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Abstract

The purpose of this analysis is to show that strong connections might exist between the teaching 
of mathematics, science and art. This is due to the particular geometrical configurations behind 
several paintings and other artistic creations. Therefore, the knowledge of this connection might be 
of help for the students to guess that mathematics and science also have possible applications to art. 
This is particularly relevant for the high schools of art. Since too often, mathematics is taught in high 
schools without any relevant link to reality, this can be one of the reasons of students’ disaffection for 
this subject. In this analysis, a teaching experiment developed by the author in an Italian (Udine) 
high school of art is proposed. In particular, Escher’s periodic drawings, and the ornamental motifs 
that characterize many products in reality, offer an interesting opportunity to make high school 
students understand the relevance of mathematics and especially of geometry in art. The discovery 
of mathematical laws, that derive from crystallography, behind Escher’s drawings should persuade 
students that such an artistry is reachable only by means of mathematical knowledge. In what 
follows the main features of the outlined didactical proposal are presented and discussed. 
Keywords: Escher, periodic drawings, mathematics and art, mathematics teaching, cristallography

Introduction

Many learners attending high schools of art consider mathematics a difficult and 
useless subject. Therefore, some strategy is to be found to improve their attitude towards 
this discipline. One possibility is to link mathematics to students’ artistic interests. Another 
one is to show how mathematics is involved in reality, for example, in nature.

Following this idea, natural science offers many starting points to discover the 
beauty and symmetry of the world. Some shapes in nature, like crystals, are a fascinating 
example which shows how and why the concept of symmetry is relevant (Weyl, 1952).

Escher’s work on periodic drawings constitutes a bridge through art, mathematics 
and natural science (Castaldi & Ghione, 2011) since he used geometry and the properties 
of the crystal structure in an artistic way.  That’s why a didactic itinerary based on Escher’s 
periodic drawings could provide students with the necessary motivation to deal with 
mathematical concepts. 

The first question which can be posed concerns the relation between Escher’s 
drawings and a remarkable mathematical problem regarding planar tessellations, that is, 
which forms can be used to tile a plane. After defining the concept of tessellation and 
particularly those of regular and uniform tessellation, the underlying structure of Escher’s 
compositions is investigated, without considering the tile’s shape. That is because the 
problem of tessellation is solved only for certain types of polygons and is, in general, a 
very complex matter that cannot be easily approached in high schools.  

However, related to this problem, there is another general issue that can actually 
be approached in a didactical way and that, in some cases, can explain the origin of some 
tessellations, particularly many of Escher’s. This analysis combines Escher’s periodic 
drawings and Hilbert’s regular point patterns.

  



2020, Vol. 17, No. 2

101https://doi.org/10.48127/gu-nse/20.17.100

The majority of this work outlines a didactical experimentation carried out in an 
Italian “Liceo Artistico”, in an attempt to align the study of mathematics, and in particular, 
of geometry, with the arts. 

The purpose of this activity was twofold: first, to have students analyse some 
of Escher’s drawings and be able to understand the underlying “secrets” behind his 
compositions; second, to enable students to apply the techniques of geometry in order to 
create periodic drawings themselves, solely using isometries to completely fill a plane.

This didactic proposal should be particularly significant for a number of reasons: 
firstly, because it offers students a different perspective on mathematics. This new 
perspective, when compared to the traditional approach, can help low-engagement students 
to regain interest in the subject and improve their results. Secondly, the theme of periodic 
drawings has a relevant practical application in art: consider iron grating, perimeter walls, 
or printings on cloth - very often these present symmetrical ornamental motifs. Thirdly, 
there is not a single curriculum in a “Liceo Artistico” that does not include the study of 
periodic drawings on some level, from graphics to figurative arts, from fashion design to 
architecture. Finally, for students that will continue scientific studies, periodic drawings 
will help them see what they will one day find in fields such as (among many others) 
abstract algebra (Morandi, 2003) or crystallography (Rigault, 1976).

