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Abstract: Automatic speech recognition (ASR) transcribes the human voice into a text automatically. Recently, ASR 

systems has reached, almost, the human performance in specific scenarios. In contrast, dysarthric speech recognition 

(DSR) is still a challenging task due to many reasons including unintelligible speech, irregular phonemes articulation, 

along with scarcity and heterogeneous of data. Most of the existing DSR works are employed the ASR systems that 

trained on an unimpaired speech to recognize such impaired speech, which of course is impractical and inefficient. In 

this paper, we developed a deep architecture of the convolutional recurrent neural network (CRNN) model and 

compared its performance with the vanilla convolutional neural network (CNN) model. We train both models using 

the samples of the Torgo dataset, which contains a mixed of impaired and unimpaired speech data. The experimental 

results show that the CRNN model attains 40.6% against 31.4% for the vanilla CNN. This indicates the effectiveness 

of the proposed hybrid structure of the CRNN to improve the recognition of dysarthric speech. 

Keywords: Dysarthric speech recognition, Speech disorder, Torgo database, Convolutional neural networks, 

Recurrent neural. 

 

 

1. Introduction 

Dysarthria is a neuro-motor articulation disorder 

disease result in weakness of the speech muscles at 

the human, such as tongue and lips [1]. It caused as a 

result of many reasons including paralysis, poor 

coordination, and weakness of the muscles that 

produce speech. It may also result as a side effect of 

stroke, a Parkinson's disease, and a cerebral palsy or 

any traumatic brain injury [2]. The person with 

dysarthria is unable to talk regularly where speech 

will be nearly unintelligible and phonemes 

articulation will be irregular. For this reason, it is 

reported that dysarthric speech is slower than a 

regular speech by 15 times since tongue, lips, and jaw 

are difficult to move as in a normal speech [3, 4].  

In most cases, dysarthria is accompanied by a 

physical disability with limited body movements and 

uncontrolled coordination, leading eventually to a 

difficulty in using communication applications that 

are based on a joystick or a keyboard. All these 

aspects make those people with dysarthria facing 

difficulties and isolation in their life due to difficulty 

of communication with those who are around along 

with limited interaction with electronic devices 

including computers and phones [5]. 

In the recent years, with the great progress in 

developing automatic speech recognition (ASR) 

systems, broad range of commercial applications, 

where ASR as user interface, have become ever more 

useful and pervasive. Several articles in the literature 

deployed the ASR systems on dysarthric speech 

datasets, which yield a very poor performance [5]. 

Certainly, any ASR system trained on un-impaired 

speech will not be suitable to be validated using 

dysarthric speech data in the scope of the large 

mismatch of acoustic and articulatory characteristics 

between dysarthric and normal speech [6, 7]. In other 

words, ASR systems are ineffective and impractical 

to process dysarthric speech recognition (DSR) 

systems [5]. Consequently, appropriate DSR systems 

specifically tailored to persons with dysarthria would 

be more efficient and practical than ASR systems. 

The best way to develop such a DSR system will 

be accomplished by training the system using 
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datasets include both normal speech and dysarthric 

speech [8, 9]. Most of the existing works that oriented 

to solve the DSR problem have focused on capturing 

the acoustic cues or features of the dysarthric speech. 

To this target, various extraction techniques for 

acoustic features have been used including hidden 

Markov models (HMM) [10], and Gaussian mixture 

model (GMM) [11].  

However, with the emerging of deep learning 

approaches, DSR can be improved if it is 

implemented using deep neural networks (DNN) 

models rather than HMM and GMM. One of the 

advantages of using DNNs is that the inputs can be 

raw data, such as pixels of an image, rather than 

extracting specific input features as the case in GMM 

and HMM. Another major disadvantages of GMM 

and HMM is that they fail to model long-term 

dependencies exist in speech signal [8, 12]. 

Convolutional neural networks (CNN) and 

recurrent neural networks (RNN) are common deep 

neural networks models used widely to process 

different kinds of signals such as speech and image 

[13, 14]. In this paper, we merge the two models to 

have the convolutional recurrent neural network 

(CRNN). The CRNN combines the structures of both 

original models and, therefore, acquires the benefits 

of both models to ensure efficient processing to DSR. 

