
Received: August 7, 2020. Revised: October 14, 2020. 212

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

Online Tuning of Hyperparameters in Deep LSTM for Time Series Applications

Norah Bakhashwain1 Alaa Sagheer1,2*

1College of Computer Sciences and Information Technology, King Faisal University, Saudi Arabia

2Center for Artificial Intelligence and Robotics, Department of Computer Science, Aswan University, Egypt

* Corresponding author’s Email: asagheer@kfu.edu.sa

Abstract: Deep learning is one of the most remarkable artificial intelligence trends. It stands behind numerous recent

achievements in several domains, such as speech processing, and computer vision, to mention a few. Accordingly,

these achievements have sparked great attention to employing deep learning in time series modelling and forecasting.

It is known that the deep learning algorithms built on neural networks contain multiple hidden layers, which make the

computation of deep neural network challenging and, sometimes, complex. The reason for this complexity is that

obtaining an outstanding and consistent result from such deep architecture requires optimizing many parameters known

as hyperparameters. Doubtless, hyperparameter tuning plays a critical role in improving the performance of deep

learning. This paper proposes an online tuning approach for the hyperparameters of deep long short-term memory

(DLSTM) model in a dynamic fashion. The proposed approach adapts to learn any time series based application,

particularly the applications that contain streams of data. The experimental results show that the dynamic tuning of the

DLSTM hyperparameters performs better than the original static tuning fashion.

Keywords: Deep learning, Deep LSTM, Hyperparameter optimization, Online learning, Time series applications.

1. Introduction

Time series modelling and forecasting have

drawn significant attention in various domains such

as finance, engineering, and statistics [1]. Thus, many

research papers have focused on algorithms and

techniques that can yield accurate performance in

numerous practical applications [2]. Many vital

techniques have been proposed in the literature for

improving the accuracy and efficiency of time series

modelling and forecasting. The conventional

statistical techniques of time series of modelling and

prediction commonly use a potential model, such as

autoregressive-moving average, autoregressive

integrated moving average, and vector autoregressive

to model and forecast using time series data [2-3].

However, these techniques have some concerns;

one of them is requiring a deal with the whole dataset

to identify the parameters of the model and give a

response for each testing data [4]. This way, to

identify the parameters, is not suitable in big datasets,

mainly when a fast response is demanded in some

applications [5]. Consequently, learning-based

techniques attracted much attention as alternatives to

conventional statistical techniques [5, 6].

Over the last two decades, machine learning

techniques, mainly when applied to artificial neural

networks (ANNs) have played an increasingly vital

role in the design of computer vision and pattern

recognition systems [7]. More precisely, it could be

argued that the emergence of deep learning

techniques has been crucial in the recent success of

recognition and classification applications. In a sense,

deep learning's success lies in capturing latent

features in the input data, even if the size of the

dataset is significant [8]. It also attempts to model

high-level abstractions in the data by using multiple

processing layers with complex structures [9].

Usually, the deep learning algorithms have

several variables, called hyperparameters that should

be selected in advance and before optimizing the

model's parameters to be used in the validation phase

[10]. These hyperparameters often tuned either

manually or automatically using some hyper-learner

algorithms. The automatic selection of suitable

Received: August 7, 2020. Revised: October 14, 2020. 213

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

hyperparameters is crucial to get optimal and faster

results, primarily when large datasets are used. Of

course, the essential factor in selecting the

appropriate forecasting model. In other words, when

the accuracy is high, this will help make accurate

decisions and the opposite if we have low accuracy.

In practice, to develop an efficient model shows an

accurate performance is not an easy task, especially

when the data is coming in a stream [11].

The second author of this paper proposed a deep

learning algorithm, called deep long short-term

memory (DLSTM), which used efficiently with time

series forecasting problems [12]. DLSTM is an

unsupervised learning model as an extension of the

traditional recurrent neural network (RNN) model. It

showed a significant improvement in the

performance of time series prediction, where it adapts

with learning the nonlinearity and complexity of

time-series data [13]. DLSTM includes multiple

LSTM layers such that each layer contains multiple

neurons. In his paper, the second author showed that

DLSTM demonstrates more effective use of the

parameters of each LSTM's layer in order to train the

forecasting model efficiently.

