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Abstract: Deep learning is one of the most remarkable artificial intelligence trends. It stands behind numerous recent 

achievements in several domains, such as speech processing, and computer vision, to mention a few. Accordingly, 

these achievements have sparked great attention to employing deep learning in time series modelling and forecasting. 

It is known that the deep learning algorithms built on neural networks contain multiple hidden layers, which make the 

computation of deep neural network challenging and, sometimes, complex. The reason for this complexity is that 

obtaining an outstanding and consistent result from such deep architecture requires optimizing many parameters known 

as hyperparameters. Doubtless, hyperparameter tuning plays a critical role in improving the performance of deep 

learning. This paper proposes an online tuning approach for the hyperparameters of deep long short-term memory 

(DLSTM) model in a dynamic fashion. The proposed approach adapts to learn any time series based application, 

particularly the applications that contain streams of data. The experimental results show that the dynamic tuning of the 

DLSTM hyperparameters performs better than the original static tuning fashion. 

Keywords: Deep learning, Deep LSTM, Hyperparameter optimization, Online learning, Time series applications. 

 

 

1. Introduction 

Time series modelling and forecasting have 

drawn significant attention in various domains such 

as finance, engineering, and statistics [1]. Thus, many 

research papers have focused on algorithms and 

techniques that can yield accurate performance in 

numerous practical applications [2]. Many vital 

techniques have been proposed in the literature for 

improving the accuracy and efficiency of time series 

modelling and forecasting. The conventional 

statistical techniques of time series of modelling and 

prediction commonly use a potential model, such as 

autoregressive-moving average, autoregressive 

integrated moving average, and vector autoregressive 

to model and forecast using time series data [2-3].  

However, these techniques have some concerns; 

one of them is requiring a deal with the whole dataset 

to identify the parameters of the model and give a 

response for each testing data [4]. This way, to 

identify the parameters, is not suitable in big datasets, 

mainly when a fast response is demanded in some 

applications [5]. Consequently, learning-based 

techniques attracted much attention as alternatives to 

conventional statistical techniques [5, 6].  

Over the last two decades, machine learning 

techniques, mainly when applied to artificial neural 

networks (ANNs) have played an increasingly vital 

role in the design of computer vision and pattern 

recognition systems [7]. More precisely, it could be 

argued that the emergence of deep learning 

techniques has been crucial in the recent success of 

recognition and classification applications. In a sense, 

deep learning's success lies in capturing latent 

features in the input data, even if the size of the 

dataset is significant [8]. It also attempts to model 

high-level abstractions in the data by using multiple 

processing layers with complex structures [9]. 

Usually, the deep learning algorithms have 

several variables, called hyperparameters that should 

be selected in advance and before optimizing the 

model's parameters to be used in the validation phase 

[10]. These hyperparameters often tuned either 

manually or automatically using some hyper-learner 

algorithms. The automatic selection of suitable 
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hyperparameters is crucial to get optimal and faster 

results, primarily when large datasets are used. Of 

course, the essential factor in selecting the 

appropriate forecasting model. In other words, when 

the accuracy is high, this will help make accurate 

decisions and the opposite if we have low accuracy. 

In practice, to develop an efficient model shows an 

accurate performance is not an easy task, especially 

when the data is coming in a stream [11]. 

The second author of this paper proposed a deep 

learning algorithm, called deep long short-term 

memory (DLSTM), which used efficiently with time 

series forecasting problems [12]. DLSTM is an 

unsupervised learning model as an extension of the 

traditional recurrent neural network (RNN) model. It 

showed a significant improvement in the 

performance of time series prediction, where it adapts 

with learning the nonlinearity and complexity of 

time-series data [13]. DLSTM includes multiple 

LSTM layers such that each layer contains multiple 

neurons. In his paper, the second author showed that 

DLSTM demonstrates more effective use of the 

parameters of each LSTM's layer in order to train the 

forecasting model efficiently.  

However, learning the parameters of an 

unsupervised architecture is quite tricky [14, 15]. 

These architectures often feature many 

hyperparameters that affect generalization 

performance, quickly creating a challenging tuning 

problem for human users [16]. 