The main aim of this work is to provide mathematics teachers with some useful 
material on the periodic drawings subject. Insofar as high schools of art are concerned, this 
didactic itinerary presents a contribution to define a more suitable mathematics curriculum 
for students.

Methodological Approach

The activity was carried out in the first period of the 2019-2020 school year, and 
it consisted of 4 meetings of 2 hours each. It was one of the activities which are part of 
the PLS (“Progetto Lauree scientifiche”, namely “Scientific Degree Project”), an Italian 
national programme whose aim is, among the others, to involve high school learners in the 
scientific culture.

The participation was voluntary; 17 students from different classes were involved. 
Some teachers participated voluntarily in the meetings, as well. They were mathematics 
teachers, fashion design teachers and figurative art teachers.

The learners were guided to the comprehension of the concepts by some theoretical 
lessons alternated with practical activities. More or less, 4 hours were dedicated to 
practical exercises.  The attendants were provided with instruments and material (white 
and transparent paper sheets, scissors, glue, pencil, ruler, rubber) so that they could test 
personally the possible applications of theoretical results.

The teacher had the role of supporting the students in their activities.
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Figure 1
A Lace Pattern

Planar Tessellations

Starting with Figure 2: how could Escher realize this composition? This is a question 
that would normally arise when visiting an exhibition of the Danish artist, and a question 
that usually gives the impression that the author’s art could not be grasped by just anyone. 
However, we will see that, in fact, it is possible at least to comprehend the methods used 
by Escher, even though Escher’s artistry and imagination might remain out of reach for 
most people. 

Figure 2
Escher’s Fishes
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So, what is a planar tessellation? In general, it is a collection of polygons that fill a 
plane and intersect each other, at most, in one side or vertex (Dedò, 1999, p. 32). We will 
see that we can create tessellations that are not made up of polygons, but rather of shapes 
obtained by the deformation of the sides of the polygons (as in Escher’s fishes).

Following this definition, we can ask ourselves some questions. For example: which 
convex polygons can tile the plane? In which way can different polygons be used for a 
tessellation? Is there a limit for the number of sides of a convex polygon to be used as a 
tile? 

As a proof of the fact that this topic is of actual interest, we can consider that it 
could be demonstrated that, if P is a convex polygon with 7 or more sides, then P cannot 
tile the plane. Whereas for hexagons, the problem is solved, as we know the typologies of 
hexagons that can tile the plane, for pentagons, the problem is still unsolved! (Dedò, 1999, 
p. 59)

Regular Tessellations

Among tessellations, the first ones that are suitable for a systematic analysis are 
regular tessellations, i.e. those made up by regular polygons. It’s not difficult to realize that 
the only regular tessellations are those made up by squares (Figure 3), equilateral triangles 
(Figure 4) and hexagons (Figure 5). 

Figure 3
A Square Tessellation

Figure 4
A Triangular Tessellation 

Figure 5
A Hexagonal Tessellation

Exercise: why can only these polygons tile the plane?

In addition to regular tessellations there are uniform tessellations (those made up 
by regular but different polygons), whose properties were investigated by Kepler in his 
Harmonice Mundi, of which I provide some figures below (Aiton et al., 1997, p 104):
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Figure 6
Kepler’s Uniform Tessellations from Harmonice Mundi

 

Regular tessellations have also been extensively studied and classified (Dedò, 1999, 
p. 46), but they always concern polygons. “Free” shapes, such as Escher’s fishes, aren’t 
included in these cases.

How can we proceed, then? It is probably necessary to change the point of view. 

Regular System of Points

As we look at the fishes’ drawing (Figure 2), we discover that the main characteristic 
of such a composition is the total lack of a reference point. Every object (fish) has the 
same position in relation to the others. Such an arrangement of objects is called a regular 
system (Hilbert, 1952, p. 32). In order to obtain shapes that can tile the plain, it is useful to 
examine what are all the possible regular systems of points. 