However, learning the parameters of an

unsupervised architecture is quite tricky [14, 15].

These architectures often feature many

hyperparameters that affect generalization

performance, quickly creating a challenging tuning

problem for human users [16].

Hyperparameters are essential for machine

learning algorithms since they directly control the

training algorithm's behaviours and have a significant

effect on the performance of machine learning

models. Therefore, in this paper, we are concerned

about improving the performance of DLSTM through

an online tuning for the hyperparameters of DLSTM.

The proposed approach achieves the online tuning of

hyperparameters by using the genetic algorithm (GA)

dynamically. The experimental results show that the

GA will determine the values of the optimum

hyperparameters and, consequently, optimize the

model performance and ensure the model's

convergence.

This paper is organized as follows. Section II

shows an overview of the related methods of solution

and our motivation to propose our solution. Section

III provides the details of the proposed research

method and the experiments that we conducted.

Section IV shows the results and their corresponding

discussion. Section V concludes this paper.

2. Related methods and motivation

Though deep neural networks (DNNs) algorithms,

such as DLSTM, dominate the modern machine

learning landscape, their training and success still

suffer from sensitivity to empirical choices of

hyperparameters such as model architecture, loss

function, and optimization algorithm. Let us define

the hyperparameters and distinguish between them

and the model parameters. The model parameters are

those variables estimated from the input data

"automatically". The model uses them to predict

unseen data [11]. Examples for the model parameters

in ANN are the weight coefficients and bias.

On the other hand, the hyperparameters are those

variables, which we provide their values "manually"

to the model to help it in the learning process and

estimate the model parameters [11]. For example, the

number of hidden neurons and layers, the learning

rate, the activation function. These are examples of

hyperparameters in ANNs; however, in other

methods, they will be the kernel and slack in SVM,

the value of k in k-NN and k-means, the number of

levels in a decision tree. They will not appear in the

final prediction, but they have a considerable

influence on how the model parameters look after the

learning step.

The tuning of the hyperparameters is not an easy

task, particularly in time series applications where

there is no rule of thumb. Nevertheless, there are

some computational strategies and search approaches

that address the optimization of hyperparameters. We

can conclude them as follows,

1. Grid search. It is a brute force approach

constrained by a pre-defined set of

hyperparameters combinations, i.e., grid points.

This strategy is feasible because the number of

evaluations is lower than the brute force, and it

allows reaching good results, as shown in [17].

However, the values of the hyperparameters must

be defined manually or using a trial and error

approach. This way requires much experience

and remains a tedious task, even for experts.

Besides, it is a computationally intensive method

since the number of model evaluations grows

exponentially with the number of

hyperparameters [18].

2. Random search. It includes testing a pre-defined

number of randomly sampled hyperparameters

combinations where sampling is done uniformly

at random [19]. It is widely shown that the

random search about the hyperparameters' values

is more efficient in practice than grid search.

Typically, it leads to better-learned models

Received: August 7, 2020. Revised: October 14, 2020. 214

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

through less computation time. However, the

random search cannot assure to find out the

values that optimize the performance of the

network [18].

3. Bayesian approximations. The positive side of

this approach is that they do not have to entirely

run the neural network to optimize it because they

are grounded in an approximation [21]. This

approach includes selecting the sampling points

from which we can approximate the function in

an intelligent way rather than selecting them

randomly or on a grid [22]. However, the

complexity of these approximations makes them

close to being unfeasible and challenging to be

parallelized. More precisely, Bayesian

approximation has some hyperparameters that

significantly affect its approximation

performance, namely, choices of a non-convex

acquisition function and the kernel. Moreover,

maximizing such an acquisition function is

required for each iteration of the approximation

process [23].

4. Evolutionary algorithms. Similar to the

Bayesian approximations, these algorithms seek

in the search space of hyperparameters about

those values that may optimize the performance

of the model [24]. Nevertheless, the own

definition of evolutionary algorithms has specific

strategies for finding the right values in the search

space. Moreover, these algorithms are

parallelizable compared to Bayesian

approximations; indeed, they are parallelizable in

GPUs [9].