The developed CRNN consists of two CNN blocks; 

each has three layers, namely, a convolution layer, a 

Relu layer, and a dropout layer. The second CNN 

block is similar to the first block, except that we 

replaced the covolution layer with a unidirectional 

RNN block. The RNN block includes two RNN 

layers include 60 neurons in total. In the proposed 

structure, the convolutional layer of the first CNN 

block will extract the local features of the input 

speech, whereas the RNN block will extract the 

overall or global feature structure by aggregating the 

local features extracted by the convolution layer. 

Briefly, the CNN plays the function of features 

extractor whilst the RNN plays the function of 

features integrator.  

The rest of this paper is organized as follows. 

Section 2 discusses the related work to this paper. The 

problem statement of this paper and our motivation 

to solve it are given in section 3. Section 4 shows the 

details of the experimental settings and the methods 

that used throughout the paper. The experimental 

results are shown and discussed in section 5. Section 

6 concludes this paper. 

2. Related work 

The related research of DSR using the traditional 

artificial neural networks (ANNs) started since more 

than two decades ago. Specifically, in 1990s, 

statistical causal models used for dysarthric speech 

recognition. The importance of this figure of benefit 

is that the intrinsic causal relationship between the 

intelligibility of dysarthric speech and the responses 

of speech recognition systems are made clear through 

their linguistic counterpart or through different 

phonemes [15]. In another trial, different words have 

been recorded form a number of individuals with 

dysarthria. In this experiment, 20 words out of 50 

have been selected and repeated 22 time used with 

two multilayer neural networks [16]. One of the 

networks had the fast Fourier transform coefficients 

as inputs; the other network had the format 

frequencies as inputs. The data presented in this 

experiment have implications for individuals with 

dysarthria other than those with cerebral palsy.  

A deep belief network (DBN) pre-trained on the 

UAspeech database [17] that includes about 9 and 3 

hours per speaker in the training and testing sets, 

respectively, and almost of explored different 

methods for generating speaker dependent 

pronunciations [18]. A combination model of 

maximum a posteriori (MAP) and the maximum 

likelihood linear regression (MLLR) applied on the 

QoLT 2012 and KPOW database. The performance 

of three severity models were better than the baseline 

model, relatively reducing the word error rate (WER) 

by 17.9%, 17.2%, and 10.4% for universal, mild, and 

mild-to-severe models on average, respectively [4].  

Other serious trials have continued, until the trail that 

ended with the development of the Torgo dataset [19], 

which adopted in this paper. This datatset contains 

the speech data of eight individuals with dysarthria 

and seven individuals without dysarthria, more 

details about this dataset will be provided in section 

4.1. In 2011, a three-level cascaded adaptation 

procedure was applied on Torgo [20]. This three-

level procedure consists of MLLR adaptation and 

MAP estimation that adapted a speaker independent 

model to the characteristics of the speaker's vocal. 

Using these two techniques, the WER was reduced. 

The pronunciation lexicon adaptation (PLA) was 

used and reduced the error rate further, where it 

showed a clear efficiency in the long utterances 

relatively.  

In 2013, based on the digital short-time Fourier 

analysis, a phase vocoder applied on the Torgo 

dataset and modified the acoustics of dysarthric 

speech system by Gaussian mixture mapping [21]. In 

this system, FestVox implementation has used a 

method to resynthesize and pitch the feature 

extraction. FestVox system has trained the 

parameters for this model using 24th-order cepstral 

coefficients with a standard expectation-
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maximization approach and 4 Gaussian components. 

Gaussian mixture model transformed the dysarthric 

speech, purely synthetic speech and traditional 

HMMs trained with large amounts of data from the 

general population have used with evaluated 

utterances in each proposed transformation result 

[21].  

In 2014, the impaired TIMIT dataset and the 

unimpaired Torgo dataset used to build a speaker 

independent model using the sample of the Nemours 

database [22]. Using this database, the author of [23] 

built a MLLR and a constrained MLLR (C-MLLR) 

adaptation models that produce a single Gaussian 

mixture model. When a speech model of unimpaired 

used, CMLLR technique performs better than MLLR. 

TIMIT speaker independent model for the mildly 

impaired speech is more accurate, while on the Torgo 

database the system performs well in recognizing the 

impaired speech for severely impaired and 

moderately cases. Breiefly, both TIMIT and Torgo 

showed that MLLR technique high WER than the 

CMLLR technique [23].  