Figure 7
A Regular System of Points

Figure 8
The Two Sets of Segments are 
Superimposable
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In Figure 7 a regular system of points is shown. None of the points drawn have a 
different position in relation to the others. This concept can be visually explained as in 
Figure 8: starting from a point A, we draw all the segments with one endpoint in A and the 
other in any other point of the regular system. Then, the same construction is developed 
starting from another point A’. So, there are two sets of segments that are superimposable; 
i.e., there exists an isometry that brings the first set of segments onto the second one (in the 
case shown in Figure 8, the isometry is the rotation of 120° around the blue point).

Without drawing all the possible segments, this property of a regular system of 
points can be expressed by assuming that every point could be moved to any other by an 
isometric transformation of the system in itself.

Now it is explained how a regular system of points can be created. The essential idea 
is the following, and it is based on the mathematical concept of a group. The concept of a 
group, that normally is not part of teaching programs in high schools, is particularly useful 
here. It could be the right opportunity to introduce it. Otherwise it could be introduced 
earlier, for example dealing with the (finite) group of rotations that fix a regular polygon.

Seeing that, given two transformations of the system in itself, their composition is 
still a transformation of the system in itself; moreover, since for every transformation, there 
always exists an inverse transformation, then the set of all transformations of a system in 
itself is a group. So, a regular system of points is built by starting at an arbitrary point and 
applying a certain isometry group to that point in order to create infinite other points.

These isometries must also include translations along two non-parallel directions, as 
we consider periodic patterns, that repeat themselves ad infinitum, filling the whole plane. 
The other possible transformations, like rotations or reflections, have to be compatible with 
the translations in the group (which are always present).

Therefore, the following step is to seek to discover all the distinct groups of 
isometries containing two non-parallel translations. These groups are usually named 
planar crystallographic groups, and it can be demonstrated that there are only 17 (An 
algebraic demonstration of this fact can be found in Morandi, 2003).

The following exercise is conceived to allow students to comprehend the underlying 
structure of Escher’s drawings; by following the exercise, they should be able to understand 
the relation between the Artist’s drawings and the regular system of points.

Figure 9
The Underlying Structure of Escher’s Fishes
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Exercise: find out all the points in the same position in Escher’s fish drawing in 
Figure 2 (for example, each eye) and mark them on a transparent paper sheet. Also try to 
look for all the centres of rotation in the composition. Mark them in a different way (for 
example with an “x”). Remove the transparent paper sheet and verify that you obtain 
an image similar to the one shown here on the side (Figure 9). On a white paper sheet, 
copy the structure that you have on the transparent sheet and verify that, through suitable 
rotations, you can make the system correspond with itself.

The p1 group (only with translations) 

The simplest group is the one where isometries are only translations (along two 
different directions, at least): in this case we obtain a lattice as in Figure 10 (The p1 notation 
comes from crystallography as in Rigault, 1976). 

 
Figure 10
A Lattice Generated by Two Non-parallel 
Translations

Figure 11
A Tessellation Obtained by the Modification 
of the Sides of the Parallelogram

The group generated by the two translations u and v contains only translations and 
these will be, in this case, the only admissible isometries. The parallelogram limited by the 
two minimal translation vectors is called the basic parallelogram. It can completely fill the 
plane by action of the translations. Moreover, inside the basic parallelogram there aren’t 
equivalent points, i.e. points that correspond to each other by means of some group action. 
For this reason, it is also called the minimal figure (The minimal figure is called “unit cell” 
in Hilbert, 1952, p. 63).

Once we have found the minimal figure, we can draw some ornamental motif 
inside, otherwise we can modify its perimeter, thus obtaining a plain tessellation (Figure 
11) whose tile is less ordinary than the starting parallelogram. Here, in fact, we can see that 
the deformations on the two non-parallel sides are “carried on” by the u and v vectors and 
by their combinations. From this it is clear, that the new tile will have the same area of the 
minimal figure. 

In spite of its simplicity, this idea can lead to remarkable artistic results, as you can 
see in Escher’s Pegasus drawing (Figure 12).
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Figure 12
Escher’s Pegasus

Exercise: starting from Escher’s Pegasus, find the basic parallelogram and the 
minimal translation vectors. In which way has the basic parallelogram been deformed?

