
Received: June 5, 2020. Revised: July 27, 2020. 168

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Data Clustering based on Modified Differential Evolution and Quasi-Opposition-

based Learning

Pyae Pyae Win Cho1* Thi Thi Soe Nyunt1

1University of Computer Studies, Yangon, Myanmar

* Corresponding author’s Email: pyaepyaewincho@ucsy.edu.mm

Abstract: Differential Evolution (DE) has become an advanced, robust, and proficient alternative technique for

clustering on account of their population-based stochastic and heuristic search manners. Balancing better the

exploitation and exploration power of the DE algorithm is important because this ability influences the performance

of the algorithm. Besides, keeping superior solutions for the initial population raises the probability of finding better

solutions and the rate of convergence. In this paper, an enhanced DE algorithm is introduced for clustering to offer

better cluster solutions with faster convergence. The proposed algorithm performs a modified mutation strategy to

improve the DE’s search behavior and exploits Quasi-Opposition-based Learning (QBL) to choose fitter initial

solutions. This mutation strategy that uses the best solution as a target solution and applies three differentials

contributes to avoiding local optima trap and slow convergence. The QBL based initialization method also contributes

to increasing the quality of the clustering results and convergence rate. The experimental analysis was conducted on

seven real datasets from the UCI repository to evaluate the performance of the proposed clustering algorithm. The

obtained results showed that the proposed algorithm achieves more compact clusters and stable solutions than the

competing conventional DE variants. Moreover, the performance of the proposed algorithm was compared with the

existing state of the art clustering techniques based on DE. The corresponding results also pointed out that the proposed

algorithm is comparable to other DE based clustering approaches in terms of the value of the objective functions.

Therefore, the proposed algorithm can be regarded as an efficient clustering tool.

Keywords: Differential evolution, Clustering, Mutation strategy, Quasi-opposition-based learning.

1. Introduction

There has been an enormous growth in the

amount of data being generated from different

sources in the era of information technology. It is

needed to alter this raw data into useful information

for various applications. Data mining, also known as

Knowledge Discovery, is a manner of drawing out

valuable knowledge and hidden patterns from raw

data [1]. Data mining techniques have been majorly

categorized into two types, such as supervised

learning, which trains a model on labeled data and

predicts the label of new data, and unsupervised

learning, which explores hidden patterns and

relationships in unlabeled data. Clustering is an

unsupervised learning technique that partitions a

dataset into meaningful sets called clusters based on

the dissimilarity or similarity between data objects

such that data objects in a cluster are more related

than those in others. There are two types of clustering

techniques, namely hard clustering and soft

clustering. Hard clustering techniques find partitions

of a dataset by inserting each data object into only one

group, whereas soft clustering techniques can assign

data objects into more than one cluster based on their

different weights or likelihoods.

Clustering has been broadly adopted in several

applications such as market research, image

processing, pattern recognition, etc. [2, 3]. Several

clustering algorithms have been proposed and

employed in different domains. They are mainly

classified into hierarchical and partitional clustering.

The hierarchical clustering algorithm discovers

clusters either in bottom-up fashion (known as

agglomerative approach) or in top-down fashion

Received: June 5, 2020. Revised: July 27, 2020. 169

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

(known as divisive approach). The agglomerative

approach considers each data object as a distinct

group and continuously combines the more similar

pairs of groups into a larger group. The divisive

approach considers the entire dataset as a cluster and

divides it into smaller groups, recursively. Single-

link and complete-link are two of the most famous

hierarchical algorithms. Partitional clustering

algorithms identify a predefined number of non-

overlapping groups together. K-means is one of the

most straightforward and famous partitional

clustering algorithms [2-4].

Several nature-inspired metaheuristics have been

recently introduced and widely used in numerous

applications. Two major kinds of nature-inspired

metaheuristics are swarm intelligence (SI) and

evolutionary algorithms (EAs). The application of

nature-inspired metaheuristics to clustering has

become an attractive research topic in data mining.

Researchers have recently designed various

metaheuristics-based algorithms in this field [5-7].

Differential Evolution (DE) algorithm is one of the

most prominent nature-inspired metaheuristic

algorithms successfully used in clustering. DE is

introduced by Storn and Price in 1995, which is a

simple and efficient population-based optimization

algorithm, and has been well and widely employed in

many real-world problems [8]. The effectiveness and

achievement of the DE algorithm are determined by

the positions of the initial population, the adopted

mutation and crossover strategies, and control

parameters. Several DE variants are proposed and

designed by modifying the population initialization,

adopted strategies and setting of control parameters.

