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Spatiotemporal patterns of anuran functional diversity
in temperate montane forests

Functional diversity is an integrative approach to better
understand biodiversity across space and time. In the present
study, we investigated the spatiotemporal patterns (i.e.,
elevation and season) and environmental determinants of
anuran functional diversity on Tianping Mountain, northwest
Hunan, China. Specifically, 10 transects were established
from low (300 m a.s.l.) to high (1 492 m a.s.l.) elevations, and
anuran communities were sampled in spring, early summer,
midsummer, and autumn in 2017. Four functional diversity
indices were computed for each transect in each season using
ecomorphological functional traits. Our results demonstrated
that these indices had contrasting responses to increasing
elevations. However, they did not differ significantly among
seasons in terms of temporal patterns. Interestingly, the
unique spatiotemporal functional diversity patterns were
impacted by distinct environmental variables, such as leaf litter
cover, water temperature, number of trees, and water
conductivity.

Exploring the spatiotemporal patterns of biodiversity is
central to modern ecology, particularly in regard to species
distribution characteristics, species coexistence mechanisms,
and community assembly rules (Fu et al., 2006; Khatiwada et
al.,, 2019). Spatial patterns of biodiversity can be assessed
along latitudinal/elevational gradients (Zhu et al., 2020) or
between different landscape types (e.g., agricultural, forest,
and urban areas) (Figueiredo et al., 2019). Temporal patterns
of biodiversity are usually assessed annually or seasonally in
accordance with the time scales of focus (Lep$ et al., 2019;
Tonkin et al., 2017). However, most previous studies have
only explored species richness despite the fact that
biodiversity is a concept that contains multiple facets (e.g.,
functional diversity and phylogenetic diversity) (Gaston, 1996).

Species richness can only reflect limited information about
biodiversity (Gotelli & Colwell, 2011). This is because the
ecological roles of species are not equivalent across
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ecosystems (Zhao et al.,, 2018). Instead, their functional
characteristics, rather than their taxonomic identity, drive their
biotic interactions (predation and competition) (Zhao et al.,
2019). Therefore, in recent decades, an increasing number of
studies have focused on functional diversity of communities,
which is considered a more integrative approach for better
understanding biodiversity across space and time (Eskildsen
et al., 2015). For instance, Pefia-Joya et al. (2020) identified
seasonal differences between taxonomic and functional
diversity in lizards distributed in the Sierra El Cuale, western
Mexico, with higher values in the rainy and dry seasons,
respectively. In terms of amphibian communities, functional
diversity can differ significantly by land use (i.e., forest,
tobacco, and suburban). For example, Pereyra et al. (2018)
reported higher functional diversity for amphibians in suburban
areas of Argentina. However, many previous studies have
been conducted in tropical regions, and empirical studies are
needed in temperate regions to understand the general
spatiotemporal patterns of amphibian functional diversity in
montane forests.

Environmental variables can affect amphibian species
distribution and abundance, and act as constraints for the
occupation of traits in functional space (Eskildsen et al., 2015;
Ochoa-Ochoa et al., 2020). Specifically, as ectotherms,
amphibian species distribution is first determined by climatic
factors (e.g., air temperature and precipitation) (Enriquez-
Urzelai et al., 2019; Lourenco-de-Moraes et al., 2014, 2019).
In addition, species with greater thermal tolerance can exhibit
wider elevational distribution (Khatiwada et al., 2020).
Therefore, different amphibian assemblages may be related to
the distinct occupation of trait space, which is associated with
changes in functional richness. Moreover, climatic factors can
also control amphibian seasonal migration (e.g., breeding and
hibernation) (Fei & Ye, 2016; Snyder & Weathers, 1975),
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causing fluctuations in species abundance, which may induce
cascading effects on the evenness of trait distribution. In
amphibian habitats, microhabitat features (e.g., leaf litter
cover, canopy cover, shrub cover, and number of trees) (de
Oliveira et al., 2017; Urbina-Cardona et al., 2006; Yang et al.,
2019) are important, not only reflecting habitat heterogeneity,
to some extent, but also acting as potential filters of species
distribution, especially for functional specialists (Raxworthy et
al., 2008; Villacampa et al., 2019). Consequently, differences
in microhabitat characteristics among habitats may be
consistent with changes in species with extreme traits in
functional space. Although several theories have been
reported, empirical studies on the mechanisms by which
environmental variables determine amphibian functional
diversity are still limited, especially in temperate regions.