Rotations

While the simplest case is one in which only translations are present, let us investigate 
what happens if we introduce a 180° centre of rotation. We call it a 2-fold centre of rotation. 
To introduce the argument, two lemmas are presented (Hilbert, 1952, p. 63):

1.	 If, in a symmetry group, there is a rotation of an angle  about a point A 
and a translation vector u, then all the points obtained by the action of translations 
on A are centres of rotation (of the same angle ).
2.	 If, in a symmetry group, there is a rotation of an angle  about a point A 
and a translation vector u, then there is necessarily a translation vector u’, formed 
by the rotation of u of the same angle . 

Proof of the first lemma (Figure 13).

Figure 13
Generation of Centres of Rotation
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Let A be a centre of rotation of an angle α and u a translation vector. The triangle t1 
is translated in t1’, t1 is rotated in t2 and t2 is translated in t2’.

Figure 14
Generation of Translation Vectors

The transformation that moves t1’ to t2’ is a rotation of centre B. So, even the point B, 
translated of A, is a centre of rotation of angle α.

Proof of the second lemma (Figure 14).

Let A be a centre of rotation of an angle α and u a translation vector. The triangle 
t1 is translated in t1’ and rotated in t2. t1’ is rotated about A in t1’’. The transformation 
that moves t2 to t1’’ is a translation along the vector u’, rotated of u by the same angle α (I 
present here, as in other circumstances, not really a rigorous mathematical demonstration 
but its idea graphically illustrated, since I’ve thought to facilitate the comprehension of 
the students in this way. It is not, in any case, difficult to progress to a rigorous Euclidean 
proof, but the choice depends on the typology of school in which the subject is presented).

Admissible rotations

In order to understand which are the admissible rotations we have to take into 
account that they must be compatible with translations. The preceding lemmas bring us to 
the following result: the minimal admissible rotations are those whose angle is in the form 
360°/n for , excluding the case 
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Proof (The idea of the proof comes from Hibert, 1932. Another proof that uses simple 
trigonometric calculations is presented in Rigault, 1976). Let u be a minimal translation 
of the group. If A is n-fold centre of rotation (that is, the admissible rotations about A 
are of angles 360°/n, where n is a natural number, then, for the second lemma, there is a 
translation vector v, rotated of u by an angle 360°/n. The transformation w, given by the 
composition of v and -u, that brings the point B to A and from this to B’, is a translation 
because it is made by the composition of two translations (the red vector in Figure 15).

As the translation w cannot be smaller than u, we have that the rotation angle α must 
be at least 60° (see Figures 15, 16).

Figure 15
Inadmissible Rotation

Figure 16
Admissible Rotation

The 72° rotations must be excluded because, from a 144° rotation of the vector u 
(minimal translation) a vector v originates (Figure 17). The transformation w that leads A 
to B’ and then to C would be a translation smaller than u (assumed as the minimal one).

Figure 17
Exclusion of 72° Rotations

Figure 17
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Minimal rotations of 180° (p2 group)

Let us suppose A be a 2-fold centre of rotation and we will verify the compatibility 
with translations. As we have seen in the preceding lemmas, the action of translations 
generates a lattice of 2-fold centres of rotation (blue points in Figure 18). The t1 triangle is 
translated to t2 by vector v and the t2 triangle is rotated about B of 180° into the t3 triangle. 
The t1-t3 transformation is a rotation about C, the midpoint of AB (Here, as later on, I use 
the property of the group of symmetries that fix a regular system of points to justify the 
presence of new centre of rotations).

Figure 18
The Generation of Centres of Rotation in 
the p2 Group

Figure 19
The Lattice of the Centres of Rotation. In 
Different Colours: the Different Lattices 
Generated by the Translation Vectors.

Hence, if u is a translation vector that belongs to the group and it connects two 2-fold 
centres of rotation A and B, then even the midpoint C of AB is a 2-fold centre of rotation. In 
Figure 19 the lattice of the centres of rotations for this symmetry group is represented. Also 
depicted are some possible minimal figures (the parallelogram and the triangle), i.e. those 
figures which, by means of the group isometries, fill all the plane and which do not contain 
any points in their interior that correspond to each other by some isometry.

