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Abstract: Most of the communication protocols in the Industrial Control System (ICS) are vulnerable to cyber-attacks. 

Initially, the network protocol was designed for reliable performance, and thus did not incorporate data transmission 

security features. Therefore, ICS requires adequate data transmission security. This paper suggests improving the 

security of data transmission through a dynamic symmetric four-key-generators system, wherein the system anticipates 

cyberattacks by generating four keys before encryption. It involves four generators: a random initial key generator, a 

keystream generator, a key scheduling algorithm generator, and a pseudo-random number algorithm generator. In the 

receiver section, the system generates three keys before decryption to ensure data confidentiality and to avoid cyber-

attacks. The test results show that the proposed system keyspace is ≈22048 bits, meaning that the key is more secure 

from brute force attacks. As a result, the cipher data have a correlation value of 0.00007. The entropy value is 7.99, 

indicating that the cipher data is more secure. Also, speed tests show that the processing time still qualifies as real-

time. 
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1. Introduction 

The industry needs a control system to implement 

an automation process. This system, the collection of 

individual control systems and other hardware that 

automates or operates industrial processes, is 

identified as the Industrial Control System (ICS 

refers to [1]). 

Some industries carry out production activities in 

several processes at the same time, but in different 

areas. Such a process requires a communication 

protocol, with several commonly included ones being 

Modbus, Profibus, DNP3, and OPC. Initially, the 

network protocol was designed for reliable 

communication and real-time processing and used on 

relatively secure local networks. As such, it does not 

incorporate adequate security features [2].  

As communication and network technologies 

have advanced, TCP/IP network protocols began to 

be developed to communicate between ICS devices 

via the internet. However, this has brought a new 

problem: the risk of cyberattacks [3]. Experiences in 

the last decade show that cyberattacks are becoming 

increasingly common, and the damage and losses 

they cause are increasing.  

Several critical industries have been the main 

targets of these cyberattacks, including power 

generation, telecommunication, oil and gas, and 

chemical. All of these industries have reported cyber-

attacks. Many have been due to protocol 

vulnerabilities, Modbus and DNP3 vulnerabilities, 

cryptographic attacks, replay attacks, communication 

stack attacks, and flooding. Industrial systems have 

also been vulnerable to such internet-facing threats as 

man-in-the-middle (MITM) attacks, eavesdropping, 

false command and control communications, and 

TCP/lP stack exploits. Others have been vulnerable 

to malware attacks, i.e. Stuxnet worm-altered 

Programmable Logic Controller (PLC) operations, or 

the injection of false data. Still others have been 

attacked through automatic payload generation, 

wherein the form of PLCs are exploited [4, 5]. 
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All such attacks cause damage and losses, ranging 

from the minor damage to the severe. Cyber-attacks 

can paralyze a country, as they result in the cessation 

of community services (as seen in the 2007 DDOS 

attack in Estonia [6]). Such attacks can also occur due 

to human factors, both internal and external [7]. 

Unencrypted data transmission is thus vulnerable 

to cyberattacks, and it is necessary to secure data 

transmissions in ICS. This issue can be overcome by 

encrypting data transmissions with complex key 

generators. In cryptography, Kilinc [8] showed 

communication protocols' intrinsic shortcomings in 

controlling network processes. They introduced a 

distributed key generation model for ICS as a 

representation of Petri nets. Bernardinello [9] 

subsequently introduced a Petri nets protocol model 

for id-based private key generation by compiling two 

network models: one modelling the interaction 

between the private key generator nodes, another 

modelling the client from the main generator. 

Rajkumar [10] introduced a lightweight technique to 

ensure the confidentiality and integrity of the 

messages. Meanwhile, Ouaissa [11] presented an 

efficient and secure authentication and key 

agreement protocol for the IoT system. 

There are, however, several issues with 

encryption key management: first, difficulty 

generating symmetric keys that cannot easily be 

predicted by cryptanalysts; second, maintaining the 

confidentiality of symmetrical keys; third, 

distributing symmetrical keys [12]. With these issues, 

insecurity in data transmission remains. 

This study introduces a new method of improving 

data transmission security using a four-key-generator 

in BRC4 super encryption, i.e., a random initial key 

generator (K1), a keystream generator (K2), a key 

scheduling algorithm generator (K3), and a pseudo-

random number algorithm generator (K4). This four-

key-generator aims to increase the data transmission 

security on ICS.  