Using a multi-trait approach incorporating intraspecific trait
variability (i.e., each species was divided into two distinct
functional entities: juvenile and adult), we quantified the
spatiotemporal patterns and environmental determinants of
anuran functional diversity in temperate montane forests.
Specifically, we: (1) assessed the spatial patterns of anuran
functional diversity along an elevational gradient; (2) tested
the temporal patterns of anuran functional diversity among
seasons (i.e., spring, early summer, midsummer, and
autumn); and (3) explored the microhabitat environmental
factors that determine anuran functional diversity. Based on
previous studies (e.g., Zhu et al. (2020), Sun et al. (2021)), we
predict that anuran functional diversity will decrease
continuously along an elevational gradient. We also predict
that anuran functional diversity will differ significantly among
seasons. Moreover, as environmental variables can affect
species composition (occurrence and abundance), which
exhibits distinct occupation of trait space, we predict that
microhabitat features, such as water temperature, number of
trees, canopy cover, shrub cover, leaf litter cover, and leaf
litter depth, will play important roles in determining functional
diversity of anuran communities.

During the four sampling events, 14 anuran species
belonging to six families were recorded (Supplementary Table
S1). Overall, Amolops ricketti, Paramegophrys liui, Paa
boulengeri, and Leptobrachium boringii were the dominant
species, while Fejervarya multistriata and Feirana quadranus
were the rarest species. The amphibian assemblages in each
transect differed across the four seasons (see Zhu et al.
(2020) for more details). The species were subsequently
divided into 18 functional entities (Supplementary Table S1).
In total, morphological traits were measured for 456
individuals and each functional entity was measured for
25.3+29.6 individuals (meanzstandard deviation (SD)).

Values of functional diversity indices are presented as
mean+SD, followed by the range. When incorporating the data
from the four samplings together, transect functional richness
(FRic) was 0.298+0.179 (0.025-0.617), and showed a
significant inverse bell shape in response to increasing
elevation (Figure 1A; Table 1). Functional evenness (FEve)
was 0.347+0.141 (0.064-0.522) and exhibited a significant
hump-shape relationship with increasing elevation (Figure 1A,
Table 1). In addition, functional divergence (FDiv;
0.843+0.086; 0.700-0.982) and functional specialization

(FSpe; 0.350+0.093; 0.175-0.526) increased significantly
along the elevational gradient (Figure 1A; Table 1). At the
temporal scale, the functional diversity indices of the transects
could not be calculated for October as they did not contain
sufficient functional entities. For the other three months,
however, no significant differences were found for the four
indices (P>0.05).

For the best generalized linear model (GLM), water
temperature and number of trees had significant effects on
functional evenness. Functional divergence was significantly
affected by water temperature, canopy cover, shrub cover,
leaf litter depth, and water conductivity. Functional
specialization was significantly impacted by number of trees,
shrub cover, leaf litter cover, and water conductivity. However,
there was no significant relationship between functional
richness and microhabitat variables (Supplementary Table
S2). Hierarchical partitioning analyses indicated that leaf litter
cover was the most important contributor to functional
richness (28.31%), followed by shrub cover (22.10%). Water
temperature (38.14%) contributed the most to functional
evenness, followed by number of trees (32.91%). Functional
divergence variation was mainly explained by canopy cover
(38.34%), water conductivity (21.94%), and water temperature
(19.63%). Functional specialization variation was
predominantly contributed to by water temperature (25.31%)
and water conductivity (19.92%) (Figure 1B).

We explored the spatiotemporal patterns of anuran
functional diversity, as well as their microhabitat determinants
on Tianping Mountain in northwest Hunan, China. Overall, our
results indicated that all four selected functional diversity
indices exhibited significant responses along the elevational
gradient. Specifically, there was an inverse bell shape
relationship between FRic and elevation, in contrast with our
previous study showing that anuran species richness
increased significantly with elevation (Zhu et al., 2020). This
suggests that although fewer species were detected along the
low-elevation transects, they exhibited specific functional traits
(e.g., adult Hyla gongshanensis and adult F. multistriata). This
may be due to the fact that they lived in farmland close to the
low-elevation transects, and were functional specialists
compared with the mountain stream species (Zhao et al.,
2018). FEve had a significant hump-shape response to
increasing elevation, indicating that the distribution of relative
biomass of the functional entities in functional space was more
regular in the mid-elevation transects. This is not surprising,
as our previous study indicated that one or two large-bodied
dominant species usually exist at low (e.g., A. ricketti and
Odorrana schmackeri) and high elevations (e.g., P. boulengeri
and L. boringii), accounting for a high percentage of total
biomass in the transects (Zhu et al., 2020). Interestingly, FDiv
and FSpe increased significantly with elevation, providing
evidence that functional generalists (i.e., adult Megophrys
sangzhiensis and adult Fejervarya multistriata) were gradually
replaced by functional specialists (i.e., adult L. boringii and
juvenile P. boulengeri) from low to high elevational transects.
This accords with the unique community assembly process
observed along the elevational gradient in the study area (Zhu
et al., 2020). It also explains why functional specialists were
not abundant in the low-elevation transects (e.g., F.
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Table 1 Models used to test responses of anuran functional diversity indices to elevational gradient

Response variable Source of variation df Estimate (SE) t P R?