In 2015, a DSR system is developed using the 

support vector machine (SVM), the linear 

discriminant analysis (LDA), and the and k-nearest 

neighbor (kNN) classifiers [24]. The best feature 

were selected based on unweighted average recall 

from two pathological speech sub-challenge, the 

Torgo and the NKI CCRT speech corpus [24]. The 

classification performance using SVM showed the 

best performance by smoothed posterior score fusion 

of subsystems. In most cases, the posterior smoothing 

results is improved, except prosody subsystem case 

and the LDA classifier with feature-level fusion and 

the SVM classifier with feature-level fusion only in 

terms of classification accuracy that is unweighted 

[24].  

In 2016, using the features of Mel-Frequency 

Cepstral Coefficients (MFCC), a small portion of the 

Torgo dataset is trained using both classical and 

modern neural network architectures. In this 

experiment, a DNN-HMM hybrid neural network 

architectures and GMM-HMM classical architectures 

have been used to compare with other DNNs, where 

the hybrid DNN-HMM showed the best performance 

[25]. The SVM, GMM, and the hybrid GMM/SVM 

systems used to test and compare in the assessment 

of a dysarthric speaker identification context. 

Relevant features used in both techniques based on 

MFCCs and distinctive auditory-based cues where 

different front-end processing used with SVM. 

Correct and high classification rate achieved by 

GMM compared to SVM. GMM/SVM has achieved 

best performance. Both Nemours and Torgo 

databases have used with different and changing 

durations that cannot process effectively by SVM 

[26].  

The Torgo database and MOCHA-TIMIT with 

scattering coefficients, MFCCs comparison, wavelets 

and vocal ‘tract variables’ to phonological features 

used deep-belief networks and sum-product networks 

(SPNs). Through the use of an SVM classifier, the 

relationships between acoustic features three types 

and articulatory configurations are sought. For more 

accurate classification, over a broad array of 

phonological provided by MFCCs. Acoustic-

articulatory inversion applied DBNs, but aspects 

interested several uniquely by SPNs, including a 

function of partition that is guaranteed given certain 

limitations of the network structure to be tractable. 

Although DBNs are less accurate than SPNs when 

using scattering transforms, very similar results have 

got by the more recent of SPN methods and the DBN 

[27].  

In 2017, DBNs are applied again on Torgo to 

predict the posterior probabilities of the states in the 

RBM greedily as layered pre-trained and HMM to 

build speech as decoder with utilizing Weighted 

Finite State Transducers framework. Using DBNs 

returned better result where trained model tends to 

perform better when intelligibility scores have been 

higher by the test speakers [28]. Korean Phonetically 

Optimized Words (KPOW) databas, Korean 

Phonetically Balanced Words (KPBW) database, 

Korean Phonetically Rich Words (KPRW) database 

and SI dysarthria adaptation were used for dysarthtic 

speech recognition with KL-HMM and compared 

with GMM-HMM and DNN-HMM. The framework 

of KL-HMM showed that is effective for dysarthric 

speakers to improve the performance [29]. 

In 2018, a speaker with specific acoustic models 

trained on Torgo by tuning different parameters of 

acoustic model, using cepstral features normalized by 

speaker and building sequence discrimination 

strategies and dropout with complex DNN-HMM 

models and using generalized distillation framework 

to improve speakers of dysarthric with severe and 

severe-moderate speakers on control and dysarthric 

speech. For moderate and mild dysarthric speakers, 

the DNN of distilled student did not give any 

performance gains [5]. With extracting features using 

the reflection coefficients of perceptual linear 

prediction (PLP), MFCC, and filter bank, the HMMs 

showed better results provided by PLP and MFCC 

that applied on samples of six dysarthric speakers of 

Torgo speech where PLP is the most suitable [30]. 
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3. Problem statement and motivation 

As there are big numbers of individuals with 

dysarthric over the world, they are facing problems in 

their life and communications with their community 

because of their speech, and the experiments of 

dysarthric speech recognition have not enough 

improved the accuracies in this domain. Also, as the 

first author of this paper, is one of those individuals 

who are having a special need with dysarthria and 

facing an issue in his personal life when he 

communicates with the community, where his speech 

is not clear and non-understandable for everyone. All 

these reasons, and more, are motivated us to propose 

this research and address the improvement of DSR to 

help those people to be intervene with their surround 

and facilitate their life 

The purpose of this paper is to find and apply 

suitable machine learning algorithms to improve the 

DSR to convert their speech to be clearer and more 

understandable for other people. In general, most of 

the algorithms used to improve DSR did not achieve 

satisfactory results, as mentioned in the literature 

review section. Most of the current state-of-the-art 

techniques are using ASR approaches to treat DSR 

problems. These techniques either show results with 

low accuracies or show results with high accuracies 

but on a part of the DSR corpus not a complete set of 

corpus. A special solution for DSR problem should 

be developed mainly for individuals with dysarthria, 

who usually are talking slowly. Furthermore, the 

existing state-of-the-art classical techniques, such as 

HMM and GMM, are biologically implausible and 

have excessive power consumption.  

