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Kinetics of electromagnetic field in noneqilibrim medium of atoms is studied on the basis of the Dicke 

model. The field is described by average electric and magnetic fields and their binary correlations. The 

atoms are considered in two-level approximation and assumed to be fixed in the space. States of the 

medium are described by the energy density. Nonresonant atom-field interaction is accounted 

phenomenologically. The theory is built on the Bogolyubov idea of the functional hypothesis that is the basis 

of his method of the reduced description of nonequilibrium processes. The investigation of the system is 

carried out in the framework of the Peletminsky–Yatsenko model. Atom-field interaction is assumed to be 

small and is taken into account up to the second contributions in the interaction included. Average electric 

and magnetic fields satisfy the Maxwell equations. Material equations for them express average current and 

charge densities through the average field. Evolution equations for the binary correlation of the field are 

constructed. Material equations for these equations express correlations field-current trough correlations 

field-field. The time equation for energy density of the medium is obtained. Density evolution is governed 

by the average field and field correlations. All material coefficients of the system are found. 
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1. Introduction 

Electromagnetic field kinetics is studied in the medium of atoms on the basis of the 

Dicke model [1] (see also [2]). Nonequilibrium states of the system are investigated by the 

Bogolyubov method of the reduced description based on his idea of the functional hypothesis 

[3] (see a review of the method in [4]). The field-atoms interaction is assumed to be small. 

Average magnetic, transversal electric fields, their binary correlations, and energy of the 

medium density are chosen as reduced description parameters. Using correlations as such 

parameters is necessary because statistical operator of the field described only by average 

quantities does not exist. Atoms of the medium are assumed to be two-level ones, non-

moving and arbitrarily located in the space. The listed above reduced description parameters 

allows investigating nonequilibrium states of the system in the framework of the 

Peletminsky–Yatsenko model [4] that simplifies our consideration. 

The sketch of such a theory is presented in the conference paper [5]. The detailed 

analysis of the theory basics and discussion of material equations for the Maxwell equations 

with step by step calculations is given in [6].  

The article has the following structure. Section 2 discusses the basic equations of the 

theory and material equations to the Maxwell equations with some substantial remarks to our 

paper [6]. The equation of the medium dynamics in the electromagnetic field is obtained in 

the Section 3. Section 4 is devoted to dynamics of binary correlations of the electromagnetic 

field in the nonequilibrium atomic medium and material equations to evolution equations for 

the correlations. Some useful relations are given in the Appendix. 

2. Basic equations of the theory and material equations for the Maxwell equations 

The kinetics of the electromagnetic field in the medium of atoms, which are considered 

in two-level approximation, is investigated. Atoms are fixed in space and arbitrarily 

distributed with the density ( )n x . Basic equations of the theory are presented in our paper 

[6]. Here additional details that simplify the consideration are given. 
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In the excited state, atoms of the medium have energy ωh  and an electric dipole 

moment 
nd . In the generalized quasispin Dike model the Hamilton operator of the 

system can be written in the form [1] 

0 1
ˆ ˆ ˆH H H= + ,     

0 f m
ˆ ˆ ˆH H H= + ,        f

,

ˆ
k k k

k

H c c
+
α α

α

= ωℏ ,     
m

1

ˆ
âz

a N

H r
≤ ≤

= ω ℏ , 

1
ˆ ˆ ˆ( ) ( )t

n nH dxE x P x= − ,     ˆ ˆ( ) 2 ( )n ax an a

a

P x r d x x≡ − δ  

(1) 

(see discussion in the paper [2]). Here 
fĤ  is the Hamiltonian of the free electromagnetic 

field (
k ckω ≡ ), 

ânr  and 
and  are the quasispin operator and the dipole moment of the a-th 

atom. The vectors 
and  of different atoms differ only in their orientation ( 2

an and d d≡ ), 

which is described by the distribution function
dw . ˆ ( )nP x  is the operator of electric dipole 

moment density of the system (in other word, polarization) [2]. The interaction of atoms 

and the field is described by the operator 1Ĥ   with the transverse electric field ˆ ( )t

nE x  (the 

dipole-dipole interaction of atoms is neglected). Here and further periodic boundary 

conditions and other standard notations of quantum electrodynamics are used (see, for 

example, [4] and (A.1), (A.2) in the Appendix). The interaction of atoms and field is 

weak that allows considering the dipole moment d  of an atom as a formal small 

parameter. 

