
Received: October 18, 2020. Revised: November 11, 2020. 376

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

The Dynamic Symmetric Four-Key-Generators System for Securing Data

Transmission in the Industrial Control System

Eko Hadiyono Riyadi1,2 Tri Kuntoro Priyambodo1* Agfianto Eko Putra1

1Computer Science and Electronics Department, Universitas Gadjah Mada, Yogyakarta, Indonesia

2Assessment Centre for Nuclear Installation and Material, Nuclear Energy Regulatory Agency, Jakarta, Indonesia
* Corresponding author’s Email: mastri@ugm.ac.id

Abstract: Most of the communication protocols in the Industrial Control System (ICS) are vulnerable to cyber-attacks.

Initially, the network protocol was designed for reliable performance, and thus did not incorporate data transmission

security features. Therefore, ICS requires adequate data transmission security. This paper suggests improving the

security of data transmission through a dynamic symmetric four-key-generators system, wherein the system anticipates

cyberattacks by generating four keys before encryption. It involves four generators: a random initial key generator, a

keystream generator, a key scheduling algorithm generator, and a pseudo-random number algorithm generator. In the

receiver section, the system generates three keys before decryption to ensure data confidentiality and to avoid cyber-

attacks. The test results show that the proposed system keyspace is ≈22048 bits, meaning that the key is more secure

from brute force attacks. As a result, the cipher data have a correlation value of 0.00007. The entropy value is 7.99,

indicating that the cipher data is more secure. Also, speed tests show that the processing time still qualifies as real-

time.

Keywords: Super encryption, ICS security, Protocol security.

1. Introduction

The industry needs a control system to implement

an automation process. This system, the collection of

individual control systems and other hardware that

automates or operates industrial processes, is

identified as the Industrial Control System (ICS

refers to [1]).

Some industries carry out production activities in

several processes at the same time, but in different

areas. Such a process requires a communication

protocol, with several commonly included ones being

Modbus, Profibus, DNP3, and OPC. Initially, the

network protocol was designed for reliable

communication and real-time processing and used on

relatively secure local networks. As such, it does not

incorporate adequate security features [2].

As communication and network technologies

have advanced, TCP/IP network protocols began to

be developed to communicate between ICS devices

via the internet. However, this has brought a new

problem: the risk of cyberattacks [3]. Experiences in

the last decade show that cyberattacks are becoming

increasingly common, and the damage and losses

they cause are increasing.

Several critical industries have been the main

targets of these cyberattacks, including power

generation, telecommunication, oil and gas, and

chemical. All of these industries have reported cyber-

attacks. Many have been due to protocol

vulnerabilities, Modbus and DNP3 vulnerabilities,

cryptographic attacks, replay attacks, communication

stack attacks, and flooding. Industrial systems have

also been vulnerable to such internet-facing threats as

man-in-the-middle (MITM) attacks, eavesdropping,

false command and control communications, and

TCP/lP stack exploits. Others have been vulnerable

to malware attacks, i.e. Stuxnet worm-altered

Programmable Logic Controller (PLC) operations, or

the injection of false data. Still others have been

attacked through automatic payload generation,

wherein the form of PLCs are exploited [4, 5].

Received: October 18, 2020. Revised: November 11, 2020. 377

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

All such attacks cause damage and losses, ranging

from the minor damage to the severe. Cyber-attacks

can paralyze a country, as they result in the cessation

of community services (as seen in the 2007 DDOS

attack in Estonia [6]). Such attacks can also occur due

to human factors, both internal and external [7].

Unencrypted data transmission is thus vulnerable

to cyberattacks, and it is necessary to secure data

transmissions in ICS. This issue can be overcome by

encrypting data transmissions with complex key

generators. In cryptography, Kilinc [8] showed

communication protocols' intrinsic shortcomings in

controlling network processes. They introduced a

distributed key generation model for ICS as a

representation of Petri nets. Bernardinello [9]

subsequently introduced a Petri nets protocol model

for id-based private key generation by compiling two

network models: one modelling the interaction

between the private key generator nodes, another

modelling the client from the main generator.

Rajkumar [10] introduced a lightweight technique to

ensure the confidentiality and integrity of the

messages. Meanwhile, Ouaissa [11] presented an

efficient and secure authentication and key

agreement protocol for the IoT system.

There are, however, several issues with

encryption key management: first, difficulty

generating symmetric keys that cannot easily be

predicted by cryptanalysts; second, maintaining the

confidentiality of symmetrical keys; third,

distributing symmetrical keys [12]. With these issues,

insecurity in data transmission remains.

