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A novel machine learning approach (svmSomatic) to
distinguish somatic and germline mutations using
next-generation sequencing data

DEAR EDITOR,

Somatic mutations are a large category of genetic variations,
which play an essential role in tumorigenesis. Detection of
somatic single nucleotide variants (SNVs) could facilitate
downstream analysis of tumorigenesis. Many computational
methods have been developed to detect SNVs, but most
require normal matched samples to differentiate somatic
SNVs from the normal state, which can be difficult to obtain.
Therefore, developing new approaches for detecting somatic
SNVs without matched samples are crucial. In this work, we
detected somatic mutations from individual tumor samples
based on a novel machine learning approach, svmSomatic,
using next-generation sequencing (NGS) data. In addition, as
somatic SNV detection can be impacted by multiple mutations,
with germline mutations and co-occurrence of copy number
variations (CNVs) common in organisms, we used the novel
approach to distinguish somatic and germline mutations based
on the NGS data from individual tumor samples. In summary,
svmSomatic: (1) considers the influence of CNV co-
occurrence in detecting somatic mutations; and (2) trains a
support vector machine algorithm to distinguish between
somatic and germline mutations, without requiring normal
matched samples. We further tested and compared
svmSomatic with other common methods. Results showed
that symSomatic performance, as measured by F1-score, was
significantly better than that of others using both simulation
and real NGS data.

In recent years, many developed tools have achieved good
results in somatic mutation detection. These approaches can
be classified into two categories: i.e., those using paired
tumor-normal samples to distinguish somatic mutations from
uncommon germline polymorphisms, e.g., VarDict (Lai et al.,
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2015), Muse (Fan et al., 2016), and FaSD-somatic (Wang et
al., 2014), and those using tumor samples without normal
matched samples, e.g.,, SomVarlUS (Smith et al., 2016),
SNVer (Wei et al.,, 2011), and ISOWN (Kalatskaya et al.,
2017). The first detection category has the advantage of
excluding germline mutations with allele frequencies 21% in
global populations (Sherry et al, 2001). However, rare
germline mutations specific to an individual can affect the
detection of somatic mutations. Furthermore, obtaining
matched normal samples in clinical practice can be difficult.
The second detection category can save on sequencing costs
and is favored in clinical practice. However, some novel single
nucleotide variants (SNVs) found in individuals will severely
influence somatic mutation detection accuracy, resulting in
higher false positives (Liu et al., 2016). In general, existing
methods achieve relatively good detection results, but these
tools only consider one type of variation in the genome.

With the above considerations, we propose a new machine
learning-based method, named svmSomatic, to distinguish
somatic and germline mutations without normal matched
samples using next-generation sequencing (NGS) cancer
genome data. The svmSomatic approach incorporates copy
number variation (CNV) analysis in somatic mutation
detection, extracts a set of somatic-relevant features at each
site, and trains the support vector machine (SVM) classifier.
We applied svmSomatic using real and simulation sequencing
data. Results showed that this method is superior to others
with consideration of the influence of CNVs.

The svmSomatic procedure workflow is shown in Figure 1A.
The process starts with input of a tumor sample without
normal matched samples and a human reference genome,
followed by short-read alignment. As svmSomatic is focused
on distinguishing somatic SNVs from germline SNVs and
considers the influence of CNVs, we used existing methods to
first detect SNVs and CNVs. Therefore, symSomatic follows a
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Figure 1 Overview of symSomatic method and performance comparison among five methods
A: Overview of symSomatic. Input is a tumor-only sample aligned to a human reference genome. Based on STIC and FREEC, five features related
to somatic SNVs were selected for SVM training. Trained classifier was then used to distinguish between germline and somatic mutations; B:

Performance comparisons of five methods based on F1-score using simulation datasets with tumor purity ranging from 0.2 to 0.8 and coverage of

30X. C: Overlap between methods in terms of total number of detected somatic SNVs using real dataset.

four-step process for task learning. In the first step, five
somatic SNV-related features are extracted: i.e., read depth,
allele frequency (AF), mapping quality, mismatched reads,
and copy number of each site. In the second step, the SVM is
employed to complete classification (Hastie & Tibshirani,
1998). In the third step, the SMV classifier is trained with the
labeled samples. In the final step, the trained SVM classifier is
used to distinguish between germline and somatic mutations.