The nonequilibrium states of the field will be described by parameters aη : µζ , 

,( )′µ µζ ζ  where µζ  are average transverse electric ( )
t

nE x  and magnetic ( )nB x  fields and 

their binary correlations ( , )′µ µζ ζ . Here and below the following compact notations 

( )in xµζ = ζ ,     1 ( ) ( )t
n nx E xζ = ,    2 ( ) ( )n nx B xζ = ,       ˆSpµ µζ = ρζ ;     

ˆ ˆ ( )in xµζ = ζ ,     1
ˆ ˆ( ) ( )t

n nx E xζ = ,    2
ˆ ˆ( ) ( )n nx B xζ = ; 

... ...
in V

dx
µ

=  ;   
ss µζ = ζ ,        ... ...

ss µ

=   

(2) 

are used (the corresponding operators ˆ ( )t

nE x  and ˆ ( )nB x  are given in (A.3), (A.4)). 

Further the average value a of a quantity is denoted by the same letter as its operator â . 

The general definition of the binary correlation function of operators â  and b̂  is 

given by the formula with the statistical operator ρ  of the system and their 

anticommutator 

ˆ ˆˆ ˆ( , ) Sp { , } / 2 Sp Spa b a b a b= ρ − ρ ρ . (3) 

Note, the necessity of taking into account at least binary correlations of the field in 

describing its state is related to the nonexistence of a statistical operator that describes the 

field only by its average quantities ( )
t

nE x , ( )nB x .  

The state of the medium in this paper is described by the average density ( )xε  of its 

energy 
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ˆ( ) Sp ( )x xε = ρε ,       ˆ ˆ( ) ( )az a

a

x r x xε = ω δ −ℏ  (4) 

and assumed to be a local equilibrium one.  

Thus, the values 
aη  and ( )xε  are the reduced description parameters for states of 

the system. Statistical operator at the reduced description ( , )ρ η ε  is a functional of 

variables aη : µζ , ( , )′µ µζ ζ  and ( )xε . The state is observed at times 0t >> τ  where some 

time 0τ  depends on the initial state of the system. For the statistical operator ( , )ρ η ε  

formulas 

ˆSp ( , )ρ η ε ε = ε ,       ˆSp ( , ) a aρ η ε η = η         (5) 

are exact. 

When constructing system evolution equations, it is convenient to use the operator 

form of the evolution equations ˆ ˆ ˆ[ , ] /a i H a≡ɺ ℏ . Really, for an arbitrary operator â  the 

quantum Liouville equation for a statistical operator ( )tρ gives an evolution equation 

ˆˆSp ( ) Sp ( )t t a t a∂ ρ = ρ ɺ . (6) 

Here âɺ  is the velocity change operator for the quantity described with an operator â  

(sometimes it is convenient to apply the notation ˆ ˆ
ta a≡ ∂ɺ , although all operators in this 

paper are taken in the Schrödinger picture). Maxwell’s equations and evolution equation 

for the medium energy density in the operator form take the expected view 

ˆ ˆrotn nB c E= −ɺ ,     
ˆ ˆ ˆrot 4n n nE c B I= − πɺ ,   ˆdiv 0B = ,    ˆ ˆdiv 4E = πρ ;    ˆ ˆ ˆ t

n nI Eε =ɺ . (7) 

Here the operators of the complete electric field ˆ
nE , densities of current ˆ

nI  and charge ρ̂  

of the system are defined by the formulas 

ˆ ˆ ˆ4t

n n nE E P= − π ,     
ˆˆ

n nI P= ɺ ,      ˆˆ divPρ = − ,     ˆ ˆ2 ( )n an ay a

a

I d r x x= − ω δ − . (8) 

Relations (7) can easily be proved taking into account formulas (A.3), (A.4) from the 

Appendix. The second formula in (8) is natural because atoms of the medium do not 

move and have no magnetic dipole moment. The first formula in (8) for the operator of 

the total electric field ˆ
nE  leads to first two Maxwell equations in (7). 