This study introduces a new method of improving

data transmission security using a four-key-generator

in BRC4 super encryption, i.e., a random initial key

generator (K1), a keystream generator (K2), a key

scheduling algorithm generator (K3), and a pseudo-

random number algorithm generator (K4). This four-

key-generator aims to increase the data transmission

security on ICS.

For security purposes, the system inserts K1 as a

means of avoiding cyber-attacks. Even if an attacker

succeeds in getting a ciphertext, this ciphertext

cannot be read. Even if an attacker can separate K1

from the ciphertext, the ciphertext data cannot be read

because the decryption process requires K2, K3, and

K4 (whereas the attacker only has K1).

2. Related works

Some ICS observers have continued to develop

security features in order to anticipate cyberattacks

and improve communication between ICS devices,

especially to data transmission security.

Mohamed [13] stated that communication

devices must provide a strong communication

capacity to secure data transmission of various data

types to prevent cyber-attacks, including

implementing cryptographic methods. As data

transmission security, each cryptographic scheme is

built with its strengths. However, the application of a

single cryptographic technique to the system has

several weaknesses. For example, the symmetric

encryption method is cost-effective to secure data

without compromising security. Unfortunately, how

to share the secret key is a vital issue.

Meanwhile, the asymmetric scheme solves the

secret key distribution problem. However, the

processing speed is slower and consumes more

computer resources compared to symmetric

encryption. As an alternative to overcome each

scheme's security weaknesses, the integration of

several cryptographic methods is being proposed to

offer efficient data security and solve key distribution

problems.

Several previous studies utilize symmetric

cryptography. For example, the Advanced

Encryption Standard (AES) was conducted by

Altigani [14], Xin [15], and Harba [16]. The Data

Encryption Standard (DES) is implemented by Z.

Hong [17], who combines with Rivest Code 4 (RC4).

Then, Singh [18] uses symmetric encipherment.

Meanwhile, some studies that apply asymmetric

cryptography, i.e., Rivest Shamir Adleman (RSA) is

utilized by Purevjav [19] and Harba [16].

Furthermore, Elliptic Curve Cryptography (ECC)

was being used by N. Hong [20] and Xin [15].

N. Hong [20] presents a data transmission

security framework based on the ECC cipher

algorithm and SM2 handshake agreement to solve

security problems between the client and the receptor

in the information transmission process. However,

the study did not provide a performance evaluation.

Altigani [14] proposes a new approach that provides

an additional layer of protection for messages

transmitted over communication networks. This

approach combines the symmetric encryption

algorithm (AES) and the Word Shift Coding Protocol

steganography protocol. The resulting model has a

better impact on the confidentiality of messages sent

and the overall system computing security. Xin [15]

proposed mixed encryption using AES and ECC.

MD5 is integrated with ECC and AES to form a

hybrid approach. Unfortunately, the study did not

evaluate the performance results.

Singh [18] proposes two different encryption

techniques. The first proposed technique focuses on

compressing the data by half. The second technique

justifies Shallon's idea of diffusion by generating

Received: October 18, 2020. Revised: November 11, 2020. 378

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

different ciphertext characters for their distinct

appearance in plaintext. The combinatorial effect

results in a Hybrid Encryption scheme that makes it

difficult for adversaries to learn any information from

messages sent over an insecure transmission medium.

Purevjav [19] presents a new protocol design for

securing email communication on Android OS using

a hybrid cryptosystem. It is a combination of a public

key encryption system and a symmetrical hash

function. The new protocol design uses the RSA

asymmetric cipher with the MD5 hash function.

Messages encrypted with the public key can only be

decrypted for a reasonable time using the private key.

Z. Hong [17] proposed a new concept of the fusion

encryption algorithm for monitoring equipment. A

hybrid security encryption algorithm encrypts the

communication data based on DES, and the RC4

fusion encryption algorithm. This study, however,

does not present a performance evaluation. Harba

[16] proposes a method to protect data transfer with a

hybrid encryption technique. A symmetric AES

algorithm is used to encrypt files; an asymmetric

RSA is used to encrypt AES passwords; and an

HMAC is used to encrypt symmetrical passwords and

data to ensure secure transmission. The ciphertext

size and encryption time results show that the overall

encryption results in low computational requirements

and high security. D'souza [21] proposes the AES

algorithm with a hybrid approach to Dynamic Key

Generation and Dynamic S-box Generation. This

method adds more complexity in the data to increase

confusion and diffusion in the ciphertext using

Dynamic Key Generation.

3. Proposed method

To anticipate the vulnerability of data

transmissions in the ICS, we introduce a dynamic

symmetrical four-key cryptographic method. It

involves four generators: a random 256-byte key

generator, a key-stream generator, a key scheduling

algorithm generator, and a pseudo-random number

algorithm generator.