As we can see, many related methods have been

employed for tuning the hyperparameters. In all of

these studies, choosing the model hyperparameters

represents a limitation, and most of the existing

methods follow the manual adjustment of these

hyperparameters. Therefore, an online tuning method

for selecting the optimum hyperparameters is highly

required for learning a DNN model. We believe that

online tuning for deep models that solve the time

series forecasting problem will improve prediction

accuracy [24-25].

This paper will apply the online tuning for

hyperparameters of the DLSTM model [12]. We will

investigate how the dynamic learning approach of

these hyperparameters will be beneficial to the static

learning approach. To have an objective investigation,

we selected two datasets, the first includes stock

market data, and the other includes oil production

data. We selected these datasets since the samples of

both datasets are coming in reality as a stream.

Therefore, online learning for such applications will

be beneficial for getting a high performance.

3. Research method and experiments

This section shows all details about the proposed

method and experimental settings.

A. The DLSTM model

The core concept of DLSTM is based on the

notion that increasing the depth (or several hidden

layers) of a neural network is beneficial for the

overall performance [7]. The DLSTM is developed,

as a deep architecture to the standard LSTM recurrent

network, to be used in time series forecasting

applications. Fig. 1 contains a stack of several LSTM

blocks, one above another, and connected in a deep

recurrent network fashion to combine the advantages

of each LSTM layer.

As the authors explained in their paper [12], the

goal of stacking several LSTM in such a deep

architecture is to build the features at the lower layers

that will disentangle the factors of variations in the

input data and then combine these representations at

the higher layers [12]. The DLSTM works as follows;

each layer processes some part of the corresponding

task and subsequently passes it up to the upper layer

until the top layer eventually produces the output. In

this way, such hierarchy allows the hidden layers at

each level to run at a different timescale, which fits

with time series applications. It is demonstrated that

in case of big data applications, the deep architecture

generalizes well in terms of the compact feature

representation that not available in shallow

architecture [26].

Figure. 1 The architecture of DLSTM model [12]

Received: August 7, 2020. Revised: October 14, 2020. 215

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

B. The proposed method

In the general machine learning domain,

measuring the performance of a trained learning

algorithm is performed in the validation phase using

unseen data samples. To get excellent results of the

machine learning model at hand, you should learn or

tune the hyperparameters to find the best function

[11],

 ƒ:X →R (1)

of a hyperparameter x ∈ X. Therefore, the

hyperparameters optimization aims to find the

optimum global value of x of an unknown black-box

function ƒ(x) [10]. One of the main challenges of the

neural network models, either shallow or deep, is

finding the best tuning of the model hyperparameters,

which is essential to the model's performance. While

the earlier approaches that usually used for fine-

tuning are either computationally unaffordable (grid

search) or uncertain efficiency, e.g., trial and error

like random search.

In this paper, we apply the GA to find the best

hyperparameters of this DLSTM model [27-28].

Many applications show excellent performance when

using a GA to solve complex optimization problems

by selecting the right hyperparameter for the model.

In this paper, we implemented the GA by using the

library of distributed evolutionary algorithms in

python [29]. We used a DEAP tools to define

individual (since the chromosome is represented by a

binary encoded string (10 bits), Beronoulli’s

distribution), then created the population, we used

ordered crossover, after that we used

mutShuffleIndexes mutation, then we used the

roulette wheel selection for selecting the parents: the

data used in this experiment has the following

empirical parameters: the population size is 5, the

number of maximum generations is set as 10, the

number of genes= 1, the head length is 4. We have

choosen the fitness function based on the mean

absolute error (MAE) and root mean square error

(RMSE).