In our paper [6] it is shown that nonequilibrium states of the considered system can 

be described by the reduced description parameters aη  and ε  in the framework of the 

Peletminsky–Yatsenko model [4]. In this model, the statistical operator ( , )ρ η ε  is 

calculated in perturbation theory in interaction 1Ĥ  from an integral equation obtained for 

the considered problem in [4]. Statistical operator of the system ( , )ρ η ε  has the structure 

(0) (1) 2( , ) ( )O dρ η ε = ρ + ρ + ,     
(0) ( , )qρ = ρ η ε  

 
(9) 

( ( )sa  is the contribution of the order sd  to the value a ). The statistical operator ( , )qρ η ε  

is called the quasi-equilibrium one and according to the Peletminsky–Yatsenko model, 

looks like [6] 
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f m( , ) ( ) ( )qρ η ε = ρ η ρ ε ,     
m r d( ) ( )w w wαρ ε = ε ; 

f
ˆ( ) exp{ ( ) ( ) }a a

a

Zρ η = Ω η − η η ,     
f fSp ( ) 1ρ η = ,   

f f
ˆSp ( ) a aρ η η = η ; 

r
ˆ( ) exp{ ( ) ( , ) ( )}w dxZ x xε = Φ ε − ε ε ,     r rSp ( ) 1w ε = ,      r r

ˆSp ( ) ( ) ( )w x xε ε = ε ; 

2 2
0

( )
( )

( )

c
wα

α α
ω =

ω − ω + α
    ( 0α << ω ),       

0

( ) 1d w

+∞

αω ω = ;       
d dSp 1w = ; 

f mSp... Sp Sp ...= ,      
m r dSp ... Sp Sp Sp ...α=  .    

(10) 

Here f ( )ρ η  is a quasi-equilibrium statistical operator of the electromagnetic field. The 

operator ˆ
aη  in f ( )ρ η  includes field operators ˆ t

nE , ˆ
nB  and all their anticommutators (the 

last term in (3) is numerical and corrects only ( )Ω η ). Therefore, in the exponent 
f ( )ρ η  

there is a quadratic form of Bose operators of the field, which ensures the existence of 

traces with it. The operator 
r ( )w ε  is a locally equilibrium statistical operator of the 

medium and therefore 1
( , ) ( , )T x Z x

−ε = ε  is the inverse temperature of the medium. 

Traces with the operator 
r ( )w ε  are taken in the quasispin space (see (A.7), (A.8) in the 

Appendix). Here additional to [6] function wα  is added to m ( )ρ ε  in order to take into 

account nonresonant interaction of the atoms with the electromagnetic field 

phenomenologically ( α  is the width of the energy level of an atom with energy 0ωh ; 

0
0

lim ( )wα
α→

= δ ω − ω ). Value 
dw  is the distribution of the orientations of the dipoles of the 

atoms of the medium. Hereafter (as in [6]), for simplicity it is assumed that the 

distribution of dipole moments of atoms is isotropic one and there are no correlations 

between them. The last is natural, because here atom-atom interaction is neglected. 

In the paper [6], it is shown that the first order contribution to the statistical operator 

( , )ρ ε η is given by 

0

(1)

f m
ˆ ˆ, ( , ) ( , )t

n n

i
d dx E x P x

−∞

 ρ = − τ ρ ρ τ τ  
ℏ

         (11) 

where operators in the Dirac picture 

f f
ˆ ˆ

ˆ ˆ( , ) ( )

i i

t t
n n

H H
E x e E x e

τ τ
τ

−
≡ ℏ ℏ  ,      

m m
ˆ ˆ

ˆ ˆ( , ) ( )

i i

n n

H H
P x e P x e

τ τ
τ

−
≡ ℏ ℏ         

(12) 

are taken. 

As a result, average values of polarization 

3
( ) ( , ( )) ( ) ( , ( )) ( ) ( )

t

n n n

V

P x dx k x x x E x c x x x Z x O d′ ′ ′ ′ ′ = − + − +  ε λ ε , 

2

2 2 2

0

4 1
( , )

3 k

d
kκ ε = −ε

ω − ωℏ
   ( 0α → ),     

2

2 2

( )2
( , )

3

k

k

wd
k α ωπ

λ ε = ε
ωℏ

;      

rotn nZ B≡  

(13) 
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and current density  

3( ) ( , ( )) ( ) ( , ( )) ( ) ( )t

n n n

V

I x dx x x x E x c x x x Z x O d′ ′ ′ ′ ′ = σ − ε + ξ − ε +  , 

2
( , ) ( , ) kk kσ ε ≡ −λ ε ω ,       ( , ) ( , )k kξ ε ≡ κ ε  

(14) 

are obtained. Quantities ( , )kκ ε , ( , )kλ ε , ( , )kσ ε , and ( , )kξ ε  are the Fourier transforms 

of the functions ( , )xκ ε , ( , )xλ ε , ( , )xσ ε , and ( , )xξ ε  defined according to (A.5)) in the 

Appendix. Additional to [6], here the nonresonant interaction of the atoms and 

electromagnetic field is accounted phenomenologically. Relations (13) and (14) are 

material equations to the Maxwell equations. The material coefficient ( , )kκ ε  in (13) has 

the sense of dielectric susceptibility. In our terms the coefficient ( , )kλ ε  describes the 

effects of the frequency dispersion because according to (7) and (8) 1 t

n t nZ c E
−= ∂ . The 

material coefficients ( , )kσ ε and ( , )kξ ε  in (14) have the sense of conductivity and 

magnetic susceptibility. From the other side, in our terms the material coefficient ( , )kξ ε  

describes the effects of the frequency dispersion. 