Dynamic symmetric key generation is the process

of generating keys through symmetric data

encryption; in other words, encryption uses the same

key as decryption. Such a process can be completed

quickly, with processing time being negligible

compared to previous cycles.

We simulate our proposed method using Matlab

software, with an instruction list (IL) from the PLC

of an industrial machine as simulation data. This data

consisted of 4,571 lines of sequentially executed

logical commands representing input and output.

Each line contained approximately 15 characters. The

Start

q =
length(data)

Setting of
key_length(pk)

q pk ?

K1= Randi
(256,1,q)

K1= Randi
(256,1,pk)

End

Yes

No

Reading
(data)

Figure. 1 K1 generation

IL record contained a total of 33,046 characters. The

four-key-generators model can be explained as

follows:

3.1. Random initial key generation

This generator produces a random initial key by

providing key-length setting options according to

data transmission requirements. The longer the key,

the more secure it is from brute-force attacks.

Fig. 1 explains the K1 generation process. The

system starts with pk key-length setting, then reads

the IL data while calculating the character length of

the IL data and storing it in the q variable. The system

compares the character size of the IL data and pk key-

length. If q≤pk, the system generates a random K1 as

long as the q variable. When q>pk, the system

generates a random key as long as the key pk.

This process generates a random K1 with a range of

values between 1 and 256.

3.2. Key-stream generation

This section explains the process of key-stream

generation. This generator aims to form keys with

certain equations and with the same length as the IL-

data. Fig. 2 explains the K2 generation process. It

begins with the computation of the character length

of the IL data, stored in variable q. It then calculates

character length of K1, stored in variable r.

The system then compares the values of variables

q and r. If q>r, it adds the 1 to the variable r and stores

it to variable s. If q≤r, it stores the value of r in

variable s, then keeps data K1 in K2.

The system compares the values of q and s. If q>s,

the length of the IL data is more than the length of the

key, and thus the system generates a keystream.

Keystream generation follows the equation:

𝑘𝑠 = (𝑘𝑠−𝑟 + 𝑘𝑠−1) 𝑚𝑜𝑑 256 (1)

Received: October 18, 2020. Revised: November 11, 2020. 379

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

Start

q= length(data),
r = length(K1)

q > r ?

s = r+1

s = r

End

Yes

No

q > s ?

K2(s)= mod((K2(s-r)+K2(s-1)),256);
s=s+1;

No

Yes

K2 = K1

Figure. 2 K2 generation

Where ks is the sth key, ks-r is the sth key minus the rth

key, and ks-1 is the sth key minus 1. If q≤s, the

character length of the IL-data is less than or equal to

the key-length, and thus the process is complete; K2

is equal to K1.

3.3. Key scheduling algorithms generation

This section explains the generation of K3, i.e. the

key scheduling algorithm. This generator aims to

generate a random initial array for use in the next key

generation process.

The third generator builds an S-array and a K-

array. It initializes permutations in the S-array. The S-

array is then processed for up to 256 iterations. Key

length is defined as the number of bytes in the key,

and ranges from 1 to 256.

Fig. 3 details the K3 generation process. It begins

by calculating the character-length of the IL-data,

stored in variable q, and calculating the key length of

K2, stored in variable r.

The system checks the value of q. If q<256, the

system adds 1 to the q value and stores it in variable

t. If q≥256, the system stores the value of q in variable

t, then checks the value of t; if t<256, the system

generates a KG keystream of character-length equal

to the IL-data and key. If t≥256, it proceeds to the

formation of S and K-arrays.

The system builds an S- and a K-array up to 256

bytes long. It then generates a key scheduling

algorithm using permutations from the sum of the j,

Si, and Ki values in Modulo 256. This permutation

produces a K3-key and an S array that is randomized

by 256 bytes.

3.4. Pseudo-random algorithm generation

This section explains the generation of pseudo-

random algorithms to produce K4. After getting a

randomized S-array from the previous approach, the

S[1] = i;
Ki = K[i mod q]

i < 256 ?

Yes

j = 0No
j = (j+Si+Ki) mod

256;
Swap (Si,Sj);

i < 256 ?Yes

No

q = length(data),
r = length(K2)

Start

No

t = (Si,Sj) mod 256;
K3 = St;

KG = K2

q < 256 ? t = q+1

t = q

Yes

No

t < 256 ?
KG(t)= mod((KG(t-q)+KG(q-1)),256);

t=t+1;
Yes

End

Figure. 3 K3 generation

i = 0;
j = 0;

i = (i + 1) mod 256;
j = (j + Si) mod 256;

Swap (Si,Sj);
t = (Si,Sj) mod 256;

K4 = St;

True ?

Yes

Noq = length(data),
r = length(K3)

Start End

Figure. 4 K4 generation

system continues to re-initialize the values of i and j

to zero. It then adds 1 to the value of i in Modulo 256.

