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Abstract: The diverse engineering and scientific applications are stated through complex and high-order systems. The 

significant difficulties of these systems are the complications of modeling, analyzing, and controlling.  It is easier to 

examine simpler models for more physical insights than more complex models and result in lower-ordering controllers 

that are easier to implement. The model order reduction (MOR) was used to simplify the computational difficulty of 

such complications and was later developed intensively for use with increasingly CDS. In this paper, a new Modified 

Chaos Particle Swarm Optimization (MCPSO) technique is employed to get a reduced-order model of a large scale 

system and design a Linear Quadratic Regulator (LQR) based controller. The mod uses the combination of advantages 

of basic PSO algorithms and chaotic algorithms. It becomes an excellent algorithm with fast convergence, few control 

parameters, simple execution, and avoidance of local extremes. In addition to combining the chaotic algorithm, CPSO 

also improved the weight parameter w, adjusting it to the dynamic attenuation direction. First, efficient reduced-order 

model parameters are obtained for original higher-order systems based on the MCPSO. Then linear quadratic regulator 

(LQR (controller parameters optimized for the reduced-order model. The goodness of the proposed method is 

evaluated through a numerical example. The experimental results indicate that the proposed technique’s reduced order 

model provides an excellent close approximation to the original system. 

Keywords: Model order reduction, Modified PSO, Linear quadratic regulator, Chaos optimization. 

 

 

1. Introduction 

The cost and complexity of the control unit 

increase as the order of the system was increases. 

This problem can be overcome if the low-order model 

is available to the original high-order system. If a 

controller can be designed using the lower order 

model, the original high-order system will be 

improved when placed in the closed-loop. To reduce 

cost and time in design and simplify implementation, 

reduced-order models (ROM) are very suitable for 

engineers in analysis, synthesis, and simulation. 

Different techniques are useful in the literature for 

MOR [1–3].  

Several methods commonly used in MOR do not 

guarantee the stability of the ROM. Through a post-

processing step, ROM is controlled to ensure stability 

while reinforce/maintaining its accuracy using the 

limiting nonlinear lease-square minimization 

problem. 

Particle Swarm Optimization (PSO) algorithm is 

a bionic optimization algorithm based on bird and 

fish swarm foraging process [4]. The PSO algorithm 

has the following features: (1) fast convergence speed, 

the algorithm can get search outcomes fast; (2) few 

control parameters are required, the algorithm is 

direct and straightforward to implement; (3) certain 

parallelism, PSO operations are applied to a group of 

particles. Despite these advantages, the PSO 

algorithm also has the same problem as the genetic 

algorithm: it is simple to place down into the optimal 

local value, which is very unfavorable for the multi-

peak function to solve the maximum global value. 

These optimization problems are very common in 

real life. Therefore, when the PSO algorithm is 

applied, a certain degree of improvement needs to be 
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made to avoid its early phenomenon and fall into the 

optimal local value. 

Various investigations have been carried out, and 

different methods have been proposed to simplify the 

higher-order transfer function [5-6]. Each method has 

its advantages and limitations. The most important 

concerns among the disadvantages are the tedious 

computational procedures or shifting and maintaining 

stability in the reduced model. 

Chaos optimization (CO) algorithm is a global 

optimization method, which employs numerical 

sequences generated using chaotic maps. Chaos is a 

random motion state obtained from certain equations 

[7]. The CO algorithm uses chaos equations to 

iteratively generate random sequences for random 

traversal search. The characteristics of the chaotic 

algorithm are: (1) randomness, the chaotic variables 

generated by the algorithm are as messy as random 

variables on the surface; (2) traversability, the 

random sequence generated by the algorithm can 

traverse all points in the search area without 

repeating; (3) Regularity, the algorithm is controlled 

by the determined iterative Eq. (4) It is very sensitive 

to the initial value, and slight changes in the initial 

conditions will cause huge changes in the system 

behavior . In all of the hybrid approaches, CO 

Algorithm takes a lot of computational effort to 

ultimately reach the optimal solution. This is due to 

the fact that the ability to search for local CO 

Algorithms is generally poor. The movement steps of 

chaotic variables between two successive iterations 

are usually large, which leads to solutions that jump 

out into the search space [8].  