The aim of this paper is to propose a DE variation

for hard partitional clustering that provides better

cluster solutions with faster convergence. In this

work, the modified mutation strategy is presented for

harmonizing the exploitation and exploration ability

of the DE algorithm. This strategy uses the best

solution as a target vector to get more exploitation

ability, one differential between the best and current

vector to lead to the good convergence characteristics,

and two differentials between three random vectors

to increase the exploration power of DE. Besides, the

population initialization technique based on Quasi-

Opposition-based Learning (QBL) is also applied for

improving the clustering performance of the

proposed variant due to keeping fitter solutions for

the initial population raises the probability of finding

better solutions and the rate of convergence.

The structure of this paper is as follows: Section

2 gives the works related to the application of DE in

clustering; Section 3 and 4 provides the basic idea of

the standard DE algorithm and QBL scheme; Section

5 explains the proposed approach; Section 6 gives the

carried out tests for the comparison of clustering

performance; Section 7 finishes the paper with a

conclusion.

2. Related work

The utilization of the DE algorithm in clustering

has become an attractive research subject for a long

time. In various real-world applications, different DE

variants have been used to employ clustering

independently or incorporate within the existing

clustering approaches. An improved variant of the

conventional DE algorithm for the automatic

clustering problem was introduced in [9]. The authors

improved the population initialization step of the DE

algorithm by embedding with a cluster

decomposition algorithm (CDA). Moreover, the

proposed algorithm dynamically self-adjusted the

scaling factor and the crossover rate. The authors

also proposed four improvement scenarios to update

chromosomes for evolving the population. The

updating rules utilized the best solution effect and the

acceleration mechanism for the faster convergence,

and the handling downhill concept for leading to a

better solution. Moreover, the saturated solution is

also applied to maintaining population diversity. The

work proposed in [10] is also for automatic clustering.

In this work, an adaptive DE algorithm was combined

with the neighborhood search (NS). The adaptive

approach was operated to fine-tune the control

parameter of DE, and NS was utilized to control the

diversification of solutions. The proposed algorithm

applied a new mutation approach in NS based on the

success rate of DE and NS to balance the search

ability. In [11], a dynamic shuffled differential

evolution algorithm (DSDE) was offered for the

improvement of the convergence performance of data

clustering algorithms. In the proposed work, a novel

random multistep sampling initialization method was

incorporated to overcome the premature convergence,

and a dynamic sorting and shuffled technique was

also integrated to split the total population into two

subpopulations for improving the population

diversity. DE/best/1 mutation scheme was applied to

both subpopulations that exchange the guidance

information to adjust the exploitation and exploration

ability of DSDE.

In [12], a new DE variant with a new mutation

strategy, Forced Strategy Differential Evolution

(FSDE) was presented, and the application of FSDE

on data clustering was also presented. In the proposed

new mutation strategy, a variable parameter, besides

the traditional scaling factor, was applied to enhance

the quality of the donor vector and hence, the

Received: June 5, 2020. Revised: July 27, 2020. 170

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

effectiveness of the algorithm. For the

implementation of FSDE in clustering, the outcome

of the K-means algorithm was applied as an initial

solution, and the remaining ones of the initial

population were selected randomly. In [13], a

variance-based differential evolution algorithm with

an optional crossover for data clustering (VDEO) was

proposed to adjust the search behaviors of the

standard DE algorithm, and enhance its clustering

efficiency. In the proposed algorithm, a single-based

solution scheme was implemented instead of the

population concept to reduce the computation cost for

the objective function evaluations of the solutions in

the population. VDEO employed DE/best/1 and

DE/rand/1 mutation strategies with a switchable

mechanism to control the search processes, and

dynamically estimated the mutation factor by using a

proposed vector-based technique. Besides, an

optimal crossover strategy was presented and

employed, in which the objective function value

(fitness) of the mutant vector is also taken into

account to generate the offspring vector, and the

crossover rate is dynamically adjusted. The

performance comparison of DE with local search

algorithms for clustering problems was presented in

[14]. The authors compared the effectiveness of DE

with chaotic local search (CLS), levy flight (LF), and

golden section search (GSS) in terms of solution

quality and convergence speed. They concluded that

DE-LF is simple and potential for hard partitional

clustering problems.

An adaptive unified differential evolution

(AuDE) was applied for optimal clustering in [15].

