wave
of transposon bursts, accelerated uplift of the plateau, and
sudden drop in temperature (Figure 3B, C).

In the G. maculatum genome, many functional genes
related to folate absorption and metabolism were expanded
genome-wide and positively selected (Figure 4D). Two
important genes, i.e., proton-coupled folate transporter (pcft)
(FDR=0.00034) and 5-aminoimidazole-4-carboxamide
ribonucleotide (AICAR) transformylase/IMP cyclohydrolase
(purh) (FDR=0.0012), were positively selected in the
likelihood ratio test for the nonsynonymous to synonymous
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Figure 3 Expansion of LINE/RTE-BovB and LINE/L2 in Glyptosternon maculatum genome with tectonic movements and climate change

during Qinghai-Tibet Plateau formation

A: Episodic bursts of RTE-BovB (red) and L2 (green) around ~30, ~20, and ~5-1 Mya after India-Eurasia collision, corresponding to Gangdese
Movement and two uplift accelerations of QTP ~30 Mya (black dashed line). Recent burst is highlighted in red. Gray shows major tectonic
movements. B: Global surface temperature (solid black line) and decrease in temperature per million years (dashed line) after plate collision. Data

were collected from a previous paleoclimatology study (Zachos et al., 2001).

substitutions (Ka/Ks) (Anisimova et al., 2001). Remarkably,
mitochondrial monofunctional C1-tetrahydrofolate synthase
(mthfd1l), dihydrofolate reductase (dhfr), adenosine kinase
(adk), phosphodiesterase 3B (pde3b), and adenylate cyclase
6 (adcy6) genes, which are involved in folate metabolism and
purine biosynthesis, were significantly expanded in the G.
maculatum genome (Figure 4E). We identified three
mitochondrial monofunctional C1-tetrahydrofolate synthase
(mthfd1l) genes with integrated functional domains in the G.
maculatum genome, but only one in P. fulvidraco and I.
punetaus (Figure 4E). We showed that duplicated mthfd1/
genes resided in the repeat rich regions, mainly the LINE
RTE-BovB and L2 elements. Interestingly, those repetitive
elements showed excellent synteny along the genome
(Figure 4F), implying that mthfd1/ genes may be duplicated
from segmental duplications after the repeat expansion.

Population genetic diversity for G. maculatum

To investigate genetic diversity among G. maculatum
populations, we collected 30 samples from three sites: two
from altitudes of 4 100 m (GM4100, GM2 in Figure 1) and 2 900
m a.s.l. (GM2900, GM3 in Figure 1) in the Yarlung Zangbo
River and one from 4 500 m a.s.l. (GM4500, GM1 in Figure 1)
in the Dogxung Zangbo River, a main branch of the Yarlung
Zangbo River. Angren Lake resides in the Dogxung Zangbo
River between the GM4300 and GM4500 populations (Figure
5A).

Usingwhole-genomeresequencingdata, we obtained 248 127
—257465 SNPs for species among populations
(Supplementary Table S9). Sample clustering and a
phylogenetic tree were constructed based on the whole-
genome variations (Figure 5B, C). The GM2900, GM4100,
and GM4500 populations were grouped into three clades
based on PCA (Figure 5B) and phylogenetic analysis
(Figure 5C). The genetic structures of the three populations
further confirmed the PCA and phylogenetic analysis results
(Figure 5D). Using E. labiatum as the out-group, phylogenetic
analysis based on whole-genome variants implied populations
of G. maculatum may have originated from habitats with lower
altitudes in the southern QTP, consistent with previous fossil
studies suggesting that glyptosternoids may have originated in
southeastern Tibet and eastern Himalayan areas in Yunnan,
China (Ma et al., 2015).

Using whole-genome variants among populations, we
investigated the population history for G. maculatum. We
found that the dynamic profiles of effective population size
were similar for different populations (Figure 5E). Three
populations experienced a sudden 60-fold drop in effective
population size from ~4 000 around 3 Mya to ~60 around 2
Mya (Figure 5E). In addition, we performed a demographic
analysis of G. maculatum using G-PhoCS (Gronau et al.,
2011) to estimate the population split time and migration
among populations. We showed that the GM2900 population
split from their common ancestor population ~10 thousand
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years before present (kyr BP) (Figure 5F). Remarkably, we
observed that the effective population size of ancestral
populations of G. maculatum experienced an almost 10 times
reduction after the population splits, implying severe
bottleneck effects during that period (Figure 5F). Furthermore,
the low migration rates among populations indicated limited
gene flow among populations (Figure 5F).