Furthermore, it adds the value of j to Si in Modulo

256, then adds the value of S[i] and S[j] and swaps

both. S values with the same index as the S[i] and S[j]

value is modulated to 256, producing K4 (see Fig. 4).

4. Experiment

This section explains the simulation process

using IL-data from a PLC program. In many lines, IL-

data is converted into one-line by providing a sign (;)

to separate lines.

Next, the IL-data is converted from string to

numeric format. This is aimed to facilitate arithmetic

operations in the encryption and decryption processes.

After decryption, the system reconverts numeric data

into string data. The simulation process for the four-

key-generator model is detailed below:

4.1 K1 generation

This subsection explains the random key-

generation process. A simulation was conducted

Received: October 18, 2020. Revised: November 11, 2020. 380

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

using Matlab software, with the following hardware

specifications: i7-6500U processor, 16GB RAM,

Windows-10 64-bit operating system.

For K1 generation, we set a key-length of 256

bytes. The system thus generated a K1 with a length

of 256 characters. Some of the results are shown in

Fig. 5.

4.2 K2 generation

K2 generation begins with a reading of the

plaintext IL-data. As this data has a length of 33,046

characters, while K1 has a length of 256 characters,

the system generates K2 for characters 257–33,046

(K-257th through K-33,046th) using the keystream

generator in Eq. (1) below. For example,

K-257th = (K(257-256) + K(257-1)) mod 256

 = (K1 + K256) mod 256

 = (140 + 212) mod 256

 = 352 mod 256

 = 96

K-258th = (K2 + K257) mod 256

 = (185 + 96) mod 256

 = 281 mod 256

 = 25

This continues until K-33,046th. Fig. 6 shows the

partial results of K2 generation, starting with K-257th.

4.3 K3 Generation

K3 is generated through key scheduling algorithm.

Here, the system forms S and K-arrays for initial array

initiation. Key length is defined as the number of

bytes in the key, ranging from 1 to 256.

Figure. 5 Partial result

Figure. 6 Some results of K2 generation, starting with K-

257th

The S-array is initialized to the permutation of the

identity by giving it a value of 0 to 255. The K-array,

meanwhile, contains the K2-key. The S and K-arrays

are permuted through 256 iterations to randomize key

positions. The generation of the key scheduling

algorithm is presented below:

1) Initialize an S-array with a length of 256 bytes to

form an array S[0]=0, S[1]=1, S[2]=2, S[3]=3,…,

S[255]=255.

0 1 2Index 3 4 5 ... 254 255

0 1 2S 3 4 5 ... 254 255

2) Initialize a K-key array to form an array:

K[0]=140, K[1]=185, K[2]=134, K[3]=255,

K[4]=56, K[5]=28, … , K[254]=137, K[255]=28.

0 1 2Index 3 4 5 ... 254 255

140 185 134K 255 56 28 ... 137 28

3) Permutation of the S-array value, and swapping

the S[i] and S[j] arrays:

i=0;

j=0;

for i=0 to 255;

j= (j + S[j] + K[i]) mod 256;

swap value of S[i] and S[j];

According to the algorithm, the value of i=0 to i=255

is obtained using the following S-array value.

4) Iteration-1, for i=0, j=0.

j= (j + S[j] + K[i]) mod 256;

 = (j + S[0] + K[0]) mod 256;

 = (0 + 0 + 140) mod 256;

 = 140.

Received: October 18, 2020. Revised: November 11, 2020. 381

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

Swap the array values of S[0] and S[140], and the S-

array becomes:

0 1 2Index 3 4 5 ... 139 140

140 1 2S 3 4 5 ... 139 0

5) Iteration-2, for i=1, j=140 (obtained from

Iteration-1)

j= (j + S[j] + K[i]) mod 256;

 = (j + S[140] + K[1]) mod 256;

 = (140 + 140 + 185) mod 256;

 = 209.

Swap the array values of S[1] and S[209], and the S-

array becomes:

0 1 2Index 3 4 5 ... 208 209

140 209 2S 3 4 5 ... 208 1

6) Iteration-3, for i=2, j=209 (obtained from

Iteration-2)

j= (j + S[j] + K[i]) mod 256;

 = (j + S[209] + K[2]) mod 256;

 = (209 + 209 + 134) mod 256;

 = 40.

Swap the array values of S[2] and S[40], and the S-

array becomes:

0 1 2Index 3 4 5 ... 40 ...

140 209 40S 3 4 5 ... 2 ...

7) Iteration-4, for i=3, j=40 (obtained from

Iteration-3)

j= (j + S[j] + K[i]) mod 256;

 = (j + S[40] + K[3]) mod 256;

 = (40 + 40 + 255) mod 256;

 = 79.