Possible deformations of the minimal figure 

As in the preceding case, an ornamental motif inside the minimal figure can be 
drawn, or the figure’s sides can be deformed, thus obtaining a plain tessellation. Taking a 
triangle as a minimal figure (shaded in Figure 20), it is possible to deform its sides, taking 
into account the presence of the centre of rotations in their midpoints, and the constraints 
they impose. One possibility is shown in Figure 20, where we can note that the three sides 
of the triangle are deformed independently.
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Figure 20
A Possible Deformation of a Triangular 
Minimal Figure in the p2 Group

Figure 21
An Exercise on the p2 Group

Exercise (Figure 21). Apply to the letter “G” all the isometries that characterize the 
p2 group (rotations of 180° about the points shown in the figure, translations of vectors u, 
v and their compositions). Is it thus possible to complete the scheme? What can you deduce 
by that? 

Exercise. From Escher’s drawing in Figure 22, find the minimal figure, the centre 
of rotations and the basic parallelogram. Try to recreate the composition by tracing on a 
transparent paper sheet the three polygonal paths that make part of the edge of the figure 
as it is schematically shown in Figure 23 and then apply the rotations.

Figure 22
A p2 drawing by Escher

Figure 23
Reconstruction of Escher’s drawing

Minimal rotations of 90° (p4 group)
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Figure 24
Generation of the Square Lattice

In this case (Figure 24) we assume O to be a 4-fold centre of rotation. For the 
preceding lemmas, given the translation vector OA for example, A will be a 4-fold centre 
of rotation and OA generates, by rotation, the OB, OC, OD, vectors. By consequence, even 
the points B, C, D, will be 4-fold centres of rotation. 

Since every vertex of the squares that constitute the lattice is a 4-fold centre of 
rotation, all midpoints of the squares’ sides are also centre of rotations, some of 90° and 
some of 180°. In fact, recalling what we have seen with the p2 group, between two 2-fold 
centres of rotation separated by a translation vector belonging to the group, there is always 
another 2-fold centre of rotation.

Figure 25
Generation of Centres of Rotation in the p4 Group
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In this case, every vertex of the square cell is also a 2-fold centre of rotation. 
Therefore, between two consecutive points of the lattice, there is necessarily another 2-fold 
centre of rotation, exactly as in the p2 case. This happens, for example, to the midpoint of 
segment AE, that will be a 2-fold centre of rotation (see Figure 25).

We show now that even the centre C of the square cell must be a 4-fold centre of 
rotation. In fact, the t1 triangle is moved to t2 by a rotation of 90° about A. The same 
triangle t1 is moved to t3 by a 180° rotation about the midpoint of AE. The transformation 
that moves t2 to t3 is a rotation of 90° about C, the centre of the square whose side is AE.

Figure 27 shows the lattice of the centres of rotation. We can see the minimal 
translation vectors and a possible minimal figure (shaded). From Figure 27 we can 
comprehend the group structure by watching how all the isometries of the group act on a 
triangle. 

Figure 26
Possible Deformations of the Square Tile

Figure 27
The Lattice of the Centres of Rotation. In 
Different Colours: the Lattices Generated 
by the Translation Vectors

If the perimeter of the square tile is deformed to obtain a tessellation, two of the four 
sides of the square can be deformed independently; an example of such deformations is 
illustrated in Figure 26.

Exercise.
Consider Escher’s fishes (Figure 28). Look for the centre of rotations and classify 

them; find the translation vectors and the basic parallelogram. 
Verify that you can obtain the fish’s form and then all the composition by the 

deformation of two sides of a square as is shown in Figure 29 (the two deformations are 
partially overlapped) and by the action of rotations.  
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Figure 28
Escher’s Fishes

Figure 29
The Square’s Sides Deformations

In Figure 30 we can see how a third-year high school student, in doing an assignment 
on the p4 group, has shown evidence of her artistic skills.