Expressions (13) and (14) can be written with the same accuracy in the form with 

the total electric field ( )nE x  because material coefficients ( , )kκ ε , ( , )kλ ε , ( , )kσ ε , 

( , )kξ ε 2
~ d  and according to (8) 24 ( )t

n n n nE E P E O d= + = +π . 

3. Medium dynamics in the electromagnetic field 

The material equations (13) and (14) include the energy density of the medium ε  as 

a reduced description parameter. Here the evolution equation for this quantity is obtained. 
According to (6), (7), and (11) the expressions 

ˆ ˆ( ) Sp ( , ) ( ) ( )t

t n nx I x E x∂ ε = ρ η ε , 

0

(1)

f f m m
ˆ ˆ ˆ ˆ ˆ ˆSp ( ) ( ) Sp ( , ) ( )Sp [ ( , ), ( )]

t t t

n n l n l n

i
I x E x d dx E x E x P x I x

−∞

′ ′ ′ρ = − τ ρ τ ρ τ − 
ℏ

 
0

(2) (2)

f f m m 1 2
ˆ ˆ ˆ ˆSp [ ( , ), ( )]Sp ( ) ( , ) ( ) ( )t t

l n n l

i
d dx E x E x I x P x L x L x

−∞

′ ′ ′− τ ρ τ ρ τ ≡ + 
ℏ

 

(15) 

are true (in [6] it is shown that (0) ˆ ˆSp ( ) ( ) 0t

n nI x E xρ = ). In (15), averaging with mρ  in 

(2)
1 ( )L x  gives for the isotropic distribution of dipole moments of atoms 

2

m m

0

4ˆ ˆSp [ ( , ), ( )] ( ) ( ) ( ) cos
3

l n nl

d
P x I x i x x x d w

+∞

α
′ ′ρ τ = − ε δ − δ ω ω ωτ

ℏ
. (16) 

Average with fρ  in 
(2)
1 ( )L x  is transformed consistently as 

1

f f f f2
,

( )1ˆ ˆ ˆ ˆ ˆSp ( , ) ( ) Sp ( cos sin )
t t t t

l n nk

k k

i kx k x
nk k nk k kE x E x e E cZ E

V

−

′

+ ′ ′
′ ′ ′ ′ ′

′ρ τ = ρ ω τ + ω ω τ =       (17) 
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                {2
,

( )1
( , ) cos

t t t t

nk nk k

k k

i kx k x
lk lke E E E E

V
′

′

+ ′ ′
′ ′ = + ω τ +   

+ ( ) }2 1

,( , ) 2 ( ) sint t

lk nk lk nk n l nl k k k kZ E Z E i c k k k c
−

′ ′ −′ ′ ′
 + + π − δ δ ω ω τ  h . 

According to relations (10), this formula includes average fields and binary correlations 

and formulas of the type 

f f
ˆSpt t

n nE E= ρ ,         f f

1 ˆ ˆ( , ) Sp { , }
2

t t t t t t

nk nk nklk lk lkE E E E E E′ ′ ′

 
= ρ − 

 
 (18) 

taken with the statistical operator 
fρ  are exact. The transition from the first expression in 

(17) to the second one is made using identities 

1 1ˆ ˆ ˆˆ ˆ ˆ{ , } [ , ]
2 2

ab a b a b= + ,     2

,
ˆ ˆ[ , ] 2 ( )t

nk lk n l nl k kZ E i c k k k′ −′= π − δ δh ,    ˆ ˆ[ , ] 0t t

nk lkE E ′ =   (19) 

(see also (A.6) in the Appendix). Taking into account (16) and (17) with (15) leads to the 

expression for (2)
1 ( )L x  

{
02

(2)
1 2 2

,0

( )4 1
( ) ( ) ( , ) cos

3

t t t t
nk nk k

k k

i kx kx
nk nk

d
L x d d w e E E E E

V

+∞

′α
′−∞

′ ′+
′ ′

 =− τ ω ω + ω τ+  
ℏ

 

},( , ) sin 4 sin ( )cos
t t

nk nk nk nk k k k kk kZ E Z E c i x′ ′ ′ −′ ′
 + + ω ω τ − δ π ω ω τ ε ωτ  ℏ . 