Swap the array values of S[3] dan S[79], and the S-

array becomes:

0 1 2Index 3 4 5 ... 79 ...

140 209 40S 79 4 5 ... 3 ...

The system performs permutation until the 256th

iteration, resulting in a random S-array. If the IL-

data is more than 256 characters, or multiples of

256, the system generates block permutations in

multiples of 256. This process produces a random S-

array block.

4.4 K4 Generation

After obtaining a random S-array (assuming that

the array produced by Section 5.3 is the last array),

the system continues to re-initialize the i and j values

to zero. Here, the system generates pseudo-random

algorithms using the following algorithm:

i=0;

j=0;

i= (i + 1) mod 256;

j= (j + S[i]) mod 256;

swap values of S[i] and S[j];

t= (S[i] + S[j]) mod 256;

K= S[t];

Based on the previous block S-array results, the

process of generating pseudo-random algorithms to

produce K4 is:

1) Iteration-1, for i=0, j=0,

i= (i + 1) mod 256;

 = (0 + 1) mod 256

 = 1

j= (j + S[i]) mod 256;

 = (0 + S[1]) mod 256

 = (0 + 209) mod 256

 = 209

Swap the array values of S[1] and S[209], and the S-

array becomes:

0 1 2Index 3 4 5 ... 209 210

140 1 40S 79 4 5 ... 209 210

K-1

t= (S[i] + S[j]) mod 256;

 = (S[1] + S[209]) mod 256;

 = (1 + 209) mod 256

 = 210

K4 = S[t] = S[210] = 210;

The first key character of K4 is 210.

2) Iteration-2, for i=1, j=209 (obtained from

Iteration-1):

i= (i + 1) mod 256;

 = (1 + 1) mod 256

 = 2

j= (j + S[i]) mod 256;

 = (209 + S[2]) mod 256

 = (209 + 40) mod 256

 = 249

Swap the array values of S[2] and S[249] , and the

S-array becomes:

Received: October 18, 2020. Revised: November 11, 2020. 382

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

0 1 2Index ... 33 ... 249 250 251

140 1 249S ... 33 ... 40 250 251

K-2

t= (S[i] + S[j]) mod 256;

 = (S[2] + S[249]) mod 256;

 = (249 + 40) mod 256

 = 33

K4(2) = S[t] = S[33] = 33;

The second key character of K4 is 33.

3) Iteration-3, for i=2, j=249, (obtained from

Iteration-2):

i= (i + 1) mod 256;

 = (2 + 1) mod 256

 = 3

j= (j + S[i]) mod 256;

 = (249 + S[3]) mod 256

 = (249 + 79) mod 256

 = 72

Swap the array values of S[3] and S[72], and the S-

array becomes:

0 1 2Index 3 ... 72 ... 151 ...

140 1 249S 72 ... 79 ... 151 ...

K-3

t= (S[i] + S[j]) mod 256;

 = (S[3] + S[72]) mod 256;

 = (79 + 72) mod 256

 = 151

K4(3) = S[t] = S[151] = 151;

The third key character of K4 is 151.

4) Iteration-4, for i=3, j=72, (obtained from

Iteration-3):

i= (i + 1) mod 256;

 = (3 + 1) mod 256

 = 4

j= (j + S[i]) mod 256;

 = (72 + S[4]) mod 256

 = (72 + 4) mod 256

 = 76

Swap the array values of S[4] and S[76], and the S-

array becomes:

0 ... 3Index 4 ... 76 ... 80 ...

140 ... 72S 76 ... 4 ... 80 ...

K-4

t= (S[i] + S[j]) mod 256;

 = (S[4] + S[76]) mod 256;

 = (4 + 76) mod 256

 = 80

K4(4) = S[t] = S[80] = 80;

The fourth key character of K4 is 80.

The system continuously generates K4-keys until

the keys' length is equal to the plaintext IL-data size

(33,046 characters).

After four-key-generation is complete, the system

continues the encryption of IL-data. The system thus

inserts the key and key-length information behind the

ciphertext.

5. Result and discussion

This simulation produces a K4-key with a length

of 33,046 characters, which is subsequently used to

encrypt the transmission data. This cipher data is

analyzed below to ensure security.

5.1 Visual analysis

Visual analysis aims to compare the distribution

of plain and cipher data using histograms. Fig. 7

shows a histogram of the plaintext in the red chart and

the ciphertext in the blue chart for the first 500 of the

33,046 characters.

The plaintext distribution ranges between 10 and

99, while the resulting ciphertext has a numerical

distribution from 1 to 256. This shows that the

ciphertext is more secure from cyberattacks as it has

a larger range than the plain data.