Figure 30
An “Artistic” Interpretation of p4 Group, Made by a Third-year High School Student

Minimal rotation of 120° (p3 group)

In this case, the existence of a 3-fold centre of rotation (that is a centre which 
corresponds to a minimal rotation angle of 120°) is supposed. Let A be such a centre of 
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rotation and u a translation vector (see Figure 31), then there will be other translation 
vectors (as v and w). Moreover, by the action of the translation vectors, every lattice point 
is a 3-fold centre of rotation.

Figure 31
Generation of the Triangular Lattice

Figure 32
Generation of Centres of Rotation in the 
p3 Group

Even in this case, as in the preceding one, there are other centre of rotations. These 
centres will be the centres of the equilateral triangles whose vertices correspond to the 
lattice points represented in the figure above (see Figure 32).

The point C, which is the centre of an equilateral triangle, is a 3-fold centre of 
rotation. In fact: the red triangle is moved into the green triangle by the consecutive action 
of a counter clockwise rotation about A and a translation; it is also rotated into the blue 
triangle by the consecutive action of a clockwise rotation about A and a translation. We see 
that the red, green and blue triangles are the transformed versions of one another, through 
a rotation about C. Therefore, all the centres of the equilateral triangles are 3-fold centres 
of rotation.

In Figure 33 the p3 group structure is shown. There is the basic parallelogram ACED 
and the minimal figure GHIL. By the rotation of the minimal figure about G we obtain a 
basic figure (of 3 colours) that can tile the plain by means of translations only. 
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Figure 33
The p3 Group Structure

In Figure 33 there are, marked with two different colours, the initial lattice points 
(blue) and those points which were derived later by the composition of isometries (red).

Figure 34
Possible Deformations of the Rhombic Minimal Figure

By the possible transformations of the minimal figure (rhombus with 60° and 120° 
internal angles), figures such as those in Figure 34 can be obtained, in which two sides of 
the rhombus are deformed independently, while the other two are obtained by rotation. 
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An idea of the resulting composition is given in Figure 35:  

Figure 35
A p3 Tessellation

Figure 36
 p3 Group Ornamental Motifs, 3rd Year High School Student

The reflection axes (pm group)

The majority of drawings and decorations observable in reality also present a 
reflection axes group. These reflections have to be compatible with the other isometries in 
the group (translations and, possibly, rotations).
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The simplest case is that one in which the symmetry group contains only axial 
symmetries and translations. This group is called pm. Thus, the presence of a symmetry axis 
m, perpendicular to one of the translation vectors, is requested, while the other translation 
direction is parallel to the reflection axis. In this way a m’ symmetry axis, translated of m, 
is created. In fact, observing Figure 37, the t1 triangle is reflected in t2 and translated in t3, 
t2 is translated in t4 and the transformation that brings t3 to t4 is the reflection with axis m’. 

Figure 37
The Generation of Reflection Axes

However, there are not only symmetry axes which are separated by a translation 
vector or by its multiples. In fact, the presence of two axes m and m’, separated by a 
translation vector u, produces another symmetry axis f halfway between the preceding 
axes.  

In order to prove this, let us consider the triangle t1: it is translated in t3 and reflected 
in t2. The transformation that moves t2 to t3 is a reflection of axis f that is halfway between 
m and m’, separated by vector u. Hence, we have infinite parallel symmetry axes separated 
by the u/2 distance. 

The presence of vertical symmetry axes does not allow deformations of the minimal 
rectangle’s vertical sides (the rectangle is shaded in Figure 39). However, some ornaments 
can be drawn inside the rectangle, as in Figure 39. The only admissible deformations are 
those on the horizontal sides of the rectangle.
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Figure 38
A Gate, pm Group

Figure 39
Possible Ornaments, pm Group

90° minimal rotations and reflection axes (p4m group)

In addition to the centres of rotation, a reflection axis can be requested in the p4 
group, resulting in the p4m group. Such an axis should pass, for symmetry reasons, through 
the lattice points which correspond to 4-fold centres of rotation (90° minimal rotation), as 
the point A in Figure 40. So, infinite other orthogonal reflection axes originate, separated 
by half of a translation vector, as we saw for the pm group

Let us see what happens with the composition of rotations and reflections. The 
presence of a reflection axis f passing through the centre of rotation A of minimal angle , 
causes the presence of the g axis. In fact, the triangle t1 is rotated in t2 and t1’ in t2’. The 
transformation that moves t2 in t2’ is the reflection of axis g. In the same manner we could 
demonstrate the presence of the h reflection axis, where h is the bisector of the   angle 
between f and g (see Figure 40). 