The Chaos Particle Swarm Optimization (CPSO) 

algorithm combines the fast convergence of the PSO 

algorithm and the traversal randomness of the CO 

algorithm [9]. In the area near the optimal solution 

selected by each generation of the PSO algorithm, the 

chaotic algorithm is used to further search, prevent it 

from falling into the optimal local value, thereby 

improving the PSO algorithm’s and becoming an 

efficient optimization algorithm. 

In [10], a new hybrid model combining ANN and 

CPSO has been proposed to improve forecast 

accuracy. The results proved that the proposed model 

works better for fine particles compared to coarse 

particles. Zhu, Zheng, and Ma, in [11], presented an 

evolutionary approach to solving optimal power 

system problem of electric vehicle. In [12], proposed 

a new algorithm to improve the chaotic CPSO, to 

solve combinatorial optimization problems. 

Empirical results show that CS-PSO has better 

variety, frequency, and efficacy than healthy lifestyle 

recommendations (HLR-PSO). 

One of the advantages of using the LQR is that it 

facilitates the design and increases case variables by 

estimating the situation. The main advantage of the 

LQR control relative to pole placement is that instead 

of determining where similar values should be placed, 

a range of performance weight may be identified that 

may have a more attractive appeal. The result is stable 

control guaranteed [13,14].  

Control aspects of large scale systems (models 

with very high order) are a major concern in the field 

of control systems. The designed controller’s order 

must be close to the large- scale system order, or even 

more in most cases. As the controller’s order 

increases the control aspects of the system, it 

becomes even more complicated. Many model order 

reduction techniques that reduce the higher-order 

system’s order without losing the predominant 

characteristics. A linear quadratic regulator based 

design is an optimization tool to derive an optimal 

controller by minimizing the cost function based on 

the two weighting matrices Q and R, which weigh the 

state vector and the system input. The main feature of 

this paper aims to: 

• Apply model order reduction on a large scale 

system based on a new combination between the 

advantages of basic PSO and chaotic algorithms. 

Also, made improvements to the weight 

coefficient w, of the proposed Chaos Particle 

Swarm Optimization (CPSO) 

• Design a Linear Quadratic Regulator (LQR) 

based controller to analyze the performance 

indices in the time and frequency domains.  

• The step and frequency responses of the system 

with the LQR controller are simulated in MatLab. 

• A single-input-single-output system (SISO) is 

considered, due to the LQR controller's 

compatibility and state-space equations. Also, 

this study extended to multi-input multi-output 

(MIMO) systems. 

The rest of the paper deals with section 2 explain 

the Problem Formulation of the model order 

reduction. Section 3 is associated with the proposed 

MCPSO technique. Section 3 is also associated with 

the proposed design of the optimal LQR controller’s 

proposed design based on the reduced-order model. 

Section 4 is associated with Numerical Example and 

Simulation Results, and section 5 with a conclusion. 

2. Problem formulation 

2.1 Reduced-order model 

Consider Gn(s) be the SISO transfer function of 

the linear time-invariant system of order ‘n’ 

represented by the form [2]: 
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Where a, b: 0  i  n-1 are known scalar constants. 

The objective is to find the rth (r < n) order ROM 

Gr(s) represented by the form:  
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Where e, f: 0  i  n-1 are unknown scalar 

constants. The ISE between the responses of Gr(s) 

and Gn(s) systems are calculated to measure the 

goodness of the ROM: the lower the ISE, the closer 

Gr(s) is to Gn (s). ISE is given by [15]: 
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Where y(ti) and yr(ti), are the responses of the 

original and reduced-order systems, respectively. 