Here, the implementation phase specifies how

many hyperparameters we have to tune. Two

scenarios are there, static scenario and dynamic

scenario. In the static scenario, we identified three

hyperparameters manually tuned, namely, number of

epochs, number of hidden neurons, and the lag size

[12]. While in the dynamic scenario, we specified

four hyperparameters auto tuned by using the GA,

where the first three hyperparameters are the same as

these exist in the static scenario. The fourth

hyperparameter is the number of times we update the

Table 1. The genetic algorithm procedure

1: Population  [list of n models on separate graphs]

2: Generation  0

3: While (generation < 1) do:

4: train_and_evaluate (population)

5: new_gen  retain the m fittest individuals

6: new_gen  append random individuals to promote

diversity

7: mutate (new_gen)

8: new_gen  append offspring through crossover

until k

9: population  new_gen

10: generation < generation + 1

11: Outputs the hyperparameter of the fittest in

population

Figure. 2 A block diagram of the GA procedure

forecasting model each time step when new

observations from the testing data are inserted, named

as the number of updates. Besides, the search for GAs

to find the best solution is preformed over genetic

structures that can represent several possible

solutions. Table 1 shows the steps we followed to

implement the GA in our experiments, where Fig. 2

represents these steps as a flow chart.

C. The learning algorithm

It is known that the neural network is converted

to be an optimization problem that includes an

objective function that requires either maximization

or minimization concerning its parameters. Often,

objective functions are stochastic needs to be

optimally solved [30]. Usually, such stochastic

objective functions are solved by calculating the

stochastic gradient descent (SGD) optimization. SGD

has a core practical importance in most kinds of ANN.

Adam optimization is an algorithm derived from

adaptive moment estimation for efficient stochastic

optimization that only requires first-order gradients

with little memory requirement [31]. It uses

estimations of the first and second moments of the

gradient to adapt the learning rate for each parameter

(or weight) of the neural network. In Adam, the

update rule for individual weights is to scale their

gradients inversely proportional to a scaled L2 norm

of their current and past gradients. Another Adam

Received: August 7, 2020. Revised: October 14, 2020. 216

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

variant called Adamax, where the update rule is

generalized using infinity instead of L2 norm [31]. In

this paper's experiments, we use both algorithms, i.e.

Adam and Adamax, and compare the overall

performance.

D. Forecasting accuracy measure

To assess DLSTM [12] using the proposed

approach, we conducted several experiments where

some criteria measured the results. Two performance

measures are employed; the first is the mean absolute

error (MAE), as shown in Eq. (2). MAE is a standard

measure in the forecasting field where it measures the

average magnitude of the errors in a set of predictions,

regardless of their direction. Therefore, it is the

average over the test sample of the absolute

differences between the prediction and actual

observation, where all individual differences have

equal weight [13]. The second measure is the root

mean square error (RMSE), represented in Eq. (3).

RMSE calculates the square root of the average

squared differences between the actual and predicted

observations [13].

MAE =
∑ |𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

|
𝑛

𝑖=1

𝑛
 (2)

RMSE = √
1

𝑛
∑ (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

𝑛

𝑖=1
) (3)

E. Datasets description

Toward a fair assessment, two case studies from

the industrial field and the financial field are

employed as follows.

i. Case-1: Stock market price data

This case study dataset contains the samples of n

= 41.266 minutes of data collected from Google

Finance API to measures the performance of 500

companies on stock exchanges of the United States,

ranging from April to August 2017 [32]. For this

paper's experiments, we divided this dataset into two

disjoint sets, 80% as a training set and 20% as a

testing set.

ii. Case-2: Oilfield production data

The second case study concerns a dataset

containing the sample Block-1 Huabei oilfield

located in north China [12]. This oilfield was

developed in 1992. The dataset contains observations

of monthly data. The training set contains 85% of the

sample, where the rest is used as a testing set.

F. Hardware and software platforms

All experiments of this paper are implemented on

a workstation-PC equipped with Ubuntu 16.04

operating system. The system installed is Intel

Core™ i7-6700 CPU @ 3.40GHz, 8.00 GB RAM,

x64 based processor under python 2.7 software

environment. For the DLSTM method, we used the

source code developed by the second author in his

paper [12], in which the Keras library was used with

an open-source Tensor Flow library in the backend

[33].

4. Results and discussion

We proceed now to show the quantitative and

visual results of each case study using the DLSTM

model after we apply the GA to select the

hyperparameters and using both the Adam and

Adamax optimizers. The original DLSTM model

[12] is implemented in the static scenario, where our

approach using the GA is called the dynamic scenario.