Hyperparameters are essential for machine 

learning algorithms since they directly control the 

training algorithm's behaviours and have a significant 

effect on the performance of machine learning 

models. Therefore, in this paper, we are concerned 

about improving the performance of DLSTM through 

an online tuning for the hyperparameters of DLSTM. 

The proposed approach achieves the online tuning of 

hyperparameters by using the genetic algorithm (GA) 

dynamically. The experimental results show that the 

GA will determine the values of the optimum 

hyperparameters and, consequently, optimize the 

model performance and ensure the model's 

convergence. 

This paper is organized as follows. Section II 

shows an overview of the related methods of solution 

and our motivation to propose our solution. Section 

III provides the details of the proposed research 

method and the experiments that we conducted. 

Section IV shows the results and their corresponding 

discussion. Section V concludes this paper.  

 

 

 

2. Related methods and motivation 

Though deep neural networks (DNNs) algorithms, 

such as DLSTM, dominate the modern machine 

learning landscape, their training and success still 

suffer from sensitivity to empirical choices of 

hyperparameters such as model architecture, loss 

function, and optimization algorithm. Let us define 

the hyperparameters and distinguish between them 

and the model parameters. The model parameters are 

those variables estimated from the input data 

"automatically". The model uses them to predict 

unseen data [11]. Examples for the model parameters 

in ANN are the weight coefficients and bias.  

On the other hand, the hyperparameters are those 

variables, which we provide their values "manually" 

to the model to help it in the learning process and 

estimate the model parameters [11]. For example, the 

number of hidden neurons and layers, the learning 

rate, the activation function. These are examples of 

hyperparameters in ANNs; however, in other 

methods, they will be the kernel and slack in SVM, 

the value of k in k-NN and k-means, the number of 

levels in a decision tree. They will not appear in the 

final prediction, but they have a considerable 

influence on how the model parameters look after the 

learning step. 

The tuning of the hyperparameters is not an easy 

task, particularly in time series applications where 

there is no rule of thumb. Nevertheless, there are 

some computational strategies and search approaches 

that address the optimization of hyperparameters. We 

can conclude them as follows,  

1. Grid search. It is a brute force approach 

constrained by a pre-defined set of 

hyperparameters combinations, i.e., grid points. 

This strategy is feasible because the number of 

evaluations is lower than the brute force, and it 

allows reaching good results, as shown in [17]. 

However, the values of the hyperparameters must 

be defined manually or using a trial and error 

approach. This way requires much experience 

and remains a tedious task, even for experts. 

Besides, it is a computationally intensive method 

since the number of model evaluations grows 

exponentially with the number of 

hyperparameters [18].  

2. Random search. It includes testing a pre-defined 

number of randomly sampled hyperparameters 

combinations where sampling is done uniformly 

at random [19].  It is widely shown that the 

random search about the hyperparameters' values 

is more efficient in practice than grid search. 

Typically, it leads to better-learned models 
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through less computation time. However, the 

random search cannot assure to find out the 

values that optimize the performance of the 

network [18].  

3. Bayesian approximations. The positive side of 

this approach is that they do not have to entirely 

run the neural network to optimize it because they 

are grounded in an approximation [21]. This 

approach includes selecting the sampling points 

from which we can approximate the function in 

an intelligent way rather than selecting them 

randomly or on a grid [22]. However, the 

complexity of these approximations makes them 

close to being unfeasible and challenging to be 

parallelized. More precisely, Bayesian 

approximation has some hyperparameters that 

significantly affect its approximation 

performance, namely, choices of a non-convex 

acquisition function and the kernel. Moreover, 

maximizing such an acquisition function is 

required for each iteration of the approximation 

process [23].   

4. Evolutionary algorithms. Similar to the 

Bayesian approximations, these algorithms seek 

in the search space of hyperparameters about 

those values that may optimize the performance 

of the model [24]. Nevertheless, the own 

definition of evolutionary algorithms has specific 

strategies for finding the right values in the search 

space. Moreover, these algorithms are 

parallelizable compared to Bayesian 

approximations; indeed, they are parallelizable in 

GPUs [9].  