Inspired by the reported advantages of CNN and 

RNN models, the proposed CNN that combined with 

RNN improves the performance of DSR problems 

and adapt with DSR features better than the original 

CNN. The main thrust of this paper is to study the 

speech disorder of people with special needs who 

have neural weakness or feel some difficulty in 

controlling their nerves. To this target, we develop 

the CRNN in a Python environment using the Torgo 

database that contains samples of audio files of a 

number of single English words. The target is to 

improve the speech of individuals with dysarthria to 

be more understandable when they talk any English 

words. Applying this system to the Arabic language 

is one of our future targets. 

 

 

 

 

 

4. Materials and methods 

4.1 The Torgo database 

The Torgo dataset contains the speech data 

samples of eight (three female and five male) 

individuals with dysarthria and seven (three female 

and four male) without dysarthria [19]. Each 

individual, either with or without dysarthria, recorded 

his/her data collection of words as array microphone 

and head-worn microphone, a sample is shown in Fig. 

1. The data samples of Torgo are grouped by gender, 

per person, and a number of sessions for each person. 

Each session of each parson has audio files either 

array microphone or head-worn microphone where 

many of them are words and phrases.  

Most of these data samples are labeled, which are 

grouped together in around 530 classes of labels of 

dysarthric speech. Most of these labels are words and 

other labels are sentences and phrases. The data 

objects (words, phrases, and sentences) are varied in 

the length of audio clips, where there are a number of 

objects has a few numbers of clips per class. Only the 

following label of classes out of the 530 classes have 

between 30 to 50 clips per class, and other classes 

have less than 30 clips per class as shown in Table 1. 

 
Table 1. Object classes and their most frequencies in the 

Torgo dataset 

No. Class label No. of clips per 

class 

1 relax your mouth in its 

normal position 

59 

2 Sip 55 

3 Xxx (just a sound) 52 

4 Sigh 52 

5 Air 45 

6 Knew 44 

7 Slip 43 

8 Beat 35 

9 Chair 35 

10 Leak 35 

11 Warm 34 

12 Storm 34 

13 Spark 33 

14 say "Ah" for 5 seconds 32 

15 Feed 32 

16 Feet 32 

17 Swarm 32 

18 Know 30 

19 Witch 30 
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In our experiments of this paper, we focused on 

the words that has large number of frequencies, as 

shown in Table 1 except the words number 1, 3 and 

14, in total with 16 words. We divided these 16 data 

samples as 80% for training subset, 20% for testing 

subset. In the results section we will show the results 

of both phases; training and testing using the standard 

CNN model and the proposed CRNN model. 

4.2 Hardware and software platforms 

All experiments of this paper are implemented on 

a laptop equipped with VMware of Ubuntu 18.04.3 

operating system. The processor of the VMware is 

Intel Core™ i7-3632QM CPU @ 2.20GHz, 2.9 GB 

RAM, x64 based processor under python 3.5.2 

software environment. For the DNNs models, the 

Tensorflow library was used with scikit-learn and 

librosa libraries as back-end.  

In our experiments we applied Mel Frequency 

Cepstral Coefficient (MFCC) to extract the acoustic 

features from the audio clips with setting samples rate 

as 16000, clip duration as 1000 milliseconds, 

Duration of frequency analysis window as 30 

milliseconds and window stride (which shows how 

far we move between frequency windows) as 10 

milliseconds where we set range to randomly shift the 

training audio as 100 milliseconds. We reshaped the 

features to be in fixed size of two dimensions.  

4.3 Deep neural network models 

The proposed model CRNN is the combination of 

two DNN models, namely CNN and RNN. In the 

following, we describe both of these models and, then, 

the proposed model.   