DISCUSSION

Our phylogenetic results of sisorid catfish species using
whole-genome protein-coding genes are consistent with the

508 www.zoores.ac.cn

results obtained from mitochondrial genes, which suggest that
many specialized glyptosternoid genera originated 1.9 Mya in
the Pleistocene (Peng et al., 2006; Yu & He, 2012), although
we included more Glyptothorax species in this work. Our
phylogenetic analysis also supported species radiation in the
genus Glyptothorax ~3 Mya. We showed that P. feae and P.
kamengensis diverged ~2.1 Mya (Figure 2A). We also
demonstrated numerous speciation events for Glyptothorax
over the last 3 Mya (Figure 2A). The times of species radiation
for specialized glyptosternoid and non-glyptosternoid species
are consistent with the latest sudden uplift of the QTP and
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Quaternary glacial period within the last 3 Mya (Jiang & Li,
2014). The coincidence of massive speciation with
paleogeographic and paleoclimatic events suggests that
species radiation is correlated with environmental fluctuations.

We also observed that the content of LINEs in G.
maculatum genome, mainly RTE-BovB and L2, was
significantly higher than that observed in other teleost fish
(Figure 2B). Transposon elements and their associated
functions have been found in teleost genomes recently. For

example, Tcl-mariner transposons are thought to be involved
in the rediploidization of the Atlantic salmon (Salmo salar)
genome (Lien et al., 2016), and multiple bursts of LINE1,
LINE2, CR1, and Deu are reported in the genomes of
coelacanth (Latimeria chalumnae) (Chalopin et al., 2014) and
lungfish (Neoceratodus forsteri) (Metcalfe et al., 2012).
However, the distribution and roles of RTE-BovB and L2 in
teleost evolution remain poorly investigated. RTE-BovB
elements comprise 10.7% of the bovine genome (Adelson et
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al., 2009), but this type of repeat is not a dominant transposon
in most teleost genomes (Supplementary Table S6).
Therefore, the expansion of RTE-BovB and L2 type elements
in the G. maculatum genome is intriguing from an evolutionary
perspective. Previous studies have demonstrated the potential
function of transposon elements as an evolutionary driving
force under rigorous environmental stress (Belyayev, 2014;
Craddock, 2016; Platt et al.,, 2014). LINEs are non-LTR
retrotransposons that can use self-transcribed reverse
transcriptase to copy and insert their sequences with
associated genes into genomes (Kazazian & Goodier, 2002).
Consequently, the high accumulation of LINEs in the G.
maculatum genome may be related to genome evolution and
adaptation to the environment during the formation of the
QTP.

Interestingly, the time estimations for the expansions of
RTE-BovB and L2 type elements showed three episodic
transposon bursts, illuminating another coincidence between
genome evolution and time of QTP multi-stage uplift
(Figure 3). Specifically, the timing of the first RTE-BovB and
L2 expansion (~30 Mya) paralleled the Gangdese Movement
periods in the QTP (Pan et al.,, 2012) (Figure 3A) and the
divergence of the ancestors of G. maculatum, I. punetaus, and
P. fulvidraco (~43-37 Mya) (Supplementary Figure S2). The
second RTE-BovB and L2 expansion (~20 Mya) coincided
with the even more significant QTP uplift event during the
Himalaya Movement at 25-15 Mya (Pan et al., 2012) (Figure
3A). The third expansion (<3 Mya) was concurrent with the
sudden accelerated Tibetan uplift during the Qingzang
Movement ~4—1 Mya (Li et al., 2015) (Figure 3A). In addition,
remarkable decreases in global surface temperature were also
associated with each of the RTE-BovB and L2 bursts (Figure
3B). These drops in temperatures could significantly limit the
habitat and geographically isolate endemic fish species on the
QTP. Nevertheless, the episodic transposon expansions and
their coincidence with multi-stage plateau uplift and climate
change demonstrate the correlation between genome
evolution in endemic fish and major paleogeographic and
paleoclimatic events on the QTP.

We also found that the transposon expansions occurred
after the ancestral divergence of G. maculatum, I. punetaus,
and P. fulvidraco (43—-37 Mya; Supplementary Figure S2) and
before the speciation of glyptosternoids and non-
glyptosternoids (~10 Mya; Figure 3A). Thus, genomic features
of earlier transposon expansions (>10 Mya) may be shared
among all glyptosternoid and non-glyptosternoid species on
the QTP. The most recent transposon burst occurred suddenly
over a narrow window that began 4 Mya (Figure 3A). Over this
last period, QTP uplift occurred at an unprecedentedly high
rate, some 3-4 times that of previous events (Jiang & Li,
2014). The environmental changes ~3 Mya may have exerted
severe adaptive selection pressure on endemic fish, as sharp
transposon expansion (Figure 3A) and massive speciation
(Figure 2A) were both observed during this period.