Notably, in the static scenario, the experiments were

repeated more than once by setting different values

for the number of layers, the number of hidden

neurons, and the number of epochs. The shown

values in all tables are those who showed the lowest

errors.

After that, the two-performance metrics have

been applied to both training and testing data. The

results in all the following tables indicate the

performance of the model in the testing data rather

than training data. We widely saw that the genuine

evaluation for forecasting performance should be

based on unseen data, not the historical data, which

already seen by the forecaster [12].

a. Case-1: Stock market price data

Table 2 demonstrates the results of the first case

study and the best hyperparameters values of the

Table 2. Results of DLSTM "Static-Adam" case 1

No. of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 457 [5, 5, 2] 3 0.045 0.022

3 653 [1, 3, 3] 3 0.022 0.021

Figure. 3 Results of DLSTM "Static-Adam" case 1

Received: August 7, 2020. Revised: October 14, 2020. 217

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

Table 3. Results of DLSTM "Dynamic-Adam" case 1

No. of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 787 [2, 2, 5] 5 0.007 0.007

3 953 [2, 2, 3] 1 0.026 0.020

Figure. 4 Results of DLSTM "Dynamic-Adam" case 1

DLSTM model in the static scenario using Adam

optimizer. Here, the table lists the values of the

hyperparameters of DLSTM that we got through the

trial and error approach. We call this approach a static

approach. Fig. 3 shows the visual representation of

the relation between the original stock price data and

their prediction counterparts.

In contrast, Table 3 demonstrates the values of the

hyperparameters of DLSTM using Adam optimizer.

This approach we call it a dynamic scenario since the

hyperparameters have been optimally selected using

the GA. Fig. 4 shows the relation between the original

data and their prediction in this scenario.

It is clear from the above results that the best

results (lowest errors) are those attained in the

dynamic scenario where the hyperparameters

generated automatically using the GA. More

precisely, the error values of the dynamic scenario are

less than those of the static scenario. This means that

the dynamic approach using the GA to auto-select the

best hyperparameters of DSLTM using Adam

optimizer improves the overall performance.

To confirm the dynamic approach's assessment,

we use the "Adamax" optimizer instead of Adam

optimizer. Table 4 shows the results of this

assessment. It is clear that, with Adamax, the error

values are decreased to (RMSE: 0.006 and MAE:

0.005), compared to both (RMSE: 0.007 and MAE:

0.007) in the dynamic -Adam scenario, and (RMSE:

0.007 and MAE: 0.007) in the static -Adam. Fig. 5

displays the relation between the original stock price

data and their prediction through the dynamic

scenario using the Adamax optimizer. It is clear from

the figure that both presentations are quite close to

each other, which confirms that the model is highly

accurate. Table 5 concludes the comparison between

the static and dynamic scenarios using both

optimizers.

Table 4. Results of DLSTM "Dynamic-Adamax" case 1
No. of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 634 [5, 2, 5] 5 0.010 0.009

3 953 [2, 5, 4] 5 0.006 0.005

Figure. 5 Results of DLSTM "Dynamic-Adamax" case 1

Table 5. Overall comparison between static and dynamic

scenarios using both optimizers case 1

Model RMSE MAE

Static-Adam 0.022 0.021

Dynamic-Adam 0.007 0.007

Dynamic-Adamax 0.006 0.005

Table 6. Number of epochs in all scenarios

Static-

Adam

Dynamic-

Adam

Dynamic-

Adamax

Number of

epochs
653 787 953

Calculating the number of epochs required for the

model convergence. We notice that the time

consumed in the dynamic scenario, using both

optimizers, is longer than the time consumed in the

static scenario. Indeed, this is a natural attitude where

the auto-generation of hyperparameter values takes

time to find the optimum values. Overall, the online

tuning for the hyperparameter improves the DLSTM

performance; however, it comes on the account of

computation time.

b. Case study 2: Oilfield production data

Table 7 presents the best error values and the best

hyperparameters values of the DLSTM model in this

case study. Here, the table lists the values of the

hyperparameters that we got through the static

approach using Adam optimizer. Fig. 6 shows the

Table 7. Results of DLSTM "Static-Adam" case 2

No.

of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 354 [4, 3, 5] 6 0.392 0.278

3 653 [4, 3, 5] 6 0.286 0.237

Received: August 7, 2020. Revised: October 14, 2020. 218

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

Figure. 6 Results of DLSTM "Static-Adam" case 2

Table 8. Results of DLSTM "Dynamic-Adam" case 2

No. of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 634 [5, 2, 5] 5 0.316 0.248

3 787 [2, 1, 2] 3 0.274 0.203

Figure. 7 Results of DLSTM, "Dynamic-Adam"-case 2

visual representation of the relation between the

original production data and their prediction

counterparts.