As we can see, many related methods have been 

employed for tuning the hyperparameters. In all of 

these studies, choosing the model hyperparameters 

represents a limitation, and most of the existing 

methods follow the manual adjustment of these 

hyperparameters. Therefore, an online tuning method 

for selecting the optimum hyperparameters is highly 

required for learning a DNN model. We believe that 

online tuning for deep models that solve the time 

series forecasting problem will improve prediction 

accuracy [24-25].  

This paper will apply the online tuning for 

hyperparameters of the DLSTM model [12]. We will 

investigate how the dynamic learning approach of 

these hyperparameters will be beneficial to the static 

learning approach. To have an objective investigation, 

we selected two datasets, the first includes stock 

market data, and the other includes oil production 

data. We selected these datasets since the samples of 

both datasets are coming in reality as a stream. 

Therefore, online learning for such applications will 

be beneficial for getting a high performance.  

3. Research method and experiments 

This section shows all details about the proposed 

method and experimental settings. 

A. The DLSTM model  

The core concept of DLSTM is based on the 

notion that increasing the depth (or several hidden 

layers) of a neural network is beneficial for the 

overall performance [7]. The DLSTM is developed, 

as a deep architecture to the standard LSTM recurrent 

network, to be used in time series forecasting 

applications. Fig. 1 contains a stack of several LSTM 

blocks, one above another, and connected in a deep 

recurrent network fashion to combine the advantages 

of each LSTM layer.  

As the authors explained in their paper [12], the 

goal of stacking several LSTM in such a deep 

architecture is to build the features at the lower layers 

that will disentangle the factors of variations in the 

input data and then combine these representations at 

the higher layers [12]. The DLSTM works as follows; 

each layer processes some part of the corresponding 

task and subsequently passes it up to the upper layer 

until the top layer eventually produces the output. In 

this way, such hierarchy allows the hidden layers at 

each level to run at a different timescale, which fits 

with time series applications. It is demonstrated that 

in case of big data applications, the deep architecture 

generalizes well in terms of the compact feature 

representation that not available in shallow 

architecture [26]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 1 The architecture of DLSTM model [12] 
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B. The proposed method 

In the general machine learning domain, 

measuring the performance of a trained learning 

algorithm is performed in the validation phase using 

unseen data samples. To get excellent results of the 

machine learning model at hand, you should learn or 

tune the hyperparameters to find the best function 

[11], 

 

                      ƒ:X →R                                 (1) 

 

of a hyperparameter x ∈  X. Therefore, the 

hyperparameters optimization aims to find the 

optimum global value of x of an unknown black-box 

function ƒ(x) [10]. One of the main challenges of the 

neural network models, either shallow or deep, is 

finding the best tuning of the model hyperparameters, 

which is essential to the model's performance. While 

the earlier approaches that usually used for fine-

tuning are either computationally unaffordable (grid 

search) or uncertain efficiency, e.g., trial and error 

like random search.  

In this paper, we apply the GA to find the best 

hyperparameters of this DLSTM model [27-28]. 

Many applications show excellent performance when 

using a GA to solve complex optimization problems 

by selecting the right hyperparameter for the model. 

In this paper, we implemented the GA by using the 

library of distributed evolutionary algorithms in 

python [29]. We used a DEAP tools to define 

individual (since the chromosome is represented by a 

binary encoded string (10 bits), Beronoulli’s 

distribution), then created the population, we used 

ordered crossover, after that we used 

mutShuffleIndexes mutation, then we used the 

roulette wheel selection for selecting the parents: the 

data used in this experiment has the following 

empirical parameters: the population size is 5, the 

number of maximum generations is set as 10, the 

number of genes= 1, the head length is 4. We have 

choosen the fitness function based on the mean 

absolute error (MAE) and root mean square error 

(RMSE). 