(20) 

Calculating (2)

2 ( )L x  for the isotropic distribution of atom dipoles gives 

( ) 2
f f

1ˆ ˆSp [ ( , ), ( )] 4 ( ) sin
t t ik x x

l n n l nl k k

k

E x E x i e k k k
V

′−′ρ τ = π − δ ω ω τh , 

            
2

m m

4ˆ ˆSp ( ) ( , ) ( ) ( )
3

n l nl a

a

d
I x P x x x x x′ ′ρ τ = δ − δ δ − ×  

                                  { }2

r r

0

ˆ ˆ ˆ( )Sp cos sinax ay ayd w w r r r

+∞

α× ω ω − ωτ + ω ωτ .         

(21) 

The Pauli matrixes representation method (see about it in (A.8) from the Appendix) 

allows easily proving formulas 

r r r r
ˆ ˆ ˆSp Sp

2
ax ay az

i
w r r w r= − ,      

2
r r

1
ˆSp

4
ayw r = , (22) 

which give 

[ ]
2

m m

0

ˆ ˆSp ( ) ( , ) ( ) ( ) 2 ( )cos ( )sin
3

n l nl

d
I x P x x x d w i x n x

+∞

α
′ ′ρ τ = δ − δ ω ω ε ωτ+ ω ωτ , (23) 
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( ) ( )a

a

n x x x≡ δ − . 

Here ( )n x  is atom concentration (the density of the number of atoms), ( )xε  is their 

energy density given by (4). According to (21), (23), and (15), quantity (2)

2 ( )L x  takes the 

form 

[ ]
02

(2)

2 2

0

4 1
( ) ( ) 2 ( )cos ( )sin sin

3
k k

k

d
L x d d w i x n x

V

+∞

α

−∞

= − τ ω ω π ω πε ωτ+ ω ωτ ω τ  ℏ ℏ
ℏ

. (24) 

The integrals over τ  in (20) and (24) should be taken in the class of generalized 

functions after thermodynamic limit transition in these expressions by the usual rule 

3

3
... ...

(2 )

TL

k

V
d k= π

. (25) 

Similarly to calculations conducted in [6], formulas 
0

sin sin ( )
2

k kd
−∞

π
τ ω τ ωτ = δ ω − ω ,       

0

cos cos ( )
2

k kd
−∞

π
τ ω τ ωτ = δ ω − ω ,    

0

2 2
sin cos P k

k

k

d
−∞

ω
τ ω τ ωτ =

ω − ω . 

(26) 

for , 0kω ω >  are true. Taking into account expressions (13) and (14) for material 

coefficients ( , )kσ ε  and ( , )kξ ε  gives 

{(1)

2
,

( )1ˆ ˆSp ( ) ( ) ( , ) ( , ( ))
t t t t t

n n nk nk

k k

i kx k x
lk lkI x E x e E E E E k x

V ′

+ ′ ′
′ ′

′ ρ = + σ ε + 

}
2

2

0

4 1
( , ) ( , ( )) ( ) ( ) ( )

3

t t

lk nk lk nk k

k

d
Z E Z E c k x n x d w

V

+∞

′ ′ α

π
 + + ξ ε − ω ω ω δ ω − ω   . 

(27) 

Here the last sum in the thermodynamic limit according to (25) equals 

2

2 3

1
( )

2

TL

k

kV c

ω
δ ω − ω =

π
 . (28) 

Finally, taking into account the expression (14) for the average current, from (27) we 

obtain the expression for the right-hand side of the time equation for the medium energy 

density 

2 4
(1) (2) (2) 0

3

2ˆ ˆSp ( ) ( ) ( ( ), ( )) ( ) ( ) ( )
3

t t t

n n n n n n

d
I x E x I x E x I x E x n x

c

ω
ρ = + −     (at 0α → ). (29) 

Note, that in fact here (2)( ( ), ( ))t

n nI x E x  is the correlation function of quantities ˆ ( )t
nE x  and 

(2)ˆ ˆ ˆ( ) ( , ( )) ( ) ( , ( )) ( )t

n n n

V

I x dx x x x E x c x x x Z x ′ ′ ′ ′ ′= σ − ε + ξ − ε  . (30) 

The last contribution to formula (29) describes the decrease of the medium energy due to 

dipole radiation. The first and second terms in expression (29) look natural, but the 

presence of the last term is somewhat unexpected, although physically clear. 
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Formulas (6), (7) and (29) give the evolution equation for the energy density of the 

medium. According to the remark after formula (14), with the same accuracy this 

evolution equation can be written with the total current ( )nI x  and the total electric field 

( )nE x   

2 4

0

3

2
( ) ( ( ), ( )) ( ) ( ) ( )

3
t n n n n

d
x I x E x I x E x n x

c

ω
∂ ε = + −     ( 0α → ). (31) 

Thus, the medium evolution is affected by average electric and magnetic fields and their 

binary correlations. 