For security purposes, the system inserts K1 as a 

means of avoiding cyber-attacks. Even if an attacker 

succeeds in getting a ciphertext, this ciphertext 

cannot be read. Even if an attacker can separate K1 

from the ciphertext, the ciphertext data cannot be read 

because the decryption process requires K2, K3, and 

K4 (whereas the attacker only has K1). 

2. Related works 

Some ICS observers have continued to develop 

security features in order to anticipate cyberattacks 

and improve communication between ICS devices, 

especially to data transmission security. 

Mohamed [13] stated that communication 

devices must provide a strong communication 

capacity to secure data transmission of various data 

types to prevent cyber-attacks, including 

implementing cryptographic methods. As data 

transmission security, each cryptographic scheme is 

built with its strengths. However, the application of a 

single cryptographic technique to the system has 

several weaknesses. For example, the symmetric 

encryption method is cost-effective to secure data 

without compromising security. Unfortunately, how 

to share the secret key is a vital issue. 

Meanwhile, the asymmetric scheme solves the 

secret key distribution problem. However, the 

processing speed is slower and consumes more 

computer resources compared to symmetric 

encryption. As an alternative to overcome each 

scheme's security weaknesses, the integration of 

several cryptographic methods is being proposed to 

offer efficient data security and solve key distribution 

problems. 

Several previous studies utilize symmetric 

cryptography. For example, the Advanced 

Encryption Standard (AES) was conducted by 

Altigani [14], Xin [15], and Harba [16]. The Data 

Encryption Standard (DES) is implemented by Z. 

Hong [17], who combines with Rivest Code 4 (RC4). 

Then, Singh [18] uses symmetric encipherment. 

Meanwhile, some studies that apply asymmetric 

cryptography, i.e., Rivest Shamir Adleman (RSA) is 

utilized by Purevjav [19] and Harba [16]. 

Furthermore, Elliptic Curve Cryptography (ECC) 

was being used by N. Hong [20] and Xin [15]. 

N. Hong [20] presents a data transmission 

security framework based on the ECC cipher 

algorithm and SM2 handshake agreement to solve 

security problems between the client and the receptor 

in the information transmission process. However, 

the study did not provide a performance evaluation. 

Altigani [14] proposes a new approach that provides 

an additional layer of protection for messages 

transmitted over communication networks. This 

approach combines the symmetric encryption 

algorithm (AES) and the Word Shift Coding Protocol 

steganography protocol. The resulting model has a 

better impact on the confidentiality of messages sent 

and the overall system computing security. Xin [15] 

proposed mixed encryption using AES and ECC. 

MD5 is integrated with ECC and AES to form a 

hybrid approach. Unfortunately, the study did not 

evaluate the performance results. 

Singh [18] proposes two different encryption 

techniques. The first proposed technique focuses on 

compressing the data by half. The second technique 

justifies Shallon's idea of diffusion by generating 



Received:  October 18, 2020.     Revised: November 11, 2020.                                                                                        378 

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021           DOI: 10.22266/ijies2021.0228.35 

 

different ciphertext characters for their distinct 

appearance in plaintext. The combinatorial effect 

results in a Hybrid Encryption scheme that makes it 

difficult for adversaries to learn any information from 

messages sent over an insecure transmission medium. 

Purevjav [19] presents a new protocol design for 

securing email communication on Android OS using 

a hybrid cryptosystem. It is a combination of a public 

key encryption system and a symmetrical hash 

function. The new protocol design uses the RSA 

asymmetric cipher with the MD5 hash function. 

Messages encrypted with the public key can only be 

decrypted for a reasonable time using the private key. 

Z. Hong [17] proposed a new concept of the fusion 

encryption algorithm for monitoring equipment. A 

hybrid security encryption algorithm encrypts the 

communication data based on DES, and the RC4 

fusion encryption algorithm. This study, however, 

does not present a performance evaluation. Harba 

[16] proposes a method to protect data transfer with a 

hybrid encryption technique. A symmetric AES 

algorithm is used to encrypt files; an asymmetric 

RSA is used to encrypt AES passwords; and an 

HMAC is used to encrypt symmetrical passwords and 

data to ensure secure transmission. The ciphertext 

size and encryption time results show that the overall 

encryption results in low computational requirements 

and high security. D'souza [21] proposes the AES 

algorithm with a hybrid approach to Dynamic Key 

Generation and Dynamic S-box Generation. This 

method adds more complexity in the data to increase 

confusion and diffusion in the ciphertext using 

Dynamic Key Generation.  