Here, the implementation phase specifies how 

many hyperparameters we have to tune. Two 

scenarios are there, static scenario and dynamic 

scenario. In the static scenario, we identified three 

hyperparameters manually tuned, namely, number of 

epochs, number of hidden neurons, and the lag size 

[12]. While in the dynamic scenario, we specified 

four hyperparameters auto tuned by using the GA, 

where the first three hyperparameters are the same as 

these exist in the static scenario. The fourth 

hyperparameter is the number of times we update the  

Table 1. The genetic algorithm procedure 

1: Population  [ list of n models on separate graphs]  

2: Generation  0 

3: While (generation < 1) do:  

4:    train_and_evaluate (population) 

5:    new_gen  retain the m fittest individuals 

6:    new_gen  append random individuals to promote   

diversity  

7:     mutate (new_gen) 

8:     new_gen  append offspring through crossover 

until k 

9:     population  new_gen  

10:   generation < generation + 1 

11: Outputs the hyperparameter of the fittest in 

population  

 

 
Figure. 2 A block diagram of the GA procedure 

 

forecasting model each time step when new 

observations from the testing data are inserted, named 

as the number of updates. Besides, the search for GAs 

to find the best solution is preformed over genetic 

structures that can represent several possible 

solutions. Table 1 shows the steps we followed to 

implement the GA in our experiments, where Fig. 2 

represents these steps as a flow chart.  

C. The learning algorithm 

It is known that the neural network is converted 

to be an optimization problem that includes an 

objective function that requires either maximization 

or minimization concerning its parameters. Often, 

objective functions are stochastic needs to be 

optimally solved [30]. Usually, such stochastic 

objective functions are solved by calculating the 

stochastic gradient descent (SGD) optimization. SGD 

has a core practical importance in most kinds of ANN.  

Adam optimization is an algorithm derived from 

adaptive moment estimation for efficient stochastic 

optimization that only requires first-order gradients 

with little memory requirement [31]. It uses 

estimations of the first and second moments of the 

gradient to adapt the learning rate for each parameter 

(or weight) of the neural network. In Adam, the 

update rule for individual weights is to scale their 

gradients inversely proportional to a scaled L2 norm 

of their current and past gradients. Another Adam 
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variant called Adamax, where the update rule is 

generalized using infinity instead of L2 norm [31]. In 

this paper's experiments, we use both algorithms, i.e. 

Adam and Adamax, and compare the overall 

performance.  

D. Forecasting accuracy measure 

To assess DLSTM [12] using the proposed 

approach, we conducted several experiments where 

some criteria measured the results. Two performance 

measures are employed; the first is the mean absolute 

error (MAE), as shown in Eq. (2). MAE is a standard 

measure in the forecasting field where it measures the 

average magnitude of the errors in a set of predictions, 

regardless of their direction. Therefore, it is the 

average over the test sample of the absolute 

differences between the prediction and actual 

observation, where all individual differences have 

equal weight [13]. The second measure is the root 

mean square error (RMSE), represented in Eq. (3). 

RMSE calculates the square root of the average 

squared differences between the actual and predicted 

observations [13].   

 

MAE =  
∑ |𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

| 
𝑛

𝑖=1   

𝑛
              (2) 

 

RMSE =  √
1

𝑛
∑ (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

 
𝑛

𝑖=1   
)      (3) 

E. Datasets description 

Toward a fair assessment, two case studies from 

the industrial field and the financial field are 

employed as follows.  

i. Case-1: Stock market price data  

This case study dataset contains the samples of n 

= 41.266 minutes of data collected from Google 

Finance API to measures the performance of 500 

companies on stock exchanges of the United States, 

ranging from April to August 2017 [32]. For this 

paper's experiments, we divided this dataset into two 

disjoint sets, 80% as a training set and 20% as a 

testing set.  

 

ii. Case-2: Oilfield production data 

The second case study concerns a dataset 

containing the sample Block-1 Huabei oilfield 

located in north China [12]. This oilfield was 

developed in 1992. The dataset contains observations 

of monthly data. The training set contains 85% of the 

sample, where the rest is used as a testing set.  

F. Hardware and software platforms 

All experiments of this paper are implemented on 

a workstation-PC equipped with Ubuntu 16.04 

operating system. The system installed is Intel 

Core™ i7-6700 CPU @ 3.40GHz, 8.00 GB RAM, 

x64 based processor under python 2.7 software 

environment. For the DLSTM method, we used the 

source code developed by the second author in his 

paper [12], in which the Keras library was used with 

an open-source Tensor Flow library in the backend 

[33]. 

4. Results and discussion 

We proceed now to show the quantitative and 

visual results of each case study using the DLSTM 

model after we apply the GA to select the 

hyperparameters and using both the Adam and 

Adamax optimizers. The original DLSTM model 

[12] is implemented in the static scenario, where our 

approach using the GA is called the dynamic scenario. 