Table 8 shows the values of the hyperparameters

that have optimally selected using the GA, i.e., the

dynamic scenario, using the Adam optimizer. Fig. 7

illustrates the relation between the original

production data and their prediction in this scenario.

Again, it is clear that the DLSTM through the

dynamic scenario, where the hyperparameters are

generated automatically using GA, outperforms its

performance through the static scenario. In other

words, the dynamic approach improves DLSTM

model performance. This means that using the GA to

auto-select the best hyperparameters using Adam

optimizer enhances the overall performance.

In this experiment, we also use the "Adamax"

optimizer instead of Adam optimizer to validate this

improvement. Table 9 shows the results of this

validation. It is clear that, with Adamax, the error

values are decreased to (RMSE: 0.264 and MAE:

0.196), compared to both (RMSE: 0.274 and MAE:

0.203) in the dynamic -Adam scenario, and (RMSE:

0.286 and MAE: 0.237) in the static -Adam. Fig. 8

displays the relation between the original oilfield

production data and their prediction through the

dynamic scenario using the Adamax optimizer.

Table 9. Results of DLSTM "Dynamic-Adamax" case 2

No. of

layers

No. of

epochs

No. of

neurons

Lag

size
RMSE MAE

3 787 [5, 1, 5] 3 0.304 0.234

3 787 [2, 2, 5] 5 0.264 0.196

Figure. 8 Results of DLSTM "Dynamic-Adamax" case 2

Table 10. Overall comparison between static and dynamic

scenarios using both optimizers case 2

Model RMSE MAE

Static 0.286 0.237

Dynamic – Adam 0.274 0.203

Dynamic-Adamax 0.264 0.196

Table 11. Number of epochs in all scenarios

Static-

Adam

Dynamic-

Adam

Dynamic-

Adamax

Number of

Epochs
653 787 787

Again, it is clear that both data presentations

typically close to each other, which newly confirms

the model efficiency. Table 10 concludes the

comparison between the static and dynamic scenarios

using both optimizers.

Table 9 shows the estimated time for each

scenario by calculating the number of epochs

required for the model convergence. Newly, the time

consumed in the dynamic scenario, using both

optimizers, is longer than the time consumed in the

static scenario. This confirms that the online tuning

for the hyperparameter improves the overall

performance, but it comes on the account of

computation time.

5. Conclusion

Recent advances in deep learning have sparked

great attention in order to employ deep learning in

time series modeling and forecasting applications.

However, tuning the hyperparameter of a model plays

a vital role in the deep learning computation and

enhances the overall performance. In this paper, we

proposed an online tuning approach for the deep

LSTM model presented before by the second author.

Received: August 7, 2020. Revised: October 14, 2020. 219

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

The proposed approach examined to tune the

hyperparameters of two-time series case studies,

namely, stock market price dataset and oilfield

production dataset. Both case studies contain streams

of data every second, making them more suitable to

assess the proposed online tuning approach. The

experimental results showed that the dynamic tuning

of the hyperparameters performs better than the deep

model's static tuning. In this paper's future work, we

will try other optimizers, which developed recently,

overcoming the current optimizer limitations.

Conflicts of Interest

The authors declare that there is no conflict of

interest.

Author Contributions

Conceptualization, A.S.; Methodology, N.B.,

A.S.; Software and Experiments, N.B.; Validation,

N.B. and A.S.; Formal Analysis, N.B. and A.S.; Data

Curation, N.B.; Supervision A.S.; Writing—Original

Draft Preparation, N.B and A.S.; Review & Editing

A.S.