AuDE utilized a unified mutation strategy that is the

combination of the two most used standard mutation

strategies and also used an adaptive approach to

adjust the scale factor and crossover rate. Another

algorithm combining the DE algorithm and K-means

for optimal clustering was presented in [16]. This

proposed algorithm also applied K-means on the

solution vectors created from the DE recombination

processes. A heuristic reordering procedure of the

cluster centers was introduced to improve the process

of classification. In [17], a differential evolution

algorithm with macromutations (DEMM) was

proposed for data clustering. In DEMM,

macromutations were applied instead of the

traditional DE recombination processes. There was a

set probability (the application probability and

macromutation intensity) in the proposed

macromutations. The linearly increased application

probability managed to switch between the standard

reproduction processes and the macromutations, and

the exponentially decreased intensity (crossover rate)

controlled the macromutations to generate the

offspring. This dynamically adjusted set probability

provided a good symmetry within the exploitation

and exploration processes of DE.

The problems to be taken into account and

addressed to develop an efficient and robust

clustering algorithm are as follows. The positions of

initial solutions impact the performance of the DE

algorithm. The fitter initial solutions lead to reach a

better solution faster. Moreover, the adopted

mutation strategy is critical for the search ability of

the algorithm to overcome local optimal trap and

slow convergence. The various approach proposed in

the previous studies enhanced the clustering

performance of the standard DE algorithm. It is still

necessary to provide a simple, efficient, and robust

algorithm with fewer input parameters which assures

to achieve a globally optimal solution. Therefore, this

work proposes a DE variation for hard partitional

clustering that provides better cluster solutions with

faster convergence.

3. Differential evolution algorithm

Differential Evolution (DE) algorithm is one of

the most often utilized evolutionary algorithms (EAs)

for various complex real-world optimization

problems. Like other EAs, DE keeps up a population

of nominee solutions to the given problem. The initial

population is composed of NP chromosomes that are

randomly chosen solutions from the search space. A

chromosome of the population at the gth generation

is denoted as the vector 𝑋𝑖,𝑔 = {𝑥𝑖,𝑔
1 , 𝑥𝑖,𝑔

2 , … , 𝑥𝑖,𝑔
𝑑 }

where d is the feature of the problem, and i=1, 2,…,

NP. Once the initial population is created, DE evolves

the population generation by generation by

performing three consecutive steps (mutation,

crossover, and selection).

Inspired from biology, the mutation process of

DE is a perturbation or alternation with a random

component. In classical DE, the mutation operation is

carried out with three different random chromosomes.

Any two of the three chromosomes are used as donor

vectors, and the rest one is used as a target vector. For

each parent chromosome 𝑋𝑖,𝑔 in the existing

population, a trial vector is made by summing the

scaled difference of donor vectors and the target

vector as shown in Eq. (1).

𝑉𝑖,𝑔 = 𝑋𝑎,𝑔 + 𝑓(𝑋𝑏,𝑔 − 𝑋𝑐,𝑔) (1)

Where 𝑉𝑖,𝑔 is a trial vector, 𝑋𝑎,𝑔 is a target vector,

and 𝑋𝑏,𝑔 and 𝑋𝑐,𝑔 are donor vectors such that i is an

integer within [1, NP], a, b, and c are random integers

Received: June 5, 2020. Revised: July 27, 2020. 171

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

within [1, NP], and i ≠ a ≠ b ≠ c, and then f is a scaled

factor within (0,).

The crossover operation generates an offspring

vector 𝑈𝑖,𝑔 by recombining the recently created trial

vector 𝑉𝑖,𝑔 and the parent vector𝑋𝑖,𝑔. In classical DE,

the binomial crossover is implemented as shown in

Eq. (2).

𝑢𝑖,𝑔
𝑗

= {
 𝑣𝑖,𝑔

𝑗
 𝑖𝑓 𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅

𝑥𝑖,𝑔
𝑗

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Where 𝑢𝑖,𝑔
𝑗

, 𝑣𝑖,𝑔
𝑗

, and 𝑥𝑖,𝑔
𝑗

 are the jth elements of

𝑈𝑖,𝑔, 𝑉𝑖,𝑔, and 𝑋𝑖,𝑔 such that i an integers within [1,

NP], j is an integer within [1, d], the crossover rate,

CR  (0,1), and rand(j)  U(0,1).

The selection operation decides the survival

vector 𝑋𝑖,𝑔+1 for the next generation among the

parent 𝑋𝑖,𝑔 and offspring 𝑈𝑖,𝑔 such that the offspring

vector is selected if its obtained objective function

value is better than this obtained by the parent;

otherwise, the parent is taken for the subsequent

generation. The deterministic selection is

implemented as shown in Eq. (3).

𝑋𝑖,𝑔+1 = {
𝑉𝑖,𝑔 𝑖𝑓 𝑓(𝑉𝑖,𝑔) > 𝑓(𝑋𝑖,𝑔)

𝑋𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

Where 𝑓(𝑈𝑖,𝑔)and𝑓(𝑋𝑖,𝑔) are fitness values of

the offspring and parent vectors.