4. Dynamics of the binary correlations of the electromagnetic field                                  

in nonequilibrium atom medium 

Let us formulate an equation for field correlation dynamics in the terms of 

correlations of magnetic field ( )nB x  and complete electric field ( )nE x . Operator 

Maxwell equations (5) can be written in a compact form 

1 12 2 1

2

ˆ ˆ ˆ4i Iξ = ξ − πcɺ   (32) 

where 

ˆ ˆ ( )in xµξ =ξ ,     1
ˆ ˆ( ) ( )n nx E xξ = ,    2

ˆ ˆ( ) ( )n nx B xξ = ;      

ˆ ˆ ( )inI I xµ = ,      1
ˆ ( ) 0nI x = ,      2

ˆ ˆ( ) ( )n nI x I x= ; 

ˆ ˆ
ss µξ =ξ ,       ˆ ˆ

ssI Iµ= ,       ... ...

ss µ

=  ,     
,

... ...
i n

dx
µ

=   

(33) 

(elements of matrix 12c  are kernels of the type rot ( )n x x′δ −  of an integral operator in 

(32)). Analogously to evolution equations for correlations ( , )′µ µζ ζ  of the fields µζ , i.e. 

t
nE , nB , obtained in [6], the corresponding equations for correlations ( , )′µ µξ ξ  have the 

form 

1 2 11 1 2 22 1 2 1 2 1 2

1 2

( , ) ( , ) ( , ) 4 ( , ) 4 ( , )t i i I I′ ′ ′ ′
′ ′

∂ ξ ξ = ξ ξ + ξ ξ − π ξ − π ξ c c . (34) 

In the less compact notations these equation can be written as 

( ) rot ( ) rot ( )x x x x x x
t n l n l l nB B c E B c B E

′ ′ ′′∂ = − − , 

( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t n l n l l n n lB E c E E c B B B I

′ ′ ′ ′′∂ = − + − π , 

( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t n l n l l n n l n lE E c B E c E B I E E I

′ ′ ′ ′ ′′∂ = + − π − π  

(35) 

(hereafter for simplicity ( ( ), ( )) ( )x x
n l n lE x B x E B

′′ ≡  and so on).  

In order to find the material equations for evolution equations (34), (35) one has to 

calculate nonequilibrium correlation functions ( )x x
n lB I

′
, ( )x x

n lE I
′

 and express them through 

the fields µξ  and their correlations ( , )′µ µξ ξ . The necessary calculations are very close to 
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ones conducted in the previous section where x x′ =  and l n= . The correlations are found 

in the main (second) approximation in the field-medium interaction (formally speaking, 

in dipole moment of an atom d ). Therefore, it is enough to consider the correlation 

function 

ˆ ˆ( ) Sp ( , ) ( ) ( ) ( ) ( )tx x t t
n l n l n lE I E x I x E x I x

′ ′ ′= ρ η ε − . (36) 

Following the previous section, we obtain 

(1)( ) 0tx x
n lE I

′ = ,            (2) (2) (2)
1 2( ) ( ) ( )tx x tx x tx x

n l n l n lE I E I E I
′ ′ ′= + , 

2
(2)
1 2 2

,0

4 1
( ) ( ) ( ( ) ) ( )

23

tx x t t

n l lk k

k k

ikx
n

d
E I d w e E x E

V

+∞
′

α
′

′ π
= − ω ω δ ω− ω +




ℏ
 

 
2 2

1
( ( ) ) P ( )t

n lk

k

E x Z c x


′+ ε +
ω − ω 

 

    

22
( )

2 2

0

8 1
( ) ( ) P

3

ik x x t k
nl

k k

d
i d w e x

V

+∞
′−

α

ωπ
′+ ω ω ε δ

ω − ω


ℏ
, 

          

2
(2) ( )
2

0

8 1
( ) ( )

3

tx x ik x x t

n l nl

k

d
E I d w e

V

+∞
′ ′−

α

π
= − ω ω δ ×

ℏ
 

 
2 2

1
( ) P ( ) ( )

4
k k

k

i x n x
 π

′ ′× ε ω + ωδ ω− ω 
ω − ω 

ℏ  

(37) 

(two contributions are chosen as in (15); 2/t
nl nl n lk k kδ ≡ δ − ). Analogously to (27) these 

formulas give 

                     {(2)

2

1
( ) ( ) ( , ( ))

tx x tx t

n l n

k

ikx
lkE I e E E k x

V

′ ′ ′= σ ε +    

                                  }( ) ( , ( )) ( , ( ))
tx

n lkE Z c k x S x x n x′ ′ ′+ ξ ε + − . 