3. Proposed method 

To anticipate the vulnerability of data 

transmissions in the ICS, we introduce a dynamic 

symmetrical four-key cryptographic method. It 

involves four generators: a random 256-byte key 

generator, a key-stream generator, a key scheduling 

algorithm generator, and a pseudo-random number 

algorithm generator. 

Dynamic symmetric key generation is the process 

of generating keys through symmetric data 

encryption; in other words, encryption uses the same 

key as decryption. Such a process can be completed 

quickly, with processing time being negligible 

compared to previous cycles.  

We simulate our proposed method using Matlab 

software, with an instruction list (IL) from the PLC 

of an industrial machine as simulation data. This data 

consisted of 4,571 lines of sequentially executed 

logical commands representing input and output. 

Each line contained approximately 15 characters. The  

Start

q = 
length(data)

Setting of 
key_length(pk)

q   pk ?

K1= Randi 
(256,1,q) 

K1= Randi 
(256,1,pk) 

End

Yes

No

Reading 
(data)

 
Figure. 1 K1 generation 

 

IL record contained a total of 33,046 characters. The 

four-key-generators model can be explained as 

follows: 

3.1. Random initial key generation 

This generator produces a random initial key by 

providing key-length setting options according to 

data transmission requirements. The longer the key, 

the more secure it is from brute-force attacks. 

Fig. 1 explains the K1 generation process. The 

system starts with pk key-length setting, then reads 

the IL data while calculating the character length of 

the IL data and storing it in the q variable. The system 

compares the character size of the IL data and pk key-

length. If q≤pk, the system generates a random K1 as 

long as the q variable. When q>pk, the system 

generates a random key as long as the key pk. 

This process generates a random K1 with a range of 

values between 1 and 256. 

3.2. Key-stream generation 

This section explains the process of key-stream 

generation. This generator aims to form keys with 

certain equations and with the same length as the IL-

data. Fig. 2 explains the K2 generation process. It 

begins with the computation of the character length 

of the IL data, stored in variable q. It then calculates 

character length of K1, stored in variable r. 

The system then compares the values of variables 

q and r. If q>r, it adds the 1 to the variable r and stores 

it to variable s. If q≤r, it stores the value of r in 

variable s, then keeps data K1 in K2. 

The system compares the values of q and s. If q>s, 

the length of the IL data is more than the length of the 

key, and thus the system generates a keystream. 

Keystream generation follows the equation: 

 

𝑘𝑠 = ( 𝑘𝑠−𝑟 +  𝑘𝑠−1 ) 𝑚𝑜𝑑 256               (1) 
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Start

q= length(data),
r = length(K1)

q > r ?

s = r+1

s = r

End

Yes

No

q > s ?

K2(s)= mod((K2(s-r)+K2(s-1)),256);
s=s+1;

No

Yes

K2 = K1

 
Figure. 2 K2 generation 

 

Where ks is the sth key, ks-r is the sth key minus the rth 

key, and ks-1 is the sth key minus 1. If q≤s, the 

character length of the IL-data is less than or equal to 

the key-length, and thus the process is complete; K2 

is equal to K1. 

3.3. Key scheduling algorithms generation 

This section explains the generation of K3, i.e. the 

key scheduling algorithm. This generator aims to 

generate a random initial array for use in the next key 

generation process.  

The third generator builds an S-array and a K-

array. It initializes permutations in the S-array. The S-

array is then processed for up to 256 iterations. Key 

length is defined as the number of bytes in the key, 

and ranges from 1 to 256. 

Fig. 3 details the K3 generation process. It begins 

by calculating the character-length of the IL-data, 

stored in variable q, and calculating the key length of 

K2, stored in variable r. 

The system checks the value of q. If q<256, the 

system adds 1 to the q value and stores it in variable 

t. If q≥256, the system stores the value of q in variable 

t, then checks the value of t; if t<256, the system 

generates a KG keystream of character-length equal 

to the IL-data and key. If t≥256, it proceeds to the 

formation of S and K-arrays. 

The system builds an S- and a K-array up to 256 

bytes long. It then generates a key scheduling 

algorithm using permutations from the sum of the j, 

Si, and Ki values in Modulo 256. This permutation 

produces a K3-key and an S array that is randomized 

by 256 bytes. 