Genes related to nucleosome organization and folate
metabolism were expanded in the G. maculatum genome
(Figure 4A). The main histone genes, including H2A, H2B, H3,
and H4, were significantly expanded in G. maculatum
compared to P. fulvidraco and I punetaus (Figure 4B).
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Histones are proteins within chromatin, and they play
important structural roles in DNA packaging and structural
stability (Marifio-Ramirez et al., 2005), as well as functional
roles in cold stress (Verleih et al., 2015), antibiotic stimulus
(LU et al., 2014; Noga et al., 2011), UV radiation (Pawlak &
Deckert, 2007), and DNA repair (Schild-Poulter et al., 2003).
Previous studies have demonstrated the importance of histone
protein and chromatin structures to genomic stability
(Oberdoerffer & Sinclair, 2007). Our results indicated that
LINE L2 bursts mediated the recent and rapid expansion of
H2A, H2B, H3, and H4 histone genes in the G. maculatum
genome, which may be in reaction to extreme environmental
adaptations to cold temperatures, food shortages, and UV
exposure. Previous studies have also revealed that folate
contributes to high-altitude environmental adaptation due to its
important role in UV protection and DNA repair (Jablonski &
Chaplin, 2010) and folate-related genes exhibit significant
signals of high-altitude adaptation selection in Tibetans (Yang
et al., 2017). Mthfd1l, which is a mitochondrial monofunctional
enzyme with  10-formyl-tetrahydrofolate  (10-CHO-THF)
synthase activity, plays a critical role in the folate cycle and
cytoplasmic formate production (Tibbetts & Appling, 2010). In
human diseases, mthfd1l also contributes to the production
and accumulation of NADPH to levels that are sufficient to
combat oxidative stress for cell cycle delay and apoptosis,
especially in cancer cells (Lee et al., 2017). We observed the
mosaic structures of histone genes and mthfd1/ within
repetitive regions, implying that LINE RTE-BovB and L2 bursts
may facilitate whole-genome wide expansion of functional
genes favorable for environmental adaptation on the QTP.

Glyptosternon maculatum is the only critically endangered
Sisoridae species distributed at high altitudes of 2 800 mto 4 500
m a.s.l. on the QTP (Zhang et al., 2010). However, our
understanding of the genetic structure and population
evolution of this species on the QTP is still not clear. Using
whole-genome sequencing data, we observed roughly one
SNP per 2.7 kb in the genome of the wild G. maculatum
populations, which was significantly lower than that found in
the I. punetaus genome (one SNP per 93 bp) (Liu et al.,
2016), thus demonstrating extremely low genetic diversity in
G. maculatum populations.

Population analysis showed that the effective population
size of ancient G. maculatum populations experienced a sharp
60-fold decline ~2—-3 Mya (Figure 5E), which coincided with
the timing of the Quaternary glaciation. Quaternary glaciation,
beginning 2.58 Mya, was the last major ice age to occur
(Owen et al., 2008). The alternation between glaciation and
interglaciation during the Quaternary glaciation period had
large impact on the connectivity of the primary drainage
system of rivers and lakes on the QTP (Lehmkuhl & Owen,
2005), which likely lead to geographic barriers, and thus to
population isolation and speciation of endemic fish on the
QTP. We also found that the GM2900, GM4100, and GM4500
populations split ~10 kyr BP (Figure 5F). The sudden cold and
dry global climate during the Younger Dryas (11-10 kyr BP)
may have contributed to the population split (Gasse et al.,
1991) as the drop in temperature could have disrupted or
blocked water connectivity and limited gene flow among
populations during that period. Diatom records and climate
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studies for the Angren Lake also show an extremely low
abundance of diatoms ~10 kyr BP (Li et al., 1999), implying
that food scarcity may also be an important reason for the
population bottleneck.

CONCLUSIONS

We analyzed the genomic features and population diversity of
G. maculatum, a representative endemic fish on the QTP and
the most ancient species within the subfamily Glyptosterninae.
We found that whole-genome wide transposons, especially
dominant repetitive elements of LINE RTE-BovB and L2,
showed episodic bursts, coinciding with the timing of
accelerated uplift of the QTP and dramatic climatic
fluctuations. We also showed that these transposons
mediated functional gene expansions, which may have
contributed to the environmental adaptation of G. maculatum.
Using whole-genome variants, we determined that the
ancestral G. maculatum group experienced two large-scale
population depressions during the Quaternary glaciation ~2.6
Mya and the Younger Dryas ~10 kyr BP. The synchronous
tectonic movements and temperature drops during glacial
periods would likely have frozen habitats and disrupted
drainage connectivity, leading to the historical bottleneck
effects for ancient G. maculatum populations. For the first
time, we revealed the synchronization of the genome and
population evolution of G. maculatum with historical tectonic
movements and climate events during QTP formation.
Therefore, we propose that paleogeography and paleoclimate
may be dominating driving forces for genome and population
evolution of endemic fish on the QTP. The population whole-
genome variant data provide a valuable genetic resource and
opportunity to study genome and population evolution and to
investigate the molecular mechanism underlying the extreme
environmental adaptations of endemic fish species on the
QTP.
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