Consider Gn(s) be the transfer function of a higher-

order MIMO system. It is given by [2]: 

 

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )1
( )

... ... ... ...( )

( ) ( ) ... ( )

p

p

n

n

m m mp

a s a s a s

a s a s a s
G s

D s

a s a s a s

 
 
 =
 
 
    (4) 

 

The general form of gi(s) from Gn(s) can be taken 

as: 

 
( )

( )
( )

a sij
g s

ij D sn
=

                           (5) 

 
Where i=1,2, …, p and j=1.2. …, m  

The objective is to find the (rn<n) ROM Gr(s) 

represented in the form: 
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The general form of Rjj(s) from Gr(s) is taken as: 
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2.2  Particle swarm optimization  

The MPSO algorithm is proposed under the 

inspiration of the bird flock foraging process. The 

primary data object in PSO is "particles". Particles 

have a position and a speed, just like a bird searching 

for the optimal solution. Multiple particles form a 

bird swarm-like particle swarm structure. Like other 

evolutionary algorithms, the PSO algorithm first 

initializes the particle swarm, searches for the particle 

swarm, updates, evolves to the next generation, 

repeats continuously, and finally finds the optimal 

solution. The difference is that the PSO algorithm has 

evolved toward an optimal global solution and an 

individual optimal solution during the evolution of a 

new generation of particle swarms, which is why it 

can quickly converge [4]. 

Two fundamental quantities are needed to 

describe the state of a continually moving particle: (1) 

the current position X, which records the position 

coordinates of the current particle; (2) the current 

velocity V, which depends on the distance and 

direction of the last movement of the particle. 

Besides, each particle has a fitness, which is used to 

measure the quality of the solution. It is a function of 

the optimization function f(x), which can be written 

as fitness = φ [f(x)]. Here, we can simply make fitness 

= f(x), determined by the current position x [15]. 

Also, for each particle in the particle swarm, its 

optimal solution pbest will be recorded, indicating 

that the particle has found the optimal solution until 

the current algebra; and for the current particle swarm, 

a globally optimal solution gbest will be recorded, 

indicating that the optimal global solution has been 

found so far, which is the final output. Obviously, for 

a particle swarm of size N, there must be an optimal 

solution of N individuals, denoted as pbest_i, i = 

1,2, ..., N, where the fitness is the best (maximum or 

minimum, determined according to needs), namely 

It's gbest. 

When the particle swarm evolves to the next 

generation, each particle updates itself by tracking the 

two "optimal solutions" pbest and gbest. The update 

formula is as follows [2]: 
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                                   ( ( ))
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Figure. 1 Optimaization procedure of the PSO 

 

Where t represents the t-th generation; w is the 

inertia weight factors, which is the proportional 

coefficient of the current speed V (t), taking a random 

number between [0,1]; r1 and r2 are both random 

between [0,1] Number, c1 and c2 are learning factors 

that affect how fast the particle swarm follows the 

optimal solution. X (t + 1) represents the position of 

the next generation, which is obtained by adding the 

current position X (t) to the next generation speed 

V(t+1). It can be seen that the key to particle updating 

is to find V(t+1), and the updated schematic diagram 

is shown in Fig. 1 

We can see that V (t + 1) is composed of three 

parts: the first part is related to the current velocity of 

the particle V (t), indicating that the particle tends to 

expand in the search space; the second part is the 

"cognitive part," which is The result of particles 

absorbing self-experience; the third part is the "social 

part", which is the result of particles absorbing social 

experience. 

When V is too large, the change of X update once 

will be huge. It is likely to skip the optimal global 

solution during the search, which is not conducive to 

the PSO algorithm and may even lead to local 

extreme values. Therefore, it is necessary to set a 

maximum value Vmax for V, when 0 <V (t + 1) < Vmax, 

V = V (t + 1), and when V (t + 1)> Vmax, V = Vmax , so 

Limit V to the range of [0, Vmax] to ensure the 

accuracy of the search. 