3.4. Pseudo-random algorithm generation 

This section explains the generation of pseudo-

random algorithms to produce K4. After getting a 

randomized S-array from the previous approach, the  

S[1] = i;
Ki = K[i mod q]

i < 256 ?

Yes

j = 0No
j = (j+Si+Ki) mod 

256;
Swap (Si,Sj);

i < 256 ?Yes

No

q = length(data),
r = length(K2)

Start

No

t = (Si,Sj) mod 256;
K3 = St;

KG = K2

q < 256 ? t = q+1

t = q

Yes

No

t < 256 ?
KG(t)= mod((KG(t-q)+KG(q-1)),256);

t=t+1;
Yes

End

 
Figure. 3 K3 generation 

 

i = 0;
j = 0;

i = ( i + 1) mod 256;
j = ( j + Si ) mod 256;

Swap  (Si,Sj);
t = (Si,Sj) mod 256;

K4 = St;

True ?

Yes

Noq = length(data),
r = length(K3)

Start End

 
Figure. 4 K4 generation 

 

system continues to re-initialize the values of i and j 

to zero. It then adds 1 to the value of i in Modulo 256. 

Furthermore, it adds the value of j to Si in Modulo 

256, then adds the value of S[i] and S[j] and swaps 

both. S values with the same index as the S[i] and S[j] 

value is modulated to 256, producing K4 (see Fig. 4). 

4. Experiment 

This section explains the simulation process 

using IL-data from a PLC program. In many lines, IL-

data is converted into one-line by providing a sign (;) 

to separate lines. 

Next, the IL-data is converted from string to 

numeric format. This is aimed to facilitate arithmetic 

operations in the encryption and decryption processes. 

After decryption, the system reconverts numeric data 

into string data. The simulation process for the four-

key-generator model is detailed below: 

4.1 K1 generation 

This subsection explains the random key-

generation process. A simulation was conducted 



Received:  October 18, 2020.     Revised: November 11, 2020.                                                                                        380 

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021           DOI: 10.22266/ijies2021.0228.35 

 

using Matlab software, with the following hardware 

specifications: i7-6500U processor, 16GB RAM, 

Windows-10 64-bit operating system.  

For K1 generation, we set a key-length of 256 

bytes. The system thus generated a K1 with a length 

of 256 characters. Some of the results are shown in 

Fig. 5. 

4.2 K2 generation 

K2 generation begins with a reading of the 

plaintext IL-data. As this data has a length of 33,046 

characters, while K1 has a length of 256 characters, 

the system generates K2 for characters 257–33,046 

(K-257th through K-33,046th) using the keystream 

generator in Eq. (1) below. For example,  

K-257th = (K(257-256) + K(257-1) ) mod 256 

 = (K1 + K256) mod 256 

 = (140 + 212) mod 256 

 = 352 mod 256 

 = 96 

K-258th = (K2 + K257) mod 256 

 = (185 + 96) mod 256 

 = 281 mod 256 

 = 25 

This continues until K-33,046th. Fig. 6 shows the 

partial results of K2 generation, starting with K-257th. 

4.3 K3 Generation 

K3 is generated through key scheduling algorithm. 

Here, the system forms S and K-arrays for initial array 

initiation. Key length is defined as the number of 

bytes in the key, ranging from 1 to 256. 

 

 
Figure. 5 Partial result 

 
Figure. 6 Some results of K2 generation, starting with K-

257th 

 

The S-array is initialized to the permutation of the 

identity by giving it a value of 0 to 255. The K-array, 

meanwhile, contains the K2-key. The S and K-arrays 

are permuted through 256 iterations to randomize key 

positions. The generation of the key scheduling 

algorithm is presented below:  

1) Initialize an S-array with a length of 256 bytes to 

form an array S[0]=0, S[1]=1, S[2]=2, S[3]=3,…, 

S[255]=255. 

0 1 2Index 3 4 5 ... 254 255

0 1 2S 3 4 5 ... 254 255
 

2) Initialize a K-key array to form an array: 

K[0]=140, K[1]=185, K[2]=134, K[3]=255, 

K[4]=56, K[5]=28, … , K[254]=137, K[255]=28. 