The detection of CNVs and SNVs is the first step before
running the svmSomatic algorithm. Currently, many existing
methods can detect CNVs and SNVs. We chose our
previously proposed method STIC (Yuan et al, 2020b) for the
detection of SNVs and the classic method FREEC (Boeva et
al., 2012) for the detection of CNVs. Both methods can work
on single tumor samples without normal matched samples and
exhibit reasonable performance, even when tumor purity
(fraction of tumor cells in tumor tissue mixture) is relatively
low. We also conducted a simulation experiment to
demonstrate the performance of the two methods, with results
presented in Supplementary Text 1. It should be noted that
this preprocess step is relatively independent from the
implementation of the svmSomatic algorithm and users can
choose other methods for the detection of CNVs and SNVs
according to their requirements.

Genomic data were extracted using BWA (Li & Durbin,
2009) and SAM tools (Li et al., 2009). Four features were
extracted from the Pileup file, including read depth, number of
mismatched reads, AF, and average mapping quality. Finally,
according to the FREEC results, copy humber information was
added to each SNV site as the fifth feature. These five
features are associated with SNVs (Yuan et al., 2020b). Read

depth denotes the number of reads aligned on some sites and
provides important information for the deduction of copy
number and number of variant alleles. AF can distinguish
germline and somatic mutations. Due to the influence of tumor
purity and copy number, the number of mismatched reads will
vary, and the AF value will deviate from the ideal. Average
mapping quality also considers sequencing errors. These five
features show good separability and reliability, allowing the
classifier to easily distinguish between somatic and germline
mutations. Table 1 shows the features and their corresponding
definitions.

Distinction between somatic and germline mutations is
primarily achieved through AF. Studies have shown that for
heterozygous and homozygous genotypes, the AF of germline
SNVs is 0.5 and 1, respectively (Xu, 2018). However, when
germline AF is involved in somatic copy number change
events, it may deviate from 0.5 or 1. Similarly, AF with somatic
mutations can fluctuate due to CNV, normal tissue mixing, and
subcloning (Cun et al., 2018; Xi et al., 2020). Therefore, it is
necessary to add copy number as a feature to the classifier.

Here, the SVM was selected as the algorithm classifier as it

Table 1 Description of five extracted features

Feature
Read depth
Mismatched reads

Description

Number of reads mapped to each site

Number of mismatched reads

Ratio of a particular allele to total number of
alleles

Average mapping quality of reads matched

to each site

Copy number of reads mapped to each site

Allele frequency

Ave. mapping quality

Copy number
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shows outstanding performance in classification problems.
The design of the SVM classifier considers the distance
between different categories to determine the optimal
classification boundary by maximizing the distance between
classes (Guyon et al., 1993; Lappalainen et al., 2015). We
used the SVM as a binary classifier. Further details can be
found in Supplementary Text 2.

Crucially, the SVM classifier must be trained before
performing classification. We trained the SVM classifier using
simulation datasets. In brief, 10-fold cross-validation was used
to assess algorithm performance and chose the best
classification strategy. We generated 100 000 SNVs,
containing 50 000 somatic mutations and 50 000 germline
mutations. The training dataset contain 45 000 randomly
selected somatic mutations and 45 000 randomly selected
germline mutations. The training dataset contained only two
data types, labeled 1 and 0, representing germline and
somatic mutations, respectively. The best parameter
combination was chosen using 10-fold cross-validation based
on the highest F1-score. Further details can be found in
Supplementary Text 3.

The new approach consists of two parameters, i.e., C and y.
The best method to determine the optimal parameter values in
space was C={1.0,10.0,100.0,1000.0} and y={0.001,0.01,0.1,
1.0,10.0}, with the parameter combination C=1 000.0 and
y=0.1. However, due to hyperparameter distribution
characteristics (Liu et al., 2006), the best combination was not
unique. Here, we only present an optimal combination.

To evaluate performance, we applied the newly proposed
method using the simulation datasets. As the simulation data
showed a clear pattern, we calculated sensitivity and precision
of the simulation experiment results and then used the F1-
scores for comprehensive evaluation (Yuan et al, 2012,
2017). In addition, we compared the new approach to four
classic methods (i.e., STIC (Yuan et al, 2020b), FaSD-somatic
(Wang et al.,, 2014), SNVSniffer (Liu et al., 2016), and
VarScan2 (Koboldt et al., 2012)) using their default
parameters for reasonable and fair comparison.

