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Introduction 

Consider the following mathematical model of 

the heat exchange process along the interval 0 < 𝑥 <
𝑙: 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
, 0 < 𝑥 < 𝑙, 𝑡 > 0,              (1.1) 

with boundary conditions  

𝑢|𝑥=0 = 𝜇(𝑡), 𝑢|𝑥=𝑙 = 0,                           (1.2) 

and initial condition  

𝑢|𝑡=0 = 0.                                                 (1.3) 

Let 𝑀 > 0 be some given constant. We say that 

the function 𝜇(𝑡) is an admissible control if this 

function is differentiable on the half-line 𝑡 ≥ 0 and 

satisfies the following constraints  

𝜇(0) = 0, |𝜇(𝑡)| ≤ 𝑀, 𝑡 ≥ 0.                       (1.4) 

In the present work we consider the following 

problem. 

Problem. Let the function 𝜑(𝑥) satisfies 

conditions  

∫ 𝜑(𝑥)𝑑𝑥 = 1, 𝜑(𝑥) ≥ 0, 𝜑′(𝑥) ≤ 0.
𝑙

0

 

 Set  

𝜑(𝑥) = ∑ 𝜑𝑘 𝑠𝑖𝑛
𝑘𝜋𝑥

𝑙

∞
𝑘=1 , 0 ≤ 𝑥 ≤ 𝑙.            (1.5) 

For a given function 𝜃(𝑡) problem consist in 

looking for the admissible control 𝜇(𝑡) such that the 

solution 𝑢(𝑥, 𝑡) of the initial-boundary value problem 

(1.1)-(1.3) exists, is unique and for all 𝑡 > 0 satisfies 

the following equation 

∫ 𝜑(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 = 𝜃(𝑡).
𝑙

0
                         (1.6) 

One of the urgent problems for the equations of 

mathematical physics is the problem of mathematical 

modeling of processes associated with various partial 

differential equations. In particular, mathematical 

modeling of the heat exchange process and the control 

of this process. Control in this situation is made by 

changing the heat flux entering to the region under 

consideration from a part of is boundary. It is natural 

to achieve temperature in the whole area. Therefore, it 

is important to control the boundary flow to reach the 

average temperature in any part of the area.  

We recall that the time-optimal control problem 

for partial differential equations of parabolic type was 

first concerned in [7]. More recent results concerned 

with this problem were established in [1]-[6], [8], [9], 

[14] and [15]. Detailed information on the problems 

of optimal control for distributed parameter systems is 

given in the monographs [10] and [13]. 

General numerical optimization and optimal 

boundary control have been studied in a great number 

of publications such as [11]. The practical approaches 

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
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to optimal control of the heat equation are described 

in publications like [12]. 

 

2. THE MAIN INTEGRAL EQUATION 

We find out the solution to the problem (1.1)-

(1.3) by Fourier method. Consider the following 

Green function: 

𝐺(𝑥, 𝑦, 𝑡) =
2

𝑙
∑𝑒−(𝑘𝜋/𝑙)

2𝑡 𝑠𝑖𝑛
𝑘𝜋𝑥

𝑙
𝑠𝑖𝑛

𝑘𝜋𝑦

𝑙

∞

𝑘=1

. 

Set  

𝑤(𝑥, 𝑡) =
𝑙 − 𝑥

𝑙
𝜇(𝑡), 𝑥 ∈ (0, 𝑙), 𝑡 ≥ 0, 

and assume that the solution 𝑢(𝑥, 𝑡) has the form: 

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑣(𝑥, 𝑡).                       (2.1) 

It follows from (1.1)-(1.3) that the function 

𝑣(𝑥, 𝑡) satisfies equation 

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
=
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
−
𝑙 − 𝑥