0 1 2Index 3 4 5 ... 254 255

140 185 134K 255 56 28 ... 137 28
 

3) Permutation of the S-array value, and swapping 

the S[i] and S[j] arrays:  

i=0; 

j=0; 

for i=0 to 255; 

j= (j + S[j] + K[i]) mod 256; 

swap value of S[i] and S[j]; 

According to the algorithm, the value of i=0 to i=255 

is obtained using the following S-array value.  

4) Iteration-1, for i=0, j=0. 

j= (j + S[j] + K[i]) mod 256; 

 = (j + S[0] + K[0]) mod 256; 

 = (0 + 0 + 140) mod 256; 

 = 140. 
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Swap the array values of S[0] and S[140], and the S-

array becomes: 

0 1 2Index 3 4 5 ... 139 140

140 1 2S 3 4 5 ... 139 0

 

5) Iteration-2, for i=1, j=140 (obtained from 

Iteration-1) 

j= (j + S[j] + K[i]) mod 256; 

 = (j + S[140] + K[1]) mod 256; 

 = (140 + 140 + 185) mod 256; 

 = 209. 

Swap the array values of S[1] and S[209], and the S-

array becomes: 

0 1 2Index 3 4 5 ... 208 209

140 209 2S 3 4 5 ... 208 1

 

6) Iteration-3, for i=2, j=209 (obtained from 

Iteration-2) 

j= (j + S[j] + K[i]) mod 256; 

 = (j + S[209] + K[2]) mod 256; 

 = (209 + 209 + 134) mod 256; 

 = 40. 

Swap the array values of S[2] and S[40], and the S-

array becomes: 

0 1 2Index 3 4 5 ... 40 ...

140 209 40S 3 4 5 ... 2 ...

 

7) Iteration-4, for i=3, j=40 (obtained from 

Iteration-3) 

j= (j + S[j] + K[i]) mod 256; 

 = (j + S[40] + K[3]) mod 256; 

 = (40 + 40 + 255) mod 256; 

 = 79. 

Swap the array values of S[3] dan S[79], and the S-

array becomes: 

0 1 2Index 3 4 5 ... 79 ...

140 209 40S 79 4 5 ... 3 ...

 

The system performs permutation until the 256th 

iteration, resulting in a random S-array. If the IL-

data is more than 256 characters, or multiples of 

256, the system generates block permutations in 

multiples of 256. This process produces a random S-

array block. 

4.4 K4 Generation  

After obtaining a random S-array (assuming that 

the array produced by Section 5.3 is the last array), 

the system continues to re-initialize the i and j values 

to zero. Here, the system generates pseudo-random 

algorithms using the following algorithm: 

i=0; 

j=0; 

i= (i + 1) mod 256; 

j= (j + S[i]) mod 256; 

swap values of S[i] and S[j]; 

t= (S[i] + S[j]) mod 256; 

K= S[t]; 

Based on the previous block S-array results, the 

process of generating pseudo-random algorithms to 

produce K4 is: 

1) Iteration-1, for i=0, j=0, 

i= (i + 1) mod 256; 

 = (0 + 1) mod 256  

 = 1 

j= (j + S[i]) mod 256; 

 = (0 + S[1]) mod 256 

 = (0 + 209) mod 256  

 = 209 

Swap the array values of S[1] and S[209], and the S-

array becomes: 

0 1 2Index 3 4 5 ... 209 210

140 1 40S 79 4 5 ... 209 210

K-1
 

t= ( S[i] + S[j]) mod 256; 

 = ( S[1] + S[209]) mod 256; 

 = ( 1 + 209 ) mod 256  

 = 210 

K4 = S[t] = S[210] = 210; 

The first key character of K4 is 210. 

2) Iteration-2, for i=1, j=209 (obtained from 

Iteration-1): 

i= (i + 1) mod 256; 

 = (1 + 1) mod 256  

 = 2 

j= (j + S[i]) mod 256; 

 = (209 + S[2]) mod 256 

 = (209 + 40) mod 256  

 = 249 

Swap the array values of S[2] and S[249] , and the 

S-array becomes: 
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0 1 2Index ... 33 ... 249 250 251

140 1 249S ... 33 ... 40 250 251

K-2

 
t= (S[i] + S[j]) mod 256; 

 = (S[2] + S[249]) mod 256; 

 = (249 + 40) mod 256  

 = 33 

K4(2) = S[t] = S[33] = 33; 

The second key character of K4 is 33. 