5.2 Keyspace analysis

Keyspace analysis aims to ascertain the means of

securing the keyspace and anticipating brute-force

attacks. The keyspace must be sufficiently large—

greater than 2100—to anticipate brute-force attacks

[22].

In this simulation, we introduce a dynamic

symmetric four-key-generators system. The system

randomly generates a K1, with a length of 256 bytes,

every session. Each session, the system generates a

different key, as this is intended to increase

confidentiality and integrity. Keys with a numerical

distribution of 1 to 256, and a length of 256 characters,

have a keyspace of (256)256 (equivalent to ≈22048). As

such, K1 is secure from brute-force attacks.

5.3 Entropy analysis

Entropy analysis aims to determine the

randomness of the amount of information in a

message. The ciphered data is declared secure if it has

an entropy value close to ≈8.00 [23]. Randomness is

Received: October 18, 2020. Revised: November 11, 2020. 383

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

positively correlated with security. The entropy value

follows the following equation [24]:

 𝐻 = − ∑ 𝑃(𝑘) 𝐿𝑜𝑔2(𝑃(𝑘))
𝑛

𝑘=0
 (2)

H is the entropy value, n is the number of different

symbols in the message, and P(k) is the probability of

ciphertext symbol occurrence.

Based on Eq. (2), the entropy value of IL-data =

7.99. The ciphertext is thus secure, as the entropy

value is very close to 8.00.

5.4 Correlation analysis

Correlation analysis aims to determine the

correlation between the plaintext and the ciphertext.

A correlation value of r = 1 means that both data are

the same, while a correlation value approaching zero

(r ≈ 0) indicates increased inequality. The less the

correlation between the plaintext and the ciphertext,

the greater the randomness, and thus the greater the

security.

Correlation is analyzed via the following

formula:

 𝒓 =
𝒏 (∑ 𝒙𝒚)− (∑ 𝒙) (∑ 𝒚)

√[𝒏 ∑ 𝒙𝟐− (∑ 𝒙)𝟐] [𝒏 ∑ 𝒚𝟐− (∑ 𝒚)𝟐]
 (3)

Where r is the correlation value, x is the plaintext data,

and y is the ciphertext data. Based on Eq. (3), it can

be seen that the IL-data correlation value is 0.00007,

meaning that the plaintext and ciphertext are very

random and have no correlation (see Table 1). That

shows that data transmissions are secure from

cyberattacks.

5.5 Speed test analysis

Speed test analysis aims to measure the proposed

model's processing speed and determine whether it

still meets the criteria for real-time processing [25].

The encryption and decryption times for keys of

Table 2. Speed test value in seconds

IL (Key

sizes)
16

chars
32

chars
64

chars
128

chars
256

chars

Encryption

time
0.239 0.205 0.205 0.213 0.208

Decryption

time
0.492 0.466 0.447 0.524 0.464

Total of

time
0.731 0.671 0.652 0.737 0.672

several sizes are shown in Table 2. The result shows

that the processing time still qualifies as real-time, as

it is less than one second.

Mohamed [13] reviewed some of the hybrid

cryptographic approach to data transmission security.

As for comparison to the proposed method, as shown

in Table 3. He identified several studies, such as those

conducted by [15, 16, 19], as combining multiple

cryptographic schemes to strengthen security.

From Table 3, it can be seen that encryption and

decryption time are significant metrics for evaluating

the performance of data transmission.

However, some studies have not provided

performance evaluations and security analyses.

This study uses these metrics to measure

performance and present security in-depth to data

transmission. It presents a security analysis based on

visual analysis, keyspace, entropy, correlation, and

speed testing.

6. Conclusion

This research introduces a dynamic symmetric

four-key-generators system to secure data

transmission. The results of the keyspace test

(≈22048bits), entropy test (7.99), correlation test

(0.00007), and histogram test show that data

transmissions secured through this system are better

protected from cyber-attacks.

We propose that other complex key generators

may potentially be applied in ICS communication for

future works.

Figure. 7 Histogram of plaintext and ciphertext data for the first 500 characters (of 33,046 characters)

0

50

100

150

200

250

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

4
0

9

4
2

1

4
3

3

4
4

5

4
5

7

4
6

9

4
8

1

4
9

3

A
SC

II
 c

o
d

e

nth charactersPlainText CipherText

Received: October 18, 2020. Revised: November 11, 2020. 384

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

Table 1. Pearson correlation coefficient

Degree of correlation (r)

Perfect High Moderate Low No correlation Low Moderate High Perfect

-1
≤ -

0.90
≤ -0.50

≤ -

0.30

-0.29 ≤ r ≤

+0.29

≥

+0.30
≥ +0.50

≥

+0.90
1

Table 3. Hybrid security approach to data transmission

[13]

Study Method

Performance

Measuring

Presenting

security

analysis

[20] Handshake

agreement

(SM2) and

ECC.