𝑙
𝜇′(𝑡),0 < 𝑥 < 𝑙, 𝑡 > 0, 

with boundary conditions  

𝑣|𝑥=0 = 0, 𝑣|𝑥=𝑙 = 0, 
and initial condition  

𝑣|𝑡=0 = 0. 
Consequently, 

𝑣(𝑥, 𝑡) = 

= −
1

𝑙
∫ 𝜇′(𝑠)𝑑𝑠 ∫ 𝐺(𝑥, 𝑦, 𝑡 − 𝑠)(𝑙 − 𝑦)𝑑𝑦

𝑙

0

𝑡

0
.         (2.2) 

Proposition 2.1.  Let 𝜇(𝑡) be a smooth function 

on the half-line 𝑡 ≥ 0. Then the function 

 

𝑢(𝑥, 𝑡) =
𝑙 − 𝑥

𝑙
𝜇(𝑡) − 

−∫ 𝜇′(𝑠)𝑑𝑠∫ 𝐺(𝑥, 𝑦, 𝑡 − 𝑠)
(𝑙 − 𝑦)

𝑙
𝑑𝑦

𝑙

0

𝑡

0

 

 

is the solution of the initial-boundary value problem 

(1.1)-(1.3). 

Proof. The proof comes from (2.1) and (2.2) 

(see, e.g. [16], [17]). 

Not that  
𝑙−𝑥

𝑙
=

2

𝜋
∑

1

𝑘
𝑠𝑖𝑛

𝑘𝜋𝑥

𝑙

∞
𝑘=1 , 0 ≤ 𝑥 ≤ 𝑙,                 (2.3) 

and according to Parceval equation, 

∫ 𝜑(𝑥)
𝑙−𝑥

𝑙
𝑑𝑥 =

𝑙

𝜋
∑

𝜑𝑘

𝑘

∞
𝑘=1 .

𝑙

0
                       (2.4) 

Taking into consideration (2.3), we get 

 

∫ 𝐺(𝑥, 𝑦, 𝑡 − 𝑠)
(𝑙 − 𝑦)

𝑙
𝑑𝑦 =

𝑙

0

 

=
2

𝜋
∑

1

𝑘
𝑒−(𝑘𝜋/𝑙)

2(𝑡−𝑠) 𝑠𝑖𝑛
𝑘𝜋𝑥

𝑙

∞

𝑘=1

. 

 

According to Pareceval equation and (1.6) we 

can write 

∫ 𝜑(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥 = 𝜇(𝑡)∫ 𝜑(𝑥)
𝑙 − 𝑥

𝑙
𝑑𝑥 −

𝑙

0

𝑙

0

 

−
𝑙

𝜋
∑

𝜑𝑘

𝑘
(∫ 𝑒−(𝑘𝜋/𝑙)

2(𝑡−𝑠)𝜇′(𝑠)𝑑𝑠
𝑡

0

)

∞

𝑘=1

= 

=
𝜋

𝑙
∑𝜑𝑘 ⋅ 𝑘

∞

𝑘=1

∫ 𝑒
−(

𝑘𝜋

𝑙)2(𝑡−𝑠)
)
𝜇(𝑠)

𝑡

0

𝑑𝑠 = 

= ∫ 𝐵(𝑡 − 𝑠)𝜇(𝑠)𝑑𝑠
𝑡

0

, 

 

where  

𝐵(𝑡) =
𝜋

𝑙
∑ 𝜑𝑘 ⋅ 𝑘 ⋅

∞
𝑘=1 𝑒−𝜆𝑘𝑡 , 𝜆𝑘 = (

𝑘𝜋

𝑙
)
2

,     (2.5)   

and   

𝜑𝑘 =
2

𝑙
∫ 𝜑(𝑥) 𝑠𝑖𝑛

𝑘𝜋𝑥

𝑙
𝑑𝑥

𝑙

0
.                       (2.6) 

Then we get the main integral equation 

∫ 𝐵(𝑡 − 𝑠)𝜇(𝑠)𝑑𝑠
𝑡

0
= 𝜃(𝑡), 𝑡 > 0.                  (2.7) 

Lemma. Let 𝑔(𝑥) assume that this function is 

decreasing and non-negative on [0,∞). Then the 

following inequality holds 

∫ 𝑔(𝑦) 𝑠𝑖𝑛 𝑦
𝑘𝜋

0
𝑑𝑦 ≥ 0.                         (2.8) 

Proof. The proof easy of lemma (see, e.g. [6]). 