4.3.1. Convolutional neural networks (CNN) 

The CNN is a common deep neural network 

model used widely to process different kinds of 

signals such as speech and image. It is a feedforward 

neural network architecture inspired by the natural 

visual perception mechanism of the human beings 

[31]. It consists of multi-layers of two repeated layers, 

namely, the convolution layer and the pooling layer, 

of course beside the input layer. The original CNN 

has been successfully employed in many ASR system 

due to its ability to extract local speech features 

through the function of the repeated convolution and 

pooling layers, as shown in Fig. 2. 

In the experiments of this paper, we applied the 

CNN to compare with the model CRNN. The 

employed CNN block consists of three repeated 

layers: the first layer includes a convolution layer 

using weight (filter) with standard deviation 0.01 and  

 
Figure. 1 A sample from the torgo dataset (this picture is 

adapted from the original article [19]) 

 

. 

 
Figure. 2 The standard CNN block 

 

size as 20 × 8 × 64 × 1 where 20 is the filter height, 

8 is the filter width, 64 is the filter number (i.e. count), 

and setting the stride with 1. Then we added the 

results with zero of biases b as in the Eq. (1) 

 

𝑦 = 𝑤 × 𝑥 + 𝑏                       (1) 

 

Where y is the output of the first layer of the CNN, 

w is the filter of CNN, x refers to the input signal.  

After that, we applied the ReLU activation 

function and the dropout function. The output of the 

dropout layer is used as input to the pooling layer 

with filter and stride as 1 × 2 × 2 × 1 and the output 

of max pooling used as input to the following, i.e. 

second, convolution layer with filter of size 10 × 4 ×
64 × 64 as four dimensions with standard deviation 

0.01 and zeros of biases. Finally, we flatten the shape 

of the second convolution layer to be in one 

dimension and applied Eq. (1) on the second 

convolution where x is the results of the second 

convolution layer, w is the weight of the second layer 

or filter with random values from a truncated normal 

distribution of (results of second CNN × number of 

labels) and b is the bias with zero value. The last 

(unrepeated) layer is the fully connected layer, which 

produce the output of CNN block. 

 

 

Speech 
signal 
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4.3.2. Recurrent neural networks (RNN) 

The RNN is another deep neural network model 

able to process data in a chronological order that is 

often has a varied length such as speech [32]. RNN is 

able to capture the key characteristics of dysarthric 

speech by modelling long term temporal structures. 

As each word, or a phoneme, in a speech should has 

connectivity perception, which is a shortcoming of 

the classical models or shallow neural networks, 

RNN can handle the issue in terms of its recursive 

dependency architecture [33]. For each input 

sequence, RNN performs the same task, where each 

single output is dependent on the previous 

computation, see Fig. 3. 

4.3.3. The proposed CRNN model 

The In the proposed CRNN architecture, we 

applied two blocks of the CNN model with one 

output layer. The first CNN block includes three 

layers; namely, convolution layer, Relu layer, and 

dropout layer. In the convolution layer we applied the 

Eq. (1) in subsection 4.3.1, where x is the input as a 

MFCC feature, w is the weight used Xavier 

initialization with size 10 × 4 × 48 × 1 , valid 

padding, 2 × 2 stride, and b is zero of bias. Then, we 

applied the Relu activation and a dropout on the Relu 

layer output. The second CNN block is similar to the 

first block, except that we replaced the coevolution 

layer with a unidirectional RNN block. The RNN 

block includes two RNN layers include 60 neurons in 

total. Each neuron in the RNN has normalized to 

Gated Recurrent Unit (GRU) cell. After that, we 

applied the Eq. (1), x is the results of RNN and w is  

 

 

Figure. 3 The processing of time sequence in the standard 

RNN model 

 

 

weight with standard deviation 0.01. Then we apply 

the Relu activation function on the result of RNN and 

a dropout on the result of Relu function. An overall 

visual representation is depicted in Fig 4. 

5. Experimental results 

The main objective of the proposed experiment is 

to investigate the impact of adding the convolution 

layer in the standard CNN model into the standard 

RNN model. For all models that employed in the 

experiments, we applied a cross entropy mean, 

softmax of a cross entropy with logits and the ADAM 

optimizer [35] to calculate the confusion matrix of 

expected results as labels and predicted results as 

predictions. Our experiment is divided in two phases, 

training phase and assessment phase. In the training 

phase, we trained both models on the training subset 

of the Torgo dataset. The assessment phase compress 

of two sessions, in the first session we reused the 

training subset of data to check the validity of each 

model.  