References

[1] D. Montgomery, C. Jennings and M. Kulahci

“Introduction to time series analysis and

forecasting”, John Wiley and Sons, 2015.

[2] S. Athiyarath, M. Paul and S. Krishnaswamy, “A

Comparative Study and Analysis of Time Series

Forecasting Techniques”, SN Computer Science,

Vol. 1, No. 3, 2020.

[3] A. Parmezan, V. Souza, E. Gustavo, and P.

Batista, “Evaluation of statistical and machine

learning models for time series prediction:

Identifying the state-of-the-art and the best

conditions for the use of each model”, Info. Sci.

pp. 484: 302–337, 2019.

[4] Y. Haimi, P. Zhisong, and T. Qing, “Robust and

Adaptiv Online Time Series Prediction with

Long Short-Term Memory”, Computational

Intelligence and Neuroscience, Vol. 16, 2017.

[5] S. Makridakis, E. Spiliotis, and V.

Assimakopoulos, “Statistical and Machine

Learning forecasting methods: Concerns and

ways forward”, PLOS ONE, Public Library of

Science, Vol. 13, No. 3, pp. 1-26, 2018.

[6] G. P. Zhang, “Neural Networks for Time-Series

Forecasting”, In: G. Rozenberg, T. Bäck, JN.

Kok (eds) Handbook of Natural Computing, pp.

461-477, 2012.

[7] J. Schmidhuber, “Deep learning in neural

networks: An overview”,

Journal reference: Neural Networks, Vol. 61,

pp. 85-117, 2015.

[8] Q. Zhang, LT. Yang, Z. Chen, and P. Li, “A

survey on deep learning for big data”,

Information Fusion; Vol. 42, pp. 146–157, 2018.

[9] Y. Bengio, “Learning deep architectures for AI.

Found. Trends Machine Learning”, Vol. 2, No.

1, pp. 1–127, 2009.

[10] M. Feurer, F. Hutter, L. Kotthoff, and J.

Vanschoren, “Hyperparameter Optimization”,

In: (eds) Automated Machine Learning, The

Springer Series on Challenges in Machine

Learning, Springer, Cham, 2019.

[11] G. Peter, M. Matskevichus, “Hyperparameters

Tuning for Machine Learning Models for Time

Series Forecasting”, Sixth International

Conference on Social Networks Analysis,

Management and Security (SNAMS), Granada,

Spain, pp. 328-332, 2019.

[12] A. Sagheer and M. Kotb, “Time Series

Forecasting of Petroleum Production using Deep

LSTM Recurrent Networks”, Neurocomputing,

pp. 323:203-213, 2019.

[13] A. Sagheer and M. Kotb, “Unsupervised Pre-

training of a Deep LSTM-based Stacked

Autoencoder for Multivariate Time Series

Forecasting Problems”, Scientific Reports,

Nature, Vol. 9, No. 19038, 2019.

[14] H. Larochelle, M. Mandel, P. Michael, and Y,

Bengio, “Learning Algorithms for the

Classification Restricted Boltzmann Machine”,

The Journal of Machine Learning Research, pp.

13:643–669, 2012.

[15] I. Goodfellow, M. Mirza, A. Courville, and Y.

Bengio, “Multi-prediction deep Boltzmann

machines”, In: C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Weinberger (eds.)

Advances in Neural Information Processing

Systems, pp. 548–556, 2013.

[16] A. Ororbia, D. Reitter, J. Wu, and C. Giles.

“Online Learning of Deep Hybrid Architectures

for Semi-supervised Categorization”, In: A.

Appice, P. Rodrigues, V. Santos Costa, C.

Soares, J. Gama, A. Jorge (eds) Machine

Learning, and Knowledge Discovery in

Databases. ECML PKDD, Lecture Notes in

Computer Science, Vol. 9284, 2015.

[17] S. Mischa, S. Shahd, G. Julia, J. Tobias, N.

Sebastien, S. Anett, “On the Performance of

Differential Evolution for Hyperparameter

Tuning”, In: Proc. of International Joint Conf.

on Neural Networks (IJCNN), 2019.