Proposition 2.2.  For {𝜑𝑘}𝑘=1
∞  defined by (2.6) 

the following estimate holds 

0 ≤ 𝜑𝑘 ≤
𝐶

𝑘
, 𝑘 = 1,2,3, . . .. 

Proof. If we substitute 𝑥 ⋅
𝑘𝜋

𝑙
 into 𝑦in the (2.8) 

inequality, we have the following inequality 

∫ 𝜑(𝑥) 𝑠𝑖𝑛
𝑘𝜋𝑥

𝑙
𝑑𝑥

𝑙

0

≥ 0 

from this we get 

𝜑𝑘 =
2

𝑙
∫ 𝜑(𝑥) 𝑠𝑖𝑛

𝑘𝜋𝑥

𝑙
𝑑𝑥

𝑙

0
≥ 0, 𝑘 = 1,2, . . ..      (2.9) 

From (2.6), we can write  

 

𝜑𝑘 =
2

𝑙
∫ 𝜑(𝑥) 𝑠𝑖𝑛

𝑘𝜋𝑥

𝑙
𝑑𝑥

𝑙

0

= 

= −
2

𝑙
𝜑(𝑥)

𝑙

𝑘𝜋
𝑐𝑜𝑠

𝑘𝜋𝑥

𝑙
|
𝑥=0

𝑥=𝑙

+ 

+
2

𝑘𝜋
∫ 𝜑′(𝑥)𝑐𝑜𝑠
𝑙∫

𝑘𝜋𝑥

𝑙

2𝜑(0)

𝑘𝜋
(1−(−1)𝑘)

𝑜(1)

𝑘

0

 

 

Then we obtain  

0 ≤ 𝜑𝑘 ≤
𝐶

𝑘
. 

Proposition 2.2 proved. 

Proposition 2.3. For 𝐵(𝑡) defined by (2.5) the 

following estimate 

0 < 𝐵(𝑡) ≤
𝐶0

√𝑡
, 

is valid. 

Proof.  From (2.5) and (2.9), we get 

𝐵(𝑡) > 0, 
and according to Proposition 2.2, we may write (see, 

e.g. [6]) 

𝐵(𝑡) ≤ 𝐶0∑𝑒−(𝑘𝜋/𝑙)
2𝑡

∞

𝑘=1

≤
𝐶0

√𝑡
. 

Proposition 2.3 proved. 

 



Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  715 

 

 

3. SOLUTION OF THE PROBLEM  

We consider Voltaire integral equation 

∫ 𝐵(𝑡 − 𝑠)𝜇(𝑠)𝑑𝑠
𝑡

0
= 𝜃(𝑡), 𝑡 > 0.             (3.1) 

 Theorem 3.1. Let there be a constant 𝑀0, then 

for any function 𝜃(𝑡) ∈ 𝑊2
2(−∞,+∞), 𝜃(𝑡) = 0, 

𝑡 ≤ 0 that satisfies the 

‖𝜃(𝑡)‖
𝑊2

2(𝑅+)
2 ≤ 𝑀0,                                    (3.2)  

condition, there exists an admissible control 𝜇(𝑡) that 

satisfies condition (1.6). 

The solve equation (3.1), we use the Laplace 

transform method. We introduce the notation 

𝜇(𝑝) = ∫ 𝑒−𝑝𝑡𝜇(𝑡)𝑑𝑡
∞

0

. 