                                    
2

22 1
( , ) ( )

3

ikx t

nl k k

k

d
S x n n e w

V
α

π
≡ − δ ω ω . 

(38) 

Taking into account the expression (14) for an average current, from (38) after 

thermodynamic limit transition we obtain the final expression for (2)( )tx x

n lE I
′

 

(2) (2)( ) ( ) ( , ( ))tx x tx x

n l n l nlE I E I S x x n x
′ ′ ′ ′= + − , 

       
2 2

30

2
( , )

12

ik x t

nl nl

d
S x n n d ke

ω
= − δ

π       ( 0α → ) 

(39) 

The first term in (39) looks natural, but the presence of the last term ( , ( ))nlS x x n x′ ′−  is 

somewhat unexpected. 



S.F. Lyagushyn, A.I. Sokolovsky, S.A. Sokolovsky 

26 

To calculate the correlation function ( )x x
n lB I

′
, one needs nearly the same. Following 

again the previous section, we obtain 

(1)( ) 0x x
n lB I

′ = ,            (2) (2) (2)
1 2( ) ( ) ( )x x x x x x

n l n l n lB I B I B I
′ ′ ′= + , 

2
( 2 )
1 2 2

,0

4 1
( ) ( ) ( ( ) ) ( )

23

x x t
n l n lk k

k k

ikxd
B I d w e B x E

V

+∞
′

α
′

′ π
= − ω ω δ ω − ω +




ℏ

 

2 2

1
( ( ) ) P ( )n lk

k

B x Z c x


′+ ε −
ω − ω 

 

2
( )

0

8 1
( ) ( ) ( )

3 2

ik x x
nls s k

k

cd
d w e x e k

V

+∞
′−

α

π π
′− ω ω ε δ ω − ω

ℏ

, 

  
2

( 2) ( )
2

0

8 1
( ) ( )

3

x x ik x x
n l nlm m

k

cd
B I d w e e k

V

+∞
′ ′−

α

π
= ω ω ×

ℏ

 

2

2 2

1
( ) ( ) ( )P

2 2
k

k

i x n x
 π ω

′ ′× ε δ ω − ω + 
ω − ω 

 

(40) 

(two contributions are chosen as in (15)). Analogously to (38) these formulas give 

       {(2)

2

1
( ) ( ) ( , ( ))

x x x t

n l n

k

ikx
lkB I e B E k x

V

′ ′ ′= σ ε +  

                         }( ) ( , ( ))) ( , ( ))x

n lk nlB Z c k x T x x n x′ ′ ′+ ξ ε + − . 

2 2

2 2

0

4 1
( , ) ( ) P

3

ik x

nl nlm

km k

cd
T x n ne d w e

x V

+∞

α

π ∂ ω
≡ ω ω

∂ ω − ω
  

(41) 

Taking here into account the expression (14) for the average current, after thermodynamic 

limit transition the final expression for (2)( )x x

n lB I
′

 is obtained: 

                                 (2) (2)( ) ( ) ( , ( ))x x x x

n l n l nlB I B I T x x n x
′ ′ ′ ′= + − , 

                                  
2 2

3 0

2 2 2

0

( , ) P
6

ik x

nl nlm

m k

cd
T x n ne d ke

x

∂ ω
≡

π ∂ ω − ω        ( 0α → ). 
(42) 

The first term here looks natural, but the presence of the last term ( , ( ))nlT x x n x′ ′−  is 

somewhat unexpected.  

Formulas (39), (42) give material equations to evolution equations for correlations 

(36), (37) in agreement with [5]. 

5. Conclusions 

The kinetics of electromagnetic field in the medium of two-level atoms fixed in 

space is constructed. The medium is described by the average of its energy density. The 

field subsystem is described by average electric and magnetic fields and their binary 
field-field correlations. The corresponding evolution equations are the Maxwell ones, 

equations for the correlations and the equation for energy density. Material equations to 

these equations express average current and nonequilibrium current-field correlations 

through the average fields and the binary field-field correlations. The evolution equations 
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are constructed with the accuracy up to the second order in the field-medium interaction 

included. 