The problem of optimization can ultimately be 

reduced to finding the maximum and minimum 

values. Let the dimension of the optimized solution 

be m, that is, X = (x1, x2,…, xm), the optimization 

function is f(X) = f (x1, x2,…, xm), xi  [a, b], 

optimize The goal is to find the solution xm that 

minimizes f(X), then the PSO algorithm can be 

summarized as follows: 

 

Step 1: Initialization 

①  Set the particle swarm size N, the maximum 

algebra M, c1 and c2, and other parameters; 

② Initialize the current position X(0) and velocity 

V(0) of N particles. That is, for each particle position 

component xi is initialized to a certain number 

between [a, b], and the velocity component is 

initialized to a certain number between [0,Vm/m]. 

③  Initialize pbest to the initial position X(0), 

substitute and calculate its fitness f(X), and use the 

particle with the smallest fitness as gbest. 

 

Step 2: The search process 

While (Algebra ≤ M) 

{ 

①  Update the position X and velocity V of each 

particle according to equations (8 and 9) to get a new 

particle group; 

② Calculate the fitness f(X) of each particle; 

③  Update the individual optimal value of each 

particle: if f(X) <f(pbest), update pbest = X, otherwise 

do not update 

④ Global optimal value update: select the pbest value 

with the smallest fitness as gbest; 

⑤ Update algebra: t = t + 1 

} 

Step 3: Result output: output gbest and f(gbest), and 

the solution is completed. 

2.3 Chaos optimization 

Chaos is a random motion state obtained by 

determining the equation. It is a common 

phenomenon in nonlinear systems. Its behavior is 

complex and similar to random so that it can be used 

for random search. Chaotic variables have the 

following characteristics [16]: 

Pseudo-randomness: The chaotic variables on the 

surface look as random as random variables. If it is a 

two-dimensional chaotic variable, its value is the 

point on the plane that looks disordered; 

Ergodicity: chaotic variables can traverse all states in 

space without repeating; that is to say, the values of 

chaotic variables in the evolution process will never 

be repeated; 

Regularity: Although the chaotic variable appears 

to be chaotic on the surface, it is obtained by a 

specific iterative equation and has an inherent 

regularity, which is determined by the chaotic 

equation; 

Sensitivity to initial values: Two initial values 

with a minimal difference, after several iterations of 

chaos, the output results will produce massive 

changes. 

Using the characteristics of pseudo-randomness 

and ergodicity of chaotic variables, an excellent 

global search function can be achieved. It is created 

V(t)

X(t)

pbest

gbest

X(t+1)

 



Received:  September 17, 2020.     Revised: October 19, 2020.                                                                                        161 

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021           DOI: 10.22266/ijies2021.0228.16 

 

by the chaotic iteration equation, which reflects the 

characteristics of the chaotic system. By providing 

initial values for a chaotic variable, a set of random 

sequences with ergodicity and pseudo-randomness 

can be generated.  

The logistic map is a first-order nonlinear 

difference equation that appears widely in the 

economic, social, and biological sciences. The 

relative simplicity of the logistics map makes it a 

widely used entry point in considering the concept of 

chaos. In general, Logic mapping is used to generate 

pseudo-random sequences, as shown in formula (10): 

 

( )1: 1n n nZ   + = −                   (10) 

 

Where Z is a chaotic variable, n is the primary 

value of the chaotic variable; μ is the control 

parameter, when μ = 4, the chaotic variable Z is in 

the state of full chaos, with chaos; when the chaotic 

variable Z is assigned an initial value 0 (Where 0 ≠ 

0.25, 0.5, 0.75), through the iteration of the Logic 

equation, a sequence Z: 0, 1, 2, …, m,…, can be 

generated. Since the chaotic variables are realized as 

a sequence, you can use the random variables as a 

sequence with ergodicity within the chaotic range. 

Iteratively traverses the chaotic range without 

repeating it. When another initial value 0 is assigned 

to the chaotic variable Z, another chaotic variable will 

be generated, no matter how close 0 and 0 are, after 

several iterations, the trajectories of the two chaotic 

variables will differ significantly, which is an 

embodiment of the sensitivity of the chaotic system 

to the initial value. 