3) Iteration-3, for i=2, j=249, (obtained from 

Iteration-2): 

i= (i + 1) mod 256; 

 = (2 + 1) mod 256  

 = 3 

j= (j + S[i]) mod 256; 

 = (249 + S[3]) mod 256 

 = (249 + 79) mod 256  

 = 72 

Swap the array values of S[3] and S[72], and the S-

array becomes: 

0 1 2Index 3 ... 72 ... 151 ...

140 1 249S 72 ... 79 ... 151 ...

K-3
 

t= (S[i] + S[j]) mod 256; 

 = (S[3] + S[72]) mod 256; 

 = (79 + 72) mod 256  

 = 151 

K4(3) = S[t] = S[151] = 151; 

The third key character of K4 is 151. 

4) Iteration-4, for i=3, j=72, (obtained from 

Iteration-3): 

i= (i + 1) mod 256; 

 = (3 + 1) mod 256  

 = 4 

j= (j + S[i]) mod 256; 

 = (72 + S[4]) mod 256 

 = (72 + 4) mod 256  

 = 76 

Swap the array values of S[4] and S[76], and the S-

array becomes: 

 

0 ... 3Index 4 ... 76 ... 80 ...

140 ... 72S 76 ... 4 ... 80 ...

K-4
 

t= ( S[i] + S[j]) mod 256; 

 = ( S[4] + S[76]) mod 256; 

 = ( 4 + 76 ) mod 256  

 = 80 

K4(4) = S[t] = S[80] = 80; 

The fourth key character of K4 is 80. 

The system continuously generates K4-keys until 

the keys' length is equal to the plaintext IL-data size 

(33,046 characters). 

After four-key-generation is complete, the system 

continues the encryption of IL-data. The system thus 

inserts the key and key-length information behind the 

ciphertext.  

5. Result and discussion 

This simulation produces a K4-key with a length 

of 33,046 characters, which is subsequently used to 

encrypt the transmission data. This cipher data is 

analyzed below to ensure security. 

5.1 Visual analysis 

Visual analysis aims to compare the distribution 

of plain and cipher data using histograms. Fig. 7 

shows a histogram of the plaintext in the red chart and 

the ciphertext in the blue chart for the first 500 of the 

33,046 characters.  

The plaintext distribution ranges between 10 and 

99, while the resulting ciphertext has a numerical 

distribution from 1 to 256. This shows that the 

ciphertext is more secure from cyberattacks as it has 

a larger range than the plain data. 

5.2 Keyspace analysis 

Keyspace analysis aims to ascertain the means of 

securing the keyspace and anticipating brute-force 

attacks. The keyspace must be sufficiently large—

greater than 2100—to anticipate brute-force attacks 

[22].  

In this simulation, we introduce a dynamic 

symmetric four-key-generators system. The system 

randomly generates a K1, with a length of 256 bytes, 

every session. Each session, the system generates a 

different key, as this is intended to increase 

confidentiality and integrity. Keys with a numerical 

distribution of 1 to 256, and a length of 256 characters, 

have a keyspace of (256)256 (equivalent to ≈22048). As 

such, K1 is secure from brute-force attacks. 

5.3 Entropy analysis 

Entropy analysis aims to determine the 

randomness of the amount of information in a 

message. The ciphered data is declared secure if it has 

an entropy value close to ≈8.00 [23]. Randomness is 
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positively correlated with security. The entropy value 

follows the following equation [24]: 

 

      𝐻 = − ∑ 𝑃(𝑘) 𝐿𝑜𝑔2(𝑃(𝑘))
𝑛

𝑘=0
      (2) 

 

H is the entropy value, n is the number of different 

symbols in the message, and P(k) is the probability of 

ciphertext symbol occurrence.  

Based on Eq. (2), the entropy value of IL-data = 

7.99. The ciphertext is thus secure, as the entropy 

value is very close to 8.00.  

5.4 Correlation analysis 

Correlation analysis aims to determine the 

correlation between the plaintext and the ciphertext. 

A correlation value of r = 1 means that both data are 

the same, while a correlation value approaching zero 

(r ≈ 0) indicates increased inequality. The less the 

correlation between the plaintext and the ciphertext, 

the greater the randomness, and thus the greater the 

security.  