No performance

evaluation.

No

[14] AES and

steganograp

hy Word

Shift

Coding.

Encryption time

and extraction

time.

No

[15] MD5, AES

and ECDH.

Key exchange

time, number of

time, key length,

time of signature,

number of

signature,

verification time.

No

[18] Symmetric

encipherme

nt and

middle

value

algorithm.

Encryption and

decryption test

No

[19] Symmetric

cipher Ping

Pong-128,

RSA and

hash

function

MD5.

Encryption and

decryption test.

No

[17] DES and

RC4.

No evaluation. No

[16] AES, RSA

and HMAC.

Ciphertext size,

encryption time

No

[21] AES and

Dynamic

Key

Generation,

Dynamic

S-box

Generation.

Encryption and

decryption test.

No

Proposed

Method

Super

Encryption

BRC4,

Four-key

generators

Visual analysis,

Keyspace,

Entropy,

Correlation,

Speed Test.

Yes

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The contributions of each author are described as

follows: “Conceptualization, Riyadi, Priyambodo,

Putra; methodology, Riyadi; software, Riyadi;

validation, Priyambodo, Putra; formal analysis,

Riyadi; investigation, Priyambodo; resources,

Priyambodo, Putra; data curation, Riyadi; writing—

original draft preparation, Riyadi; writing—review

and editing, Priyambodo, Putra; visualization, Riyadi;

supervision, Priyambodo, Putra; funding acquisition,

Putra.

Acknowledgments

This research is supported by Rekognisi Tugas

Akhir (RTA) from the Research Directorate of

Universitas Gadjah Mada through contract number

2488/UN1.P.III/DIT-LIT/PT/2020.

References

[1] T. C. Pramod, G. S. Thejas, S. S. Iyengar, and N.

R. Sunitha, “CKMI: Comprehensive key

management infrastructure design for Industrial

Automation and Control Systems”, Futur.

Internet, Vol. 11, No. 6, pp. 1–25, 2019, doi:

10.3390/fi11060126.

[2] B. Genge, P. Haller, A.-V. Duka, and H. Sándor,

“A lightweight key generation scheme for end-

to-end data authentication in Industrial Control

Systems”, - Autom., Vol. 67, No. 5, pp. 417–428,

2019, doi: 10.1515/auto-2019-0017.

[3] P. Jain and P. Tripathi, “SCADA security: a

review and enhancement for DNP3 based

systems”, CSI Trans. ICT, 2013, doi:

10.1007/s40012-013-0024-2.

[4] M. MacKintosh, G. Epiphaniou, H. Al-Khateeb,

K. Burnham, P. Pillai, and M. Hammoudeh,

“Preliminaries of orthogonal layered defence

using functional and assurance controls in

industrial control systems”, J. Sens. Actuator

Received: October 18, 2020. Revised: November 11, 2020. 385

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

Networks, Vol. 8, No. 1, 2019, doi:

10.3390/jsan8010014.

[5] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, “A

Dynamic Key Length Based Approach for Real-

Time Security Verification of Big Sensing Data

Stream”, Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), Vol. 9419, pp. 93–108, 2015,

doi: 10.1007/978-3-319-26187-4.

[6] A. Schmidt, “The Estonian Cyberattacks”,

Fierce Domain – Conflicts Cybersp. 1986-2012,

No. August, pp. 1–28, 2013.

[7] Z. Shouran, T. Priyambodo, and A. Ashari,

“Information System Security : Human Aspects

Information System Security : Human Aspects”,

No. March, 2019.

[8] G. Kilinc, I. N. Fovino, C. Ferigato, and A.

Koltuksuz, “A model of distributed key

generation for industrial control systems”, IFAC

Proc. Vol., Vol. 45, No. 29, pp. 356–363, 2012,

doi: 10.3182/20121003-3-MX-4033.00057.

[9] B. Luca, G. Kilinc, E. Mangioni, and L. Pomello,

“Modeling Distributed Private Key Generation

by Composing Petri Nets”, Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), Vol. 8910, pp. 19–

40, 2014, doi: 10.1007/978-3-662-45730-6.

[10] B. Rajkumar and G. Narsimha, “Secure light

weight encryption protocol for MANET”, Int. J.

Intell. Eng. Syst., Vol. 10, No. 3, pp. 58–65, 2017,

doi: 10.22266/ijies2017.0630.07.

[11] M. Ouaissa, M. Ouaissa, and A. Rhattoy, “An

efficient and secure authentication and key

agreement protocol of LTE mobile network for

an IoT system”, Int. J. Intell. Eng. Syst., Vol. 12,

No. 4, pp. 212–222, 2019, doi:

10.22266/ijies2019.0831.20.