Using the convolution property from equation 

(3.1) we obtain 

 

𝐵̃(𝑝)𝜇̃(𝑝) = 𝜃̃(𝑝), 
consequently  

𝜇(𝑝) =
𝜃̃(𝑝)

𝐵̃(𝑝)
, where 𝑝 = 𝑎 + 𝑖𝜉, 𝑎 > 0, 

and  

 

𝜇(𝑡) =
1

2𝜋𝑖
∫

𝜃̃(𝑝)

𝐵̃(𝑝)
𝑒𝑝𝑡𝑑𝑝 =

𝑎+𝑖𝜉

𝑎−𝑖𝜉

 

=
1

2𝜋
∫

𝜃̃(𝑎+𝑖𝜉)

𝐵̃(𝑎+𝑖𝜉)
𝑒(𝑎+𝑖𝜉)𝑡𝑑𝜉

+∞

−∞
.             (3.3) 

 

Not that  

∫ 𝑒−𝜆𝑘𝑡𝑒−𝑝𝑡
∞

0

𝑑𝑡 =
1

𝑝 + 𝜆𝑘
. 

We can write  

𝐵̃(𝑝) = ∫ 𝐵(𝑡)𝑒−𝑝𝑡𝑑𝑡
∞

0

=
𝜋

𝑙
∑

𝑘 ⋅ 𝜑𝑘

𝑝 + 𝜆𝑘

∞

𝑘=1

, 

and  

 

𝐵̃(𝑎 + 𝑖𝜉) =
𝜋

𝑙
∑

𝑘 ⋅ 𝜑𝑘

𝑎 + 𝑖𝜉 + 𝜆𝑘

∞

𝑘=1

= 

= 𝑅𝑒 𝐵̃ (𝑎 + 𝑖𝜉) + 𝐼𝑚 𝐵̃ (𝑎 + 𝑖𝜉), 
 

where,  

𝑅𝑒 𝐵̃ (𝑎 + 𝑖𝜉) =
𝜋

𝑙
∑

𝑘⋅𝜑𝑘(𝑎+𝜆𝑘)

(𝑎+𝜆𝑘)
2+𝜉2

∞
𝑘=1 ,        

  𝐼𝑚 𝐵̃ (𝑎 + 𝑖𝜉) = −
𝜋⋅𝜉

𝑙
∑

𝑘⋅𝜑𝑘

(𝑎+𝜆𝑘)
2+𝜉2

∞
𝑘=1 . 

We know that  
1

(𝑎 + 𝜆𝑘)2 + 𝜉2
≥

1

1 + 𝜉2
⋅

1

(𝑎 + 𝜆𝑘)2 + 1
. 

 Consequently,  

|𝑅𝑒 𝐵̃ (𝑎 + 𝑖𝜉)| =
𝜋

𝑙
∑

𝑘 ⋅ 𝜑𝑘(𝑎 + 𝜆𝑘)

(𝑎 + 𝜆𝑘)2 + 𝜉2

∞

𝑘=1

≥ 

≥
1

1+𝜉2

𝜋

𝑙
∑

𝑘⋅𝜑𝑘(𝑎+𝜆𝑘)

(𝑎+𝜆𝑘)
2+1

=
𝐶1𝑎

1+𝜉2
∞
𝑘=1 ,           (3.4) 

and 

|𝐼𝑚 𝐵̃ (𝑎 + 𝑖𝜉)| =
𝜋 ⋅ |𝜉|

𝑙
∑

𝑘 ⋅ 𝜑𝑘

(𝑎 + 𝜆𝑘)2 + 𝜉2

∞

𝑘=1

≥ 

≥
|𝜉|

1+𝜉2

𝜋

𝑙
∑

𝑘⋅𝜑𝑘

(𝑎+𝜆𝑘)
2+1

=∞
𝑘=1

|𝜉|𝐶2𝑎

1+𝜉2
,                     (3.5) 

where 

𝐶1𝑎 =
𝜋

𝑙
∑

𝑘 ⋅ 𝜑𝑘(𝑎 + 𝜆𝑘)

(𝑎 + 𝜆𝑘)2 + 1

∞

𝑘=1

, 

𝐶2𝑎 =
𝜋

𝑙
∑

𝑘 ⋅ 𝜑𝑘

(𝑎 + 𝜆𝑘)2 + 1

∞

𝑘=1

. 