There are two main ways to use the Logic chaotic 

algorithm: 

(1) From an initial value between [0,1] through 

iteration of the Logic equation, a chaotic, random 

sequence between [0,1] Z: 0, 1, 2, …, is generated 

through linear mapping (see Formula 11), extending 

chaos to the value range [a, b] of the optimization 

variable X, to traverse the value range of the 

optimization variable. 

 

:   X ( )Z X Z  → = + −
           (11) 

 

(2) Use the Logic equation to generate a chaotic, 

random sequence Z between [0,1], and then use 

carrier mapping (see formula 12) to introduce chaos 

into the area around gbest, thereby implementing 

local chaos search. 

 

:   ( 0.5)Z Y X gbest SR Z→ = +  −       
 (12) 

Where SR is the search radius, which is used to 

control the range of local chaos search. 

3. The proposed methodology 

3.1 Proposed modified chaos-particle swarm 

optimization (MCPSO) 

MCPSO combines the advantages of basic PSO 

and chaotic algorithms, and it is an excellent 

algorithm with fast convergence, few control 

parameters, simple implementation, and avoiding 

local extremum. 

A modified inertia weight factor was introduced 

to overcome the local minimum trapping defect, 

usually associated with the inertial weight operator. 

Chaos search optimizes particle locations, favors 

finding solutions quickly in problem space, and 

avoids the possibility of early convergence. 

A random inertia weight is used for emotional 

chaos to ensure a balance between exploitation and 

exploration. Low inertia weight favors exploitation, 

while high in inertia weight favors exploration. The 

constant inertia weight affects the rate of 

convergence of the algorithm and often leads to early 

convergence. The messy search optimization was 

used in all cases due to its high dynamic properties, 

which ensure particle diversity. 

In addition to combining the chaotic algorithm, 

CPSO also improved the weight coefficient w, set to 

a dynamic attenuation trend, the update formula of w 

is shown in formula (13). 
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Where wm is the lower limit of w, and wM is the 

upper limit of w. In the early stage, because the search 

is in the early stage and requires a large-scale search, 

the dependence on the speed V is greater. As 

evolution continues to mature, the search point is 

continuously close to the optimal value position. At 

this time, the search range needs to be narrowed. The 

dependence of the speed V is reduced. Such a 

dynamic adaptive setting is conducive to the 

algorithms rapid convergence of the algorithm and 

finds the optimal value faster. 
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For the m-dimensional optimization problem, 

f(X) = f(x1, x2,…, xm), xi  [, ], the proposed 

MCPSO 
algorithm can be summarized as follows: 

 

Step 1: Chaos initialization population:  

An m random numbers are generated between 

[0,1], and the initial value of each component of the 

m-dimensional chaotic variable Z=(Z1, Z2, ..., Zm) is 

generated by 2N iterations to generate 2N an m-

dimensional sequence with chaotic properties. 

Through X=(-)Z mapping, it is mapped to the 

optimization variable; that is, 2N initial positions are 

obtained, and N of which are well adapted are 

selected as initial particles, then N is randomly 

generated within the maximum speed range. An 

initial velocity as the particle velocity; 

Step 2: Global search 

Search with the PSO algorithm to search for the 

global optimal solution pbest of each generation; 

Step 3: Local search  

Use the method in step (1) to generate an m-

dimensional chaotic sequence of length L, and then 

use X=gbest+SR (Z-0.5) to obtain search points with 

chaotic characteristics near pbest. The points are 

substituted into the optimization function for testing 

and compared with f(gbest), respectively. If 

f(X)<f(gbest) is satisfied, X can be updated to gbest; 

Step 4: t = t + 1, if the maximum algebra is not 

reached, jump back to step 2 for further search; 

otherwise, execute step 5; 

Step 5: Output 

The searched gbest and f(gbest) are output as the 

optimization result. 