In the considered approximation the obtained material equations to equations for 

correlations do not contain average fields. The material equations to the Maxwell 
equations do not contain field-field correlations. However, the mentioned material 

equations depend on the energy density of the medium. According to evolution equation 

for the energy density it is changed under influence both of the average fields and the 
field-field correlations. So, in the case of nonequilibrium medium, the evolution of the 

field and its correlations are connected.  
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Appendix 

Operators of physical quantities of electromagnetic field kinetics 

Here additional information is given to perform the necessary in the paper 

calculations.  

The vector potential operator of the electromagnetic field in the standard notations 

of quantum electrodynamics (see, for example, [4]) is given by the formula 

1/ 2

,

,

2ˆ ( ) ( )( )
n n k k

k k

i k x
A x c e k c c e

V

+
α α α −

α

 π
= + 

ω 


ℏ
. (A.1) 

The circular polarization vectors ( )ne kα have simple properties 
*( ) ( )n ne k e kα α= − ,     ( ) 0n ne k kα = ,     * 2

( ) ( ) /n l nl n le k e k k k kα α
α

δ= − . 
(A.2) 

The transverse electric field operator is expressed by the formula 

f ,

,

1/ 2
2ˆˆ ˆ( ) [ , ( )] ( )( )

t k
n n n k k

k

i k xi
E x H A x i e k c c e

V

+
α α α −

α

π ω 
= − = − 

 


ℏ

ℏ

 (A.3) 

with the free field Hamilton operator 
fĤ  from (1). The magnetic field operator looks as 
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,

,

1/ 2
2ˆˆ ( ) rot ( ) [ , ( )] ( )k

n n n k k

k

i k xB x A x i k e k c c e
V

+
α α α −

α

π ω 
= = − 

 


ℏ
 (A.4) 

In the paper the periodic boundary conditions and the following Fourier transform 

definition are used 

1
f ( ) fk

k

i k x
x e

V
=  ,      f f ( )k

V

i k x
dx x e

−≡  . (A.5) 

Commutators of field operators are given by formulas 

ˆ ˆ[ ( ), ( )] 0t t

n lE x E x′ = , 
( )ˆ ˆ[ ( ), ( )] 4t

n l nlm

m

x x
B x E x i ce

x

′∂δ −
′ = π

∂
ℏ , ˆ ˆ[ ( ), ( )] 0n lB x B x′ = ,  

2

ˆ ˆ[ ( ), ( )] 4 ( )t

n l nl

n l

Z x E x i c x x
x x

 ∂
′ ′= π δ ∆ − δ − 

∂ ∂ 
ℏ     ( ˆ ˆ( ) rot ( )n nZ x B x≡ ). 

(A.6) 

The operator of the electric dipole moment density (polarization) ˆ ( )nP x  for the 

system under consideration is defined in (1). It is expressed via quasispin operators 
ânr  

that satisfy commutation relations for spin 1/ 2  

ˆ ˆ ˆ[ , ]an bl ab nlm amr r i e rδ=  (A.7) 

(angular moment operator is 
ânrh ). In the quasispin space of a-th particle it is convenient 

to use a basis | aσ   defined by the formulas 

ˆ | |az a a ar σ  = σ σ        ( 1/ 2aσ = ± ),       2ˆ | (1/ 2 1)1/ 2 |a a ar σ  = + σ  ,     

,|
a aa a ′σ σ

′σ σ  = δ . (A.8) 

The matrices ˆ2 | |a an ar ′σ σ   coincide with the Pauli ones. It is convenient to calculate the 

traces of the product of several quasispin operators 
âlr  in the quasispin space in the 

representation of operators 
ânr  by Pauli matrices. 

The material equations of the theory can be written in several forms according to the 

identities of the type  

1
f ( , , )nk nk

k

k k E
V

′
′

′≡ κ ε ,      ( , , ) kk kk k ′− ′
′κ ε ≡ ε χ  

1
f ( ) ( , ( )) ( , ( )) ( )ikx

n nk n

k V

x e k x E dx x x x E x
V

′ ′ ′= κ ε = κ − ε  ,      ( , ) kkκ ε ≡ εχ  
(A.9) 

where kε  and ( , )kκ ε  are the Fourier transforms of functions ( )xε  and ( , )xκ ε  defined 

according to (A.5). 