SInC (Pattnaik et al.,, 2014) was used to generate
sequencing reads of chromosome 21. A total of 100 000
somatic SNVs and 100 000 germline SNVs were simulated.
Half of the SNVs were heterozygous and the other half
homozygous. We also simulated 226 CNVs in chromosome
21 ranging in length from 10 000 to 100 000. The simulated
CNV types included gain and loss with copy numbers of 0, 1,
3, 4, 5, and 6. To simulate different tumor purity levels, a pair
of tumor-normal matched genomes was prepared. The tumor
genome contained 200 000 SNVs and the normal genome
contained only germline SNVs. FASTQ files from mixed
samples with tumor purity ranging from 0.2 to 0.8 were
generated. The sequencing coverage depths were 10X, 20X,
30X, 40X, and 50X. To reduce the influence of noise from
instruments and equipment, 10 simulation experiments for
each coverage were carried out. The results presented are the
average of the 10 replicates. Comparisons of the svmSomatic
approach and four other methods were performed with the
above data. Results are shown in Figure 1B, with coverage of
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30X, and Supplementary Text 4. The recall and precision
results of the five methods are presented in Supplementary
Text 5.

As shown in Figure 1B, the prediction of somatic SNVs
improved with the increase in tumor purity; when tumor purity
remained constant, prediction of somatic SNVs increased with
the increase in coverage. In contrast, for STIC, the overall
performance fluctuated with the increase in tumor purity.
Somatic SNV prediction by STIC was dependent on AF, and
thus was impacted by the increase in copy number.
SNVSniffer and VarScan2 achieved satisfactory results at
various coverages. However, FaSD-somatic was greatly
affected by coverage, and only achieved good results when
coverage was high. Overall, the performance of svmSomatic
showed advantage over the other methods.

The svmSomatic method was also applied to real data. As
several of the methods (FaSD-somatic (Wang et al., 2014),
VarScan2 (Koboldt et al., 2012), and SNVSniffer (Liu et al.,
2016)) require matched samples for comparison, we collected
paired tumor-normal samples (EGAR00001008630 and
EGARO00001008681) for this experiment. Figure 1C shows the
results of svmSomatic and other methods for chromosome 21.
The blacked numbers in the table represents the number of
somatic SNVs detected. SvmSomatic predicted the largest
number of somatic SNVs, followed by STIC (Yuan et al,
2020b), FaSD-somatic (Wang et al., 2014), SNVSniffer (Liu et
al., 2016), and VarScan2 (Koboldt et al., 2012). For sample
data, the F1-score could not be calculated. Thus, to evaluate
method performance using real data, overlap among the five
methods was analyzed using the overlapping density score
(ODS), which developed by Yuan (Yuan et al, 2020a) as
expressed in Equation (1).

meanoverlap
ODS = N, - N, = meangyeriap * ————

(1)
where N; is the mean number of overlaps of one method with
other methods and N,, is the mean number of overlaps divided
by the total predictions by the method. Here, we assumed that
the overlaps between different methods were true positives.
Thus, N, could be defined as sensitivity and N, could be
defined as precision. The product of N; and N, is similar to the
area under an ROC curve (AUC), but the greater the value,
the higher the performance. ODS(FaSD-somatic)=137.7,
ODS(VarScan2)=101.8, ODS(SNVSniffer2)=45.2, ODS(STIC)=
887.5, ODS(svmSomatic)=899.3, svmSomatic had the highest
ODS value, followed by STIC, FaSD-somatic, VarScan2, and
SNVSniffer. These results indicate that symSomatic has a
higher N;, higher mean number of overlaps with other
methods, and higher sensitivity. Overall, svmSomatic showed
slightly better results compared to the simulation data when
applied to real data.

In this paper, we developed a new open-source method
(svmSomatic) to distinguish somatic SNVs from germline
SNVs in tumor-only NGS data. SvmSomatic considers the
influence of copy number variation when distinguishing SNVs.
Furthermore, it is a single-sample-based method that does not

N predicted



require normal matched samples. The approach can be
applied for individual chromosomes as well as whole exome
and genome data. The detection of somatic SNVs should
facilitate downstream research on tumors, including gene
annotation and targeted drug therapy. SvmSomatic is written
in Python language and implemented on the Linux system.
The source code and manual documents are freely available
at https://github.com/BDanalysis/svmSomatic.

SUPPLEMENTARY DATA
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