As a consequence of this we have that, if a n-fold centre of rotation is traversed by 
a reflection axis, it is automatically traversed by n reflection axes. For example, for n=4, 4 
reflection axes originate through the centre of rotation, as it is shown in Figure 41.
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Figure 40
Composition of Rotations and Reflections 
in the General Case

Figure 41
Composition of Rotations and Reflections 
in the p4m Case

The p4m group structure is rather rigid. The presence of many reflection axes 
induces a strong symmetry. 

Figure 42
The p4m Group: the Minimal tile and its 
Transformations

Figure 43
Ornamental Motifs in the p4m Group

In Figure 42, a triangle is depicted and all the transformed triangles by the group 
isometries. The minimal tile is highlighted in light blue. The green translation vectors 
correspond to the sides of the basic parallelogram. The perimeter of the minimal figure 
cannot be deformed, but some ornamental motif can be drawn inside it. An example is 
given in Figure 43. 
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There are many examples of compositions taken from reality which have this kind 
of symmetry. Some of them are shown here below.

Exercise. Analyse the following structures taken from reality. Find the minimal 
figure, the basic parallelogram, the centre of rotations and their nature, and the symmetry 
axes.

Figure 44
A Perimeter Wall

Figure 45
A Gate

The presence of glide reflection axes (p4g group)

In the preceding group (p4m) there were 4 reflection axes for each 4-fold centre of 
rotation and 2 reflection axes for each 2-fold centre of rotation. 

The p4g group originates instead by the presence, inside the p4 group, of reflection 
axes passing through the 2-fold centres of rotation only. The 4-fold centres of rotation are 
not traversed by reflection axes. The letter “g” denotes that there are also glide reflection 
axes (dashed in Figure 47).

Exercise. Find, in Escher’s drawing from Figure 46, the nature and the position 
of centre of rotations; look for the minimal figure, the translation vectors and the basic 
parallelogram; try to reconstruct the minimal figure, starting from the triangular tile from 
which it is obtained.
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Figure 46
A p4g drawing by Escher

Figure 47
The p4g structure

Conclusions and Implications

This activity has been positively accepted by students and they were engaged in 
exploring mathematics applied to their artistic and creative interests. Given the conspicuous 
amount of material about this subject, only some among the 17 symmetry groups were 
considered; anyway, this itinerary has been sufficient to provide students with the idea of 
how to proceed to analyse and create tessellations autonomously, even if, for lack of time, 
they were not led in the creation of their own compositions. 

Many ideas were exchanged between teachers, in particular fashion design teachers, 
for whom the tessellation subject is relevant, and they have shown a deep interest in this 
subject. Some collaborative projects applying periodic drawings were planned, but this 
year, unfortunately, especially because of the COVID-19 health emergency, they could not 
be achieved. 

The periodic drawings topic should be part of a fully-fledged artistic education, and, 
by studying it from a mathematical and geometrical point of view, students can enhance 
their skills and reach a level of complexity in their artistic composition that was previously 
unimaginable. 

Finally, some practical recommendations can be given. The first one concerns time: 
if 8 hours were sufficient to give the idea of the subject, it would be necessary to employ 8 
more hours at least for the learners to practice on this new subject. The second one concerns 
software applications: all figures presented here are made by GeoGebra free application. 
It is particularly suitable for making periodic drawings and carry on transformation of 
objects. That is why, with an appropriate amount of time, it should be a good idea to 
introduce the students to the use of this application. 
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