The flow chart of the MCPSO algorithm is shown in 

Fig. 2. 

3.2 Proposed LQR Controller Design 

Consider the optimal regulator problem shown in 

Fig. 3. The system equation is given by:  

 

x Ax Bu

y Cx Du




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= +

= +
                      (14) 

 

For the controlled system described by (14), the 

cost function to be minimized is given by: 

 

0

  )T TJ x Q x u Ru dt

 
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 

= +                  (15) 

 

Where u is not constrained, Q is required to be an 

asymmetric, positive, semi-definite matrix, and R  is 

required to be an asymmetric, positive-definite matrix. 

Initialize particle swarm using chaos

Initialize pbest, gbest

Update the inertia weight

Input: Number of Particle, Number of Iteration

For each particle

Start 

Update particle swarm with formula

K times chaotic search near gbest, Find the 

optimal solution as the new gbest

Update pbest

Particle>MaxNo

Iteration >MaxIter

End

Go to the 

next particle

Go to the 

next Iteration

Update Velocity 

and Position

No

Yes

No

Yes

 

Figure. 2 Basic flow chart of the MCPSO 

 

The optimal control is obtained as: 

 

-11 2 - Tu K x K y R B Pxi= + =
               (16) 

 

where P is the solution of the Riccati equation: 

 

1 0TA P PA PBR Q−+ − + =
                 

(17) 

 

In most cases, these weights, Q and R, are chosen 

with the designer’s expertise regarding understanding 

the process states. The formulation can be easily 

optimized by using some global optimization 

algorithms to search for the weighting matrices. In 

this paper, the MCPSO algorithm's second use is to 

adjust the LQR weighting matrices optimally. 

Similarly to practical applications, we define the 

Q=diag [Q1, Q2, …, Qn] and R=diag [R1, R2, …, Rm] 

as diagonal matrices to alleviate the curse of 

dimensionality (n and m are dimensions of the state 

and control vectors, respectively).  
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Figure. 3 MATLAB/Simulink model of the LQR controller 

 

4. Numerical example and simulation results 

In this section, the systems under consideration, 

and the proposed controllers are modeled and 

simulated in the MATLAB/Simulink environment. 

The proposed MCPSO algorithm performance is 

assessed with constant values of the initial parameters 

such as Swarm size=50, a Maximum number of 

generations=100, Acceleration factors (c1=1.2, 

c2=0.8), Inertia weight (wm-wM) = 0.4-0.9.  

 

Example 1: Consider an eighth-order SISO system 

in Shamash [17, 18] 
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s s s s
G S

s s s s s

s s s

s s S

+ + + +
=

+ + + + +

+ + +
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By applying the MCPSO algorithm, the ROM is:  

 

40.05 381.3
( )

2 2 1.809 35.34

S
G s

S S

+
=

+ +
            (19) 

 

The step responses of the higher-order model 

(HOM) and ROMs are shown in Fig. 4. The ISE and 

root mean square error (RMS) are calculated to 

compare this method with other known methods 

available in the literature, as shown in Table 1. 

The convergence during the evolution of the 

MCPSO algorithm is shown in Fig. 5. A comparison 

of the fitness value, using the same number of 

iteration, for the techniques proposed in this work 

indicated by the blue line for MCPSO and in the red 

line for bacterial foraging-particle swarm 

optimization (BF-PSO) techniques proposed in [15], 

and in the green line for the modified Particle swarm 

optimization (MPSO) techniques proposed in [2].  