Notably, in the static scenario, the experiments were 

repeated more than once by setting different values 

for the number of layers, the number of hidden 

neurons, and the number of epochs. The shown 

values in all tables are those who showed the lowest 

errors. 

After that, the two-performance metrics have 

been applied to both training and testing data. The 

results in all the following tables indicate the 

performance of the model in the testing data rather 

than training data. We widely saw that the genuine 

evaluation for forecasting performance should be 

based on unseen data, not the historical data, which 

already seen by the forecaster [12]. 

a. Case-1: Stock market price data 

Table 2 demonstrates the results of the first case 

study and the best hyperparameters values of the  

 
Table 2. Results of DLSTM "Static-Adam" case 1 

No. of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 457 [5, 5, 2] 3 0.045 0.022 

3 653 [1, 3, 3] 3 0.022 0.021 

 

 
Figure. 3 Results of DLSTM "Static-Adam" case 1 
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Table 3. Results of DLSTM "Dynamic-Adam" case 1  

No. of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 787 [2, 2, 5] 5 0.007 0.007 

3 953 [2, 2, 3] 1 0.026 0.020 

 

  
Figure. 4 Results of DLSTM "Dynamic-Adam" case 1  

 

DLSTM model in the static scenario using Adam 

optimizer. Here, the table lists the values of the 

hyperparameters of DLSTM that we got through the 

trial and error approach. We call this approach a static 

approach. Fig. 3 shows the visual representation of 

the relation between the original stock price data and 

their prediction counterparts.  

In contrast, Table 3 demonstrates the values of the 

hyperparameters of DLSTM using Adam optimizer. 

This approach we call it a dynamic scenario since the 

hyperparameters have been optimally selected using 

the GA. Fig. 4 shows the relation between the original 

data and their prediction in this scenario.  

It is clear from the above results that the best 

results (lowest errors) are those attained in the 

dynamic scenario where the hyperparameters 

generated automatically using the GA. More 

precisely, the error values of the dynamic scenario are 

less than those of the static scenario. This means that 

the dynamic approach using the GA to auto-select the 

best hyperparameters of DSLTM using Adam 

optimizer improves the overall performance. 

To confirm the dynamic approach's assessment, 

we use the "Adamax" optimizer instead of Adam 

optimizer. Table 4 shows the results of this 

assessment. It is clear that, with Adamax, the error 

values are decreased to (RMSE: 0.006 and MAE: 

0.005), compared to both (RMSE: 0.007 and MAE: 

0.007) in the dynamic -Adam scenario, and (RMSE: 

0.007 and MAE: 0.007) in the static -Adam. Fig. 5 

displays the relation between the original stock price 

data and their prediction through the dynamic 

scenario using the Adamax optimizer. It is clear from 

the figure that both presentations are quite close to 

each other, which confirms that the model is highly 

accurate. Table 5 concludes the comparison between 

the static and dynamic scenarios using both 

optimizers.  

 

Table 4. Results of DLSTM "Dynamic-Adamax" case 1 
No. of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 634 [5, 2, 5] 5 0.010 0.009 

3 953 [2, 5, 4] 5 0.006 0.005 

 

 
Figure. 5 Results of DLSTM "Dynamic-Adamax" case 1 

 

Table 5. Overall comparison between static and dynamic 

scenarios using both optimizers case 1 

Model RMSE MAE 

Static-Adam 0.022 0.021 

Dynamic-Adam 0.007 0.007 

Dynamic-Adamax 0.006 0.005 

 
Table 6. Number of epochs in all scenarios 

 
Static-

Adam 

Dynamic-

Adam 

Dynamic-

Adamax 

Number of 

epochs 
653 787 953 

 

Calculating the number of epochs required for the 

model convergence. We notice that the time 

consumed in the dynamic scenario, using both 

optimizers, is longer than the time consumed in the 

static scenario. Indeed, this is a natural attitude where 

the auto-generation of hyperparameter values takes 

time to find the optimum values. Overall, the online 

tuning for the hyperparameter improves the DLSTM 

performance; however, it comes on the account of 

computation time.  