From (3.4) and (3.5), we have 

|𝐵̃(𝑎 + 𝑖𝜉)| ≥
𝐶3𝑎

√1+𝜉2
,                           (3.6) 

where 𝐶3𝑎 is expressed through 𝐶1𝑎 and 𝐶2𝑎. 

Then, when 𝑎 → 0from  (3.3) we obtain the 

equality 

𝜇(𝑡) =
1

2𝜋
∫

𝜃̃(𝑖𝜉)

𝐵̃(𝑖𝜉)
𝑒𝑖𝜉𝑡𝑑𝜉

+∞

−∞
.                       (3.7) 

Theorem 3.2. Let 𝜃(𝑡) ∈
𝑊2

2(−∞,+∞), 𝜃(𝑡) = 0 at 𝑡 ≤ 0. Then for the image 

of the function 𝜃(𝑡) the inequality 

∫ |𝜃̃(𝑖𝜉)|√1 + 𝜉2𝑑𝜉
+∞

−∞

< ∞ 

is valid. 

Proof. Using the integral representation of the 

image of a given function 𝜃(𝑡) and integration by 

parts we get 

 

𝜃̃(𝑎 + 𝑖𝜉) = ∫ 𝑒−(𝑎+𝑖𝜉)𝑡𝜃(𝑡)𝑑𝑡
∞

0

= 

= 𝜃(𝑡)
𝑒−(𝑎+𝑖𝜉)𝑡

−𝑎 − 𝑖𝜉
|
𝑡=0

𝑡=∞

+
1

𝑎 + 𝑖𝜉
∫ 𝑒−(𝑎+𝑖𝜉)𝑡𝜃′(𝑡)𝑑𝑡

∞

0

, 

 

then 

(𝑎 + 𝑖𝜉)𝜃̃(𝑎 + 𝑖𝜉) = ∫ 𝑒−(𝑎+𝑖𝜉)𝑡𝜃′(𝑡)𝑑𝑡
∞

0

. 

Therefore, when 𝑎 → 0we have 

𝑖𝜉𝜃̃(𝑖𝜉) = ∫ 𝑒−𝑖𝜉𝑡𝜃′(𝑡)𝑑𝑡
∞

0

, 

and 

(𝑖𝜉)2𝜃̃(𝑖𝜉) = ∫ 𝑒−𝑖𝜉𝑡𝜃′′(𝑡)𝑑𝑡
∞

0

. 

Consequently, 

 

∫ |𝜃̃(𝑖𝜉)|√1 + 𝜉2𝑑𝜉
+∞

−∞

= ∫
|𝜃̃(𝑖𝜉)|(1 + 𝜉2)

√1 + 𝜉2
𝑑𝜉

+∞

−∞

≤ 

≤ (∫ |𝜃̃(𝑖𝜉)|
2
(1 + 𝜉2)2𝑑𝜉

+∞

−∞

)

1

2

⋅ 

⋅ (∫
𝑑𝜉

1 + 𝜉2

+∞

−∞

)

1/2

≤ 𝐶‖𝜃‖
𝑊2

2(𝑅+)
2 . 

 

Theorem 3.2 proved. 

Proof of Theorem 3.1.  According to (3.6) and 

theorem 3.2 we can write  
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JIF                        = 1.500 
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РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 
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|𝜇(𝑡)| ≤
1

2𝜋
∫

|𝜃̃(𝑖𝜉)|

|𝐵̃(𝑖𝜉)|
𝑑𝜉 ≤

+∞

−∞

 

≤
1

2𝜋𝐶0
∫ |𝜃̃(𝑖𝜉)|√1 + 𝜉2𝑑𝜉
+∞

−∞

< ∞. 

 

Then, we get 

|𝜇(𝑡)| ≤
1

2𝜋𝐶0
𝐶‖𝜃‖

𝑊2
2(𝑅+)

2 ≤
𝐶𝑀0

2𝜋𝐶0
= 𝑀. 

Theorem 3.1 proved. 
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