[12] E. Setyaningsih, R. Wardoyo, and A. K. Sari,

“Securing color image transmission using

compression-encryption model with dynamic

key generator and efficient symmetric key

distribution”, Digit. Commun. Networks, 2020,

doi: 10.1016/j.dcan.2020.02.001.

[13] N. N. Mohamed, Y. M. Yussoff, M. A. Saleh,

and H. Hashim, “Hybrid cryptographic approach

for internet of things applications: A review”, J.

Inf. Commun. Technol., Vol. 19, No. 3, pp. 279–

319, 2020, doi: 10.32890/jict2020.19.3.1.

[14] A. Altigani and B. Barry, “A hybrid approach to

secure transmitted messages using advanced

encryption standard (AES) and Word Shift

Coding Protocol”, In: Proc. of- 2013 Int. Conf.

Comput. Electr. Electron. Eng. ’Research

Makes a Differ. ICCEEE 2013, pp. 134–139,

2013, doi: 10.1109/ICCEEE.2013.6633920.

[15] M. Xin, “A Mixed Encryption Algorithm Used

in Internet of Things Security Transmission

System”, In: Proc. of - 2015 Int. Conf. Cyber-

Enabled Distrib. Comput. Knowl. Discov.

CyberC 2015, pp. 62–65, 2015, doi:

10.1109/CyberC.2015.9.

[16] E. Harba, “Secure Data Encryption Through a

Combination of AES, RSA and HMAC”, Eng.

Technol. Appl. Sci. Res., Vol. 7, No. 4, pp. 1781–

1785, 2017, doi: 10.5281/zenodo.844291.

[17] Z. Y. Hong, Z. P. Qiu, S. L. Zeng, S. De Wang,

and M. Sandrine, “Research on fusion

encryption algorithm for internet of things

monitoring equipment”, In: Proc. of - 14th Int.

Symp. Pervasive Syst. Algorithms Networks, I-

SPAN 2017, 11th Int. Conf. Front. Comput. Sci.

Technol. FCST 2017 3rd Int. Symp. Creat.

Comput. ISCC 2017, Vol. 2017-Novem, pp.

425–429, 2017, doi: 10.1109/ISPAN-FCST-

ISCC.2017.49.

[18] R. Singh, I. Panchbhaiya, A. Pandey, and R. H.

Goudar, “Hybrid Encryption Scheme (HES): An

approach for transmitting secure data over

internet”, Procedia Comput. Sci., Vol. 48, No. C,

pp. 51–57, 2015, doi:

10.1016/j.procs.2015.04.109.

[19] S. Purevjav, T. Kim, and H. Lee, “Email

encryption using hybrid cryptosystem based on

Android”, Int. Conf. Adv. Commun. Technol.

ICACT, Vol. 2016, pp. 426–429, 2016, doi:

10.1109/ICACT.2016.7423418.

[20] N. Hong and Z. Xuefeng, “A security framework

for internet of things based on SM2 cipher

algorithm”, In: Proc. of - 2013 Int. Conf. Comput.

Inf. Sci. ICCIS 2013, pp. 13–16, 2013, doi:

10.1109/ICCIS.2013.12.

[21] F. J. D’souza and D. Panchal, “Advanced

encryption standard (AES) security

enhancement using hybrid approach”, In: Proc.

of- IEEE Int. Conf. Comput. Commun. Autom.

ICCCA 2017, Vol. 2017-Janua, pp. 647–652,

2017, doi: 10.1109/CCAA.2017.8229881.

[22] R. Bellazreg, N. Boudriga, and M. Hamdi, “A

dynamic distributed key tunneling protocol for

heterogeneous wireless sensor networks”, 2012,

doi: 10.1109/TrustCom.2012.26.

[23] E. Setyaningsih and R. Wardoyo, “Review of

Image Compression and Encryption

Techniques”, Vol. 8, No. 2, pp. 83–94, 2017.

[24] A. Shukla and S. Kumar, “Analysis of secure

watermarking based on DWT-SVD technique

for piracy”, In: Proc. of- IEEE Int. Conf. Comput.

Commun. Autom. ICCCA 2016, pp. 1110–1115,

2017, doi: 10.1109/CCAA.2016.7813882.

Received: October 18, 2020. Revised: November 11, 2020. 386

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.35

[25] E. H. Riyadi, T. K. Priyambodo, and A. E. Putra,

“Real-time Testing on Improved Data

Transmission Security in the Industrial Control

System”, In: Proc. of- IEEE Int. Semin. Res. Inf.

Technol. Intell. Syst., 2020.