FRic Elevation 7 -0.003 (0.001) -2.669 0.032 0.57
Elevation? 7 <0.001 (<0.001) 2.793 0.027
Intercept 7 1.403 (0.001) 3.020 0.019

FEve Elevation 7 0.003 (0.18) 2.713 0.030 0.54
Elevation? 7 <0.001 (<0.001) -2.614 0.035
Intercept 7 -0.729 (0.379) -1.909 0.098

FDiv Elevation 8 <0.001 (<0.001) 2.576 0.033 0.45
Intercept 8 0.691 (0.063) 10.949 <0.001

FSpe Elevation 8 <0.001 (<0.001) 4.345 0.002 0.70
Intercept 8 0.146 (0.050) 2.894 0.020

FRic: Functional richness; FEve: Functional evenness; FDiv: Functional divergence; FSpe: Functional specialization. Elevation and Elevation?
indicate linear and quadratic terms in regression models, respectively. Significant effects are indicated in bold.
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Figure 1 Spatiotemporal patterns of anuran functional diversity in temperate montane forests

A: Relationships between anuran functional diversity indices and elevations on Tianping Mountain; B: Hierarchical partitioning showing independent
contribution of selected environmental variables to variation in different functional diversity indices. Abbreviations of microhabitat variables are: WT:
Water temperature; TN: Number of trees; CC: Canopy cover; SC: Shrub cover; LLC: Leaf litter cover; LLD: Leaf litter depth; WCON: Water
conductivity.

multistriata). However, as a limited number of transects were claims that different seasons can play equally important roles
used in the present study, more transects should be added for anurans (Gardner et al., 2007). Indeed, different anuran
(particularly at mid-elevations, 978-1 388 m a.s.l.) in future species can exhibit very different abundances along the same
research to verify our conclusions. transects in accordance with their seasonal migration

In terms of temporal scale, no significant differences were behavior, which is regulated by the characteristic ecological
found in the four indices among seasons, supporting the conditions of each season (Fei et al., 2009, 2012; Snyder &
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Weathers, 1975). For instance, L. boringii usually breeds
between February and April, Paramegophrys liui breeds from
April to July, and O. schmackeri and M. sangzhiensis breed
from June to August (Fei et al., 2009, 2012). In addition, our
results also reflect, to some extent, the adaptation of species
to minimize interspecific competition for resources between
functionally similar species (Shimadzu et al., 2013). For
instance, A. chunganensis was a dominant species in August,
while functionally similar species A. ricketti was more
abundant in October. Indeed, this can be attributed to the life
history traits of these two species. Specifically, A.
chunganensis usually lives in forests, and only appears nears
streams to spawn during the breeding season. In contrast, A.
ricketti lives along the same streams throughout the whole
year (Fei et al., 2012). Therefore, A. ricketti can compensate
for the contribution of A. chunganensis to the functional
diversity indices along the transects.

Based on the GLMs and hierarchical partitioning results,
microhabitat variables significantly impacted anuran functional
diversity. Specifically, FRic was positively correlated with
water temperature, number of trees, and leaf litter cover,
although these effects were not significant. FEve was mainly
determined by water temperature and number of trees, but the
correlations between them were negative. These results were
consistent with previous studies showing that transects with
warm temperature, more trees, and higher percentage of leaf
litter cover can support more species with diverse traits
(Khatiwada et al., 2019), However, these species were not
evenly distributed along the transects in terms of relative
biomass, which may be determined by their ecological niche
breadth. In addition, our results suggested that transects with
more trees and a higher percentage of leaf litter cover, but
lower water temperature and conductivity usually exhibited
higher FDiv and FSpe. Indeed, most such transects were
located at high elevations, which contained greater and more
diverse vegetation. Therefore, more functional specialists,
such as adult L. boringii, juvenile and adult P. boulengeri,
adult Paramegophrys liui, and adult O. margaretae, inhabited
these transects. This was because habitats with higher leaf
litter cover were ideal breeding sites for these species (Fei et
al., 2009, 2012). Furthermore, as habitats with more diverse
and dense vegetation harbor greater insect abundance
(Thompson et al.,, 2014), these transects were also ideal
foraging sites for these functional specialists. This balance
between prey (insects) and predators (anuran) can also
increase the resilience of mountain forest ecosystems
(Bellone et al., 2017).

In  conclusion, the present study demonstrated that
spatiotemporal patterns of anuran functional diversity in
Tianping Mountain were influenced by microhabitat variables.
Our results provide important information for local amphibian
conservation activities (e.g., functional specialists and high-
elevation mountainous streams). However, more studies on
other mountains are still needed to demonstrate the general
patterns of anuran functional diversity, and to explore how
these patterns can affect food webs and ecosystem
functioning in temperate montane forests. Furthermore, our
study indicated the existence of unique community assembly
processes in mountain-dwelling amphibians, and future study

could better explain these processes by incorporating
phylogenetic signals. More importantly, as functional diversity
indices are more sensitive than those based on taxonomic
approaches, they can provide early warning signals of
disturbance impacts in montane forests.
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