 
(a) 

 

 
(b) 

Figure. 4 Step responses of the original model and 

reduced-order models for Example 1: (a): open-loop and 

(b) closed-loop 

 

It can be seen from the figure that as the 

evolutionary algebra progresses, the fitness of the 

optimal global solution continues to decrease, and it 

stabilizes at the minimum value of 0.297 after ten 

generations for MCPSO. It can be seen that MCPSO 

can quickly converge, thus verifying that MCPSO is 

a more efficient and feasible algorithm. 
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Table 1.  Comparison of error-index values with existing 

methods for example 1 

Method Reduced model 
RMS 

error 
ISE 

Proposed 

MCPSO 

40.05 381.3

2 1.809 35.34

S

S S

+

+ +
 0.298 0.889 

Ref. [17] 
39.517 388.959

2 1.8377 35.5199

S

S S

+

+ +
 0.338 1.145 

Ref. [18] 
35 401.2

2 1.436 36.63

S

S S

+

+ +
 0.5 2.507 

 

 
Figure. 5 Evolution processes of the MCPSO strategies 

for example 1 

 

Applying the LQR controllers to the reduced 

model, the values of A, B, C, and D are: 

 

 

1.809 4.4175 8
,   ,  

8 0 0

[5.006  5.958],   0

A B

c D

− −   
= =   
   

= =

                                         

  (20) 
 

The parameters of the LQR controller are tuned by 

using the same error minimization technique 

employing MCPSO. The optimized LQR controller 

parameters are: 

 

 
25.576 0

,     1.0126
0 35.6298

Q R
 

= = 
 

                                         

   (21) 

The optimal feedback gain matrix is: 

 

1 5.783785 5.505185 , 

2 216.0917

K

K

 
 
 
 

=

=
                                         

   (22) 

The transient response of the controller of the 

reduced-order system is shown in Fig. 6. To prove the  

 
Figure. 6 Step responses of reduced-order models for 

example 1 using the LQR controller. 

 

Table 2. The performance characteristics of the system in 

example 1. 
Characteristic HOM ROM  LQR 

Rise time  0.034 0.033 2.525  10−4 

Settling time 0.247 0.274 4.49  10−4 

Overshoot %) 18.5 15.6 0 

Steady state 1.086 1.093 1 

 

observation of the controller, system performance 

data are taken and listed in Table 2. 

 

Example 2: Consider a sixth-order two-input two-

output system transfer function matrix given in [15, 

19, 20 and 21]: 

 

6

11 12

6

21 22

2(s 5) (s 4)

(s 1)(s 10) (s 2)(s 5)
( ) ,  

(s 10) (s 6)

(s 1)(s 20) (s 2)(s 3)

( ) ( )1
( )

( ) (s)( )

G s

a s a s
G s

a s aD s

+ + 
 + + + +
 =

+ + 
 + + + + 

 
=  

 

(23) 

 

By applying the MCPSO algorithm, the ROM is: 

 

2

(1.315 3) (1.033s 1.2)

(0.5776 1.5) (1.8s 3)
( )

( 3)(s 1)

s

s
G s

s

+ + 
 

+ + 
=

+ +
   (24) 

 

The step responses of the HOM and the ROM are 

shown in Fig. 7. Table 3 shows a comparison between 

the proposed ROM and different ROMs. 

Applying the LQR controllers to the reduced model, 

the values of A, B, C, and D are: 
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4 1.5 0 0

2 0 0 0
,  

0 0 1.5 1.5

0 0 2 0

A

− − 
 
 =
 − −
 
 

 

2 0 0 0 0 0
    , ,

0 0 2 0 0 0

0.6585 0.7495 0.5155 0.3005
   

0.2891 0.3748 0.8905 0.7535

B D

C

   
 = =   

   

 
=  
 

 (25) 

 

By employing MCPSO, the optimized LQR 

controller parameters are:  

 

1000 0
,   

0 100

0.5172 0 0 0

0 0.7022 0 0

0 0 1.0587 0

0 0 0 0.6581

R

Q

 
=  
 

 
 
 =
 
 
 

 (26) 

 

 

 

 
(a) 

 

 
(b) 

Figure. 7 Step responses of the original model and reduced-order models for example 2: (a) open-loop and (b) closed-

loop 
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The optimal feedback gain matrix is: LQR 

upgraded parameters. 