Correlation is analyzed via the following 

formula: 

 

        𝒓 =
𝒏 (∑ 𝒙𝒚)− (∑ 𝒙) (∑ 𝒚)

√[𝒏 ∑ 𝒙𝟐− (∑ 𝒙)𝟐] [𝒏 ∑ 𝒚𝟐− (∑ 𝒚)𝟐]  
 (3) 

 

Where r is the correlation value, x is the plaintext data, 

and y is the ciphertext data. Based on Eq. (3), it can 

be seen that the IL-data correlation value is 0.00007, 

meaning that the plaintext and ciphertext are very 

random and have no correlation (see Table 1). That 

shows that data transmissions are secure from 

cyberattacks. 

5.5 Speed test analysis 

Speed test analysis aims to measure the proposed 

model's processing speed and determine whether it 

still meets the criteria for real-time processing [25]. 

The encryption and decryption times for keys of 

 

 

Table 2. Speed test value in seconds 

IL (Key 

sizes) 
16 

chars 
32 

chars 
64 

chars 
128 

chars 
256 

chars 

Encryption 

time 
0.239 0.205 0.205 0.213 0.208 

Decryption 

time 
0.492 0.466 0.447 0.524 0.464 

Total of 

time 
0.731 0.671 0.652 0.737 0.672 

 

several sizes are shown in Table 2. The result shows 

that the processing time still qualifies as real-time, as 

it is less than one second. 

Mohamed [13] reviewed some of the hybrid 

cryptographic approach to data transmission security. 

As for comparison to the proposed method, as shown 

in Table 3. He identified several studies, such as those 

conducted by [15, 16, 19], as combining multiple 

cryptographic schemes to strengthen security. 

From Table 3, it can be seen that encryption and 

decryption time are significant metrics for evaluating 

the performance of data transmission. 

However, some studies have not provided 

performance evaluations and security analyses.  

This study uses these metrics to measure 

performance and present security in-depth to data 

transmission. It presents a security analysis based on 

visual analysis, keyspace, entropy, correlation, and 

speed testing. 

6. Conclusion 

This research introduces a dynamic symmetric 

four-key-generators system to secure data 

transmission. The results of the keyspace test 

(≈22048bits), entropy test (7.99), correlation test 

(0.00007), and histogram test show that data 

transmissions secured through this system are better 

protected from cyber-attacks. 

We propose that other complex key generators 

may potentially be applied in ICS communication for 

future works. 

 
Figure. 7 Histogram of plaintext and ciphertext data for the first 500 characters (of 33,046 characters) 

0

50

100

150

200

250

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

4
0

9

4
2

1

4
3

3

4
4

5

4
5

7

4
6

9

4
8

1

4
9

3

A
SC

II
 c

o
d

e

nth charactersPlainText CipherText



Received:  October 18, 2020.     Revised: November 11, 2020.                                                                                        384 

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021           DOI: 10.22266/ijies2021.0228.35 

 

Table 1. Pearson correlation coefficient 

Degree of correlation (r) 

Perfect High Moderate Low No correlation Low Moderate High Perfect 

-1 
≤ -

0.90 
≤ -0.50 

≤ -

0.30 

-0.29 ≤ r ≤ 

+0.29 

≥ 

+0.30 
≥ +0.50 

≥ 

+0.90 
1 

Table 3. Hybrid security approach to data transmission 

[13] 

Study Method 

Performance 

Measuring 

Presenting 

security 

analysis 

[20] Handshake 

agreement 

(SM2) and 

ECC. 

No performance 

evaluation. 

No 

[14] AES and 

steganograp

hy Word 

Shift 

Coding. 

Encryption time 

and extraction 

time. 

No 

[15] MD5, AES 

and ECDH. 

Key exchange 

time, number of 

time, key length, 

time of signature, 

number of 

signature, 

verification time. 

No 

[18] Symmetric 

encipherme

nt and 

middle 

value 

algorithm. 

Encryption and 

decryption test 

No 

[19] Symmetric 

cipher Ping 

Pong-128, 

RSA and 

hash 

function 

MD5. 

Encryption and 

decryption test. 

No 

[17] DES and 

RC4. 

No evaluation. No 

[16] AES, RSA 

and HMAC. 

Ciphertext size, 

encryption time 

No 

[21] AES and 

Dynamic 

Key 

Generation, 

Dynamic  

S-box 

Generation. 

Encryption and 

decryption test. 

No 

Proposed 

Method 

Super 

Encryption 

BRC4,  

Four-key 

generators 

Visual analysis, 

Keyspace, 

Entropy, 

Correlation, 

Speed Test.  

Yes 
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