After multiple experimental trials, we found that 

for both models, the training accuracy have increased 

at the first 300 steps and reached 100% and saturated 

at this level, as shown in Fig. 5. Figs. 6 (a) and (b) 

shows the overall performance of both models until 

saturation using the training data subset applied on 

the selected set of 16 dysarthric words. 

In the second session, where we used the testing 

data subset, we merged between the training phase 

and assessment phase in order to track the 

performance of each model and investigate the 

impact of training phase on the assessment phase. To 

perform this investigation, we make an assessment 

step at every2,000 training steps through different 

values of learning rates. We found that the 

performance of each model improves as we increase 

the number of training steps. CNN reached the 

saturation level, i.e. no improvements, after 16000 

training steps, whereas CRNN reached to this level 

after 22000 training steps. Tables 2 shows the 

assessment accuracies for each model using the 

testing subset data at each step. 

 
Figure. 4 The proposed CRNN architecture 

Speech signal 
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(a) 

 
(b) 

Figure. 5 Performance via the first 300 step of: (a) CNN 

(b) CRNN 

 

As we see in Table 2, the assessment performance 

of the CNN model starts with accuracy value as 

28.6% after 2000 training step. The performance 

improves after 4000 training steps to reach the 

accuracy level as 31.4%. After that, as we increase  

the number of training steps, we did not find any 

impact on the CNN performance, which means that 

CNN is saturated. On the CRNN side, it starts with 

accuracy value as 31.2% after 2000 training step. The 

performance improves after 6000 training steps to 

reach the accuracy level as 34.4%. The improvement 

is continued until 22000 training steps with accuracy 

40.6%. After that, as we increase the number of 

training steps, we did not find any impact on the 

CRNN performance, which means that the CRNN is 

saturated and no further improvement. 

We can interpret the well performance of the 

proposed CRNN compared to the standard CNN in 

the scope of CRNN architecture. As the CRNN 

model includes multiple RNN units, where each can 

read the acoustic input data independently as a 

sequence of words, then this enable for better 

performance than CNN. In the mean time, in order to 

CRNN performs well, it requires plentiful training 

steps more than CNN. Also, this is a natural in the 

scope that the original RNN includes essentially 

intensive connections among its cells, which 

certainly requires intensive training session as well. 

Table 2. Assessment performance of CNN and CRNN via 

different training steps 

CNN CRNN 

Training 

steps 

Accuracy Training 

steps 

Accuracy 

2000 28.6% 2000 31.2% 

4000 31.4% 6000 34.4% 

10000 31.4% 12000 37.5% 

14000 31.4% 20000 37.5% 

15300 31.4% 22000 40.6% 

 

 
(a) 

 
(b) 

Figure. 6 Overall performance until saturation for (a) 

CNN (b) CRNN 

6. Conclusion and future work 

Recognizing dysarthric speech is a challenging 

problem more than recognizing the normal speech 

problem. The sounds rendered by those people who 

have dysarthria are ambiguous and unintelligible due 

to the lack of coordination of mouth articulators. In 

this paper, we investigated the performance of two 

deep neural network models; namely, the 

convolutional neural network (CNN) and the 

convolutional recurrent neural network (CRNN), to 

process the dysarthric speech recognition (DSR) 

problem. This investigation conducted in the context 

of a speaker-independent mode, using the samples of 
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Torgo dataset. The experimental results 

demonstrated that enhancing the standard RNN with 

a convolution layer will improve the performance and, 

in the same time, outperforms the standard CNN, as 

well. It is clear that CRNN has the potential to 

improve the DSR performance by attaining an 

assessment accuracy as 40.6% against 31.4% for 

CNN. Overall, it is clear both models are suffering 

due to the high variability in speech intelligibility of 

DSR. In our future work and from data perspective, 

we would like to improve accuracy by increasing the 

number of audio clips per subjects either by looking 

for other available datasets that has higher number of 

clips per subject with dysarthria. Another expected 

work is to record new dataset from different persons 

having dysarthria support the Arabic language. From 

the algorithmic perspective, we will improve our 

algorithm by using a spiking neuron instead of the 

normal neuron in our algorithms. Based on the spike-

timing-dependent plasticity function, the CNN will 

show better performance in the scope of the spiking 

neuron properties such as its membrane potential 

activation function and ability to fire when it reaches 

a specific threshold. 
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