[18] A. Sánchez-Il, D. Pérez-Guaita, D. Cuesta-

García, J. D. Sanjuan-Herráez, M. Vento, J. L.

Ruiz-Cerdá, G. Quintás, J. Kuligowski, “Model

Received: August 7, 2020. Revised: October 14, 2020. 220

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.21

selection for within-batch effect correction in

UPLC-MS metabolomics using quality control -

Support vector regression”, Anal. Chim. Acta, pp.

1026:62-68, 2018.

[19] J. Bergstra and Y. Bengio, “Random search for

hyper-parameter optimization”, J. Mach. Learn.

Res. 13, pp. 281-305, 2012.

[20] K. Ozan and A. Barıs, “Nonlinear time series

forecasting with Bayesian neural networks”,

Expert Systems with Applications, Vol. 41, No.

15, 2014.

[21] Y. Ozaki, M. Yano, and M. Onishi, “Effective

hyperparameter optimization using Nelder-

Mead method in deep learning”, IPSJ T Comput

Vis Appl, 2017.

[22] W. Jia, C. Xiu-Yun, Z. Hao, X. Li-Dong, and D.

SiHao, “Hyperparameter Optimization for

Machine Learning Models Based on Bayesian

Optimization”, Journal of Electronic Science

and Technology, Vol. 17, 2019.

[23] T. Liu and J. Plested, “Using Evolutionary

Algorithms for Hyperparameter Tuning and

Network Reduction Techniques to Classify Core

Porosity Classes Based on Petrographical

Descriptions”, In: T. Gedeon, K. Wong, M. Lee

(eds) Neural Information Processing,

Communications in Computer and Information

Science, Vol. 1142, 2019.

[24] L. Viktor, H. Barbara, W. Heiko,

“Incremental on-line learning: A review and

comparison of state-of-the-art algorithms”,

Neurocomputing, Vol. 27531, pp. 1261-1274,

2018.

[25] S. Qing, Z. Xu, F. Haijin, and W. Danwei,

“Robust Recurrent Kernel Online Learning”,

IEEE Transactions On Neural Networks and

Learning Systems, Vol. 28, No. 5, 2017.

[26] M. Hermans and B. Schrauwen, “Training and

analyzing deep recurrent neural networks”, In:

Proc. of the 26th International Conf. on Neural

Information Processing Systems NIPS 1, pp.

190–198, 2013.

[27] R. Andonie, “Hyperparameter optimization in

learning systems”, J Membr Comput., Vol. 1, No.

4, pp. 279–291, 2019.

[28] C. Francescomarino, M. Dumas, M. Federici, G.

Ghidini and L. Simonetto, “Genetic algorithms

for hyperparameter optimization in predictive

business process monitoring”, Information

Systems, Vol. 74, No. 1, pp. 67-83. 2018.

[29] J. Kim and S. Yoo, “Software review: DEAP

(Distributed Evolutionary Algorithm in Python)

library”, Genet Program Evolvable Mach, Vol.

20, No.1, pp. 139–142, 2019.

[30] G. Villarrubia, J. De Paz, P. Chamoso, and F.

Dela, “Artificial neural networks used in

optimization problems”, Neurocomputing, Vol.

27210, pp. 10-16, 2018.

[31] D. Kingma and J. Ba, “Adam: A method for

stochastic optimization”, In: Proc. of the 3rd

International Conf. on Learning

Representations (ICLR), 2015.

[32] J. Sigel and D. Schwartz, “Long-term returns on

the original S&P 500 companies”, Financial

Analysts Journal, Vol. 62, No. 1, pp. 18-31,

2006.

[33] M. Abadi, A. Agarwal, and P. Barham,

“TensorFlow: Large-scale machine learning on

heterogeneous systems”, http://tensorflow.org/,

2015.

[34] M. Ivanović and V. Kurbalija, “Time series

analysis and possible applications”, 39th

International Convention on Information and

Communication Technology, Electronics and

Microelectronics (MIPRO), pp. 473-479, 2016.

[35] Z. Hajirahimi and M. Khashei, “Hybrid

structures in time series modeling and

forecasting: A review”, Engineering

Applications of Artificial Intelligence, Vol.86,

pp. 83-106, 2019.