b. Case study 2: Oilfield production data  

Table 7 presents the best error values and the best 

hyperparameters values of the DLSTM model in this 

case study. Here, the table lists the values of the 

hyperparameters that we got through the static 

approach using Adam optimizer. Fig. 6 shows the 

 
Table 7. Results of DLSTM "Static-Adam" case 2 

No. 

of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 354 [4, 3, 5] 6 0.392 0.278 

3 653 [4, 3, 5] 6 0.286 0.237 
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Figure. 6 Results of DLSTM "Static-Adam" case 2 

 
Table 8. Results of DLSTM "Dynamic-Adam" case 2 

No. of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 634 [5, 2, 5] 5 0.316 0.248 

3 787 [2, 1, 2] 3 0.274 0.203 

 

 
Figure. 7 Results of DLSTM, "Dynamic-Adam"-case 2 

 

visual representation of the relation between the 

original production data and their prediction 

counterparts.  

Table 8 shows the values of the hyperparameters 

that have optimally selected using the GA, i.e., the 

dynamic scenario, using the Adam optimizer. Fig. 7 

illustrates the relation between the original 

production data and their prediction in this scenario.  

Again, it is clear that the DLSTM through the 

dynamic scenario, where the hyperparameters are 

generated automatically using GA, outperforms its 

performance through the static scenario. In other 

words, the dynamic approach improves DLSTM 

model performance. This means that using the GA to 

auto-select the best hyperparameters using Adam 

optimizer enhances the overall performance. 

In this experiment, we also use the "Adamax" 

optimizer instead of Adam optimizer to validate this 

improvement. Table 9 shows the results of this 

validation. It is clear that, with Adamax, the error 

values are decreased to (RMSE: 0.264 and MAE: 

0.196), compared to both (RMSE: 0.274 and MAE: 

0.203) in the dynamic -Adam scenario, and (RMSE: 

0.286 and MAE: 0.237) in the static -Adam. Fig. 8 

displays the relation between the original oilfield 

production data and their prediction through the 

dynamic scenario using the Adamax optimizer.  

Table 9. Results of DLSTM "Dynamic-Adamax" case 2  

No. of 

layers 

No. of 

epochs 

No. of 

neurons 

Lag 

size 
RMSE MAE 

3 787 [5, 1, 5] 3 0.304 0.234 

3 787 [2, 2, 5] 5 0.264 0.196 

 

 
Figure. 8 Results of DLSTM "Dynamic-Adamax" case 2 

 

Table 10. Overall comparison between static and dynamic 

scenarios using both optimizers case 2  

Model RMSE MAE 

Static 0.286 0.237 

Dynamic – Adam 0.274 0.203 

Dynamic-Adamax 0.264 0.196 

 
Table 11. Number of epochs in all scenarios 

 
Static-

Adam 

Dynamic-

Adam 

Dynamic-

Adamax 

Number of 

Epochs 
653 787 787 

 

Again, it is clear that both data presentations 

typically close to each other, which newly confirms 

the model efficiency. Table 10 concludes the 

comparison between the static and dynamic scenarios 

using both optimizers. 

Table 9 shows the estimated time for each 

scenario by calculating the number of epochs 

required for the model convergence. Newly, the time 

consumed in the dynamic scenario, using both 

optimizers, is longer than the time consumed in the 

static scenario. This confirms that the online tuning 

for the hyperparameter improves the overall 

performance, but it comes on the account of 

computation time.  

5. Conclusion 

Recent advances in deep learning have sparked 

great attention in order to employ deep learning in 

time series modeling and forecasting applications. 

However, tuning the hyperparameter of a model plays 

a vital role in the deep learning computation and 

enhances the overall performance. In this paper, we 

proposed an online tuning approach for the deep 

LSTM model presented before by the second author. 
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The proposed approach examined to tune the 

hyperparameters of two-time series case studies, 

namely, stock market price dataset and oilfield 

production dataset. Both case studies contain streams 

of data every second, making them more suitable to 

assess the proposed online tuning approach. The 

experimental results showed that the dynamic tuning 

of the hyperparameters performs better than the deep 

model's static tuning. In this paper's future work, we 

will try other optimizers, which developed recently, 

overcoming the current optimizer limitations.  
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