 

0.0004 0.0005 0 0
1 ,      

0 0 0.0048 0.0044

2 65.938

K

K

 
=  
 

=

(27) 

 

The transient response of the controller of the 

reduced-order system is shown in Fig.8. The 

performance data are taken and are listed in Table 4. 

5. Conclusion 

It can be concluded from the analysis of the 

numerical example that the MCPSO algorithm is an 

efficient optimization algorithm. It has fast 

convergence, simple implementation, and can 

overcome the local extremum problem. This MCPSO 

was used to reduce the high-order systems model. It 

notes that the ROM obtained based on the proposed 

MCPSO technology provides exceptional parataxis 

to the original system. Also, it is presented a 

comparative analysis of the ROM obtained by the 

proposed technology and that obtained by other 

known methods available in the literature in terms of 

error values means ISE and RMS, as shown in Tables 

1 and 3. LQR is designed based on the MCPSO and 

reduced system ranking for a more convenient 

control method. LQR control ensures stability and 

adequate performance at all operating points. 

 

 
Figure. 8 The response of the reduced-order model with the LQR controller for example 2 

 

Table 3. Comparison of error-index values with existing methods for example 2 

Method Reduced Model (G2(s)) RMS Error ISE (1.0e-03 *) 

Proposed  

MCPSO 2

1.315 3 1.033 1.2

0.5776 1.5 1.8 3

( 4 3)

s s

s s

s s

+ +

+ +

+ +
 

    0.0064    0.0021 

    0.0028    0.0257 

    0.0415        0.0044 

    0.0081        0.6663 

Ref. [15] 
2

1.317 2.998 1.031 1.202

0.5782 1.499 1.781 3.014

( 4 3)

s s

s s

s s

+ +

+ +

+ +
 

    0.0063    0.0021 

    0.0026    0.0245 

    0.0403      0.0043 

    0.0070      0.6048 

Ref. [19] 
2

0.9655 2.068 0.855 0.8272

0.5517 1.034 1.689 2.068

( 3.068 2.068)

s s

s s

s s

+ +

+ +

+ +
 

    0.0240    0.0026 

    0.0027    0.0199 

    0.5822    0.0068 

    0.0072    0.4018 

Ref. [20] 
2

1.0546 3.65079 1.07782 1.4603

0.43458 1.82539 1.9035 3.65079

( 4.3374 3.65079)

s s

s s

s s

+ +

+ +

+ +
 

    0.0141    0.0065 

    0.0033    0.0246 

    0.2017    0.0423 

    0.0110    0.6103 

Ref. [21] 
2

0.9098 0.7091 0.4916 0.2836

0.4373 0.3545 1.0753 0.7091

( 1.548 0.7091)

s s

s s

s s

+ +

+ +

+ +
 

    0.0275    0.0107 

    0.0243    0.0283 

    0.7648    0.1149 

    0.5949    0.8117 
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Table 4. The performance characteristics of the system in example 2 

Characteristic HOM ROM LQR 

R11 

Rise time 1.177 1.089 0.036 

Settling time 2.156 2.144 0.074 

Overshoot (%) 0 0 0 

Steady state 0.473 0.473 1 

R12 

Rise time 0.128 0.124 9.110−5 

Settling time 2.084 2.361 0.105 

Overshoot (%) 41.82 38.94 3.39103 

Steady state 0.149 0.146 0 

R21 

Rise time 0.464 0.483 0.0002 

Settling time 0.767 2.324 0.158 

Overshoot (%) 0 3.024 1.48103 

Steady state 0.131 0.135 0 

R22 

Rise time 0.677 0.88 0.0266 

Settling time 1.020 2.09 0.0632 

Overshoot (%) 0.557 0 0 

Steady state 0.476 0.474 1 

 
MCPSO-based technology in the area of reduced 

demand model remains unexploited. Hence, our 

future research will aim to investigate further 

possible applications in some of the more complex 

and higher-order systems, especially in the field of 

electronic medical systems 
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