3.1 Different mutation strategies in differential

evolution

Different mutation strategies are applied to

choose the target vector and to determine the number

of differentials between donor vectors. DE/x/y

notation is used to characterize the various strategies,

in which x is the way to take the target vector, and y

is the number of differentials. The random mutation

strategy (DE/rand/1) mentioned in above is

commonly utilized in the classical DE algorithm. The

most commonly used mutation strategies [18] are as

follow.

DE/best/1:

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔) (4)

DE/best/2:

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓1(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔) + 𝑓2(𝑋𝑐,𝑔 − 𝑋𝑑,𝑔)

(5)

DE/rand/2:

𝑉𝑖,𝑔 = 𝑋𝑎,𝑔 + 𝑓(𝑋𝑏,𝑔 − 𝑋𝑐,𝑔) + 𝑓2(𝑋𝑑,𝑔 − 𝑋𝑒,𝑔)

(6)

DE/current-to-rand/1:

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋𝑎,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑏,𝑔 − 𝑋𝑐,𝑔)

(7)

DE/current-to-best/1:

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋𝑏𝑒𝑠𝑡,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔)

(8)

Where a, b, c, d, and e are random integers within

[1, NP] such that i ≠ a ≠ b ≠ c ≠ d ≠ e, f is a scaled

factor within (0,), and 𝑋𝑏𝑒𝑠𝑡,𝑔 is the best

chromosome in the existing population.

4. Quasi-opposition based learning

Opposition-based learning (OBL), introduced by

Tizhoosh in 2005, was apioneering scheme for

machine intelligence algorithms [19]. The core idea

of OBL is exploring a better approximation of a

number by regarding this number and its opposite one

together. Several researches have conducted the

incorporation of the OBL scheme in evolutionary

algorithms to increase their search behaviors,

accuracy, and convergence [20-23]. Quasi-

opposition Based Learning (QBL) is an improved

form of OBL which applies quasi-opposite points

instead of opposite points. These points produced

through QBL have more likelihood to be nearer to

unknown solutions than the points created using OBL

[24-25]. In this paper, the QBL scheme is utilized to

generate fitter initial candidate solutions. The

concept of opposite number and point described in

[18] are as follow:

Definition 1 - Let x ∈ [a, b] be a real number.

The opposite number �̆� of x can be specified as

follows:

�̆� = 𝑎 + 𝑏 − 𝑥 (9)

Definition 2 – Let P= (𝑥1, 𝑥2, … , 𝑥𝑑) is a point in

d-dimensional space such that (𝑥1, 𝑥2, … , 𝑥𝑑) ∈
𝑅 and 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] . Each element of the opposite

point 𝑃 =̆ (𝑥1̆, 𝑥2̆, … , 𝑥�̆�) can be defined as follows:

𝑥�̆� = 𝑎�̆� + 𝑏�̆� − 𝑥𝑖 (10)

The concept of quasi-opposite number and point

described in [24] are as follows:

Received: June 5, 2020. Revised: July 27, 2020. 172

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Definition 3 - Let x ∈ [a, b] be a real number.

The quasi-opposite number �̆�𝑞 is defined as follows:

�̆�𝑞 = {
𝑟𝑎𝑛𝑑(𝑚, x̆) 𝑖𝑓 �̆� ≤ 𝑚

𝑟𝑎𝑛𝑑(x̆, 𝑚) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

Where 𝑚 =
𝑎+𝑏

2
 .

Definition 4 - Let P= (𝑥1, 𝑥2, … , 𝑥𝑑) is a point in

d-dimensional space such that (𝑥1, 𝑥2, … , 𝑥𝑑) ∈
𝑅 and 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] . Each element of the opposite

point �̌�𝑞 = (𝑥1
𝑞

, 𝑥2
𝑞

, … , 𝑥𝑑
𝑞

) can be specified as

follows:

𝑥𝑖
𝑞

= {
𝑟𝑎𝑛𝑑(𝑚𝑖, 𝑥𝑖

𝑞
) 𝑖𝑓 𝑥𝑖

𝑞
≤ 𝑚𝑖

𝑟𝑎𝑛𝑑(𝑥𝑖
𝑞

, 𝑚𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12)

Where 𝑚𝑖 =
𝑎𝑖+𝑏𝑖

2
 .

Quasi-opposition based optimization creates a

quasi-opposite chromosome for each candidate

chromosome. By employing anobjective function,

the fitness of each pair of chromosomes is measured.

If the fitness of the quasi-opposite chromosome is

superiorto this of the candidate chromosome, the

candidate one is exchanged with the quasi-opposite

one. Otherwise, the evolution process proceeds with

the candidate one.

5. A clustering algorithm combining the

modified DE algorithm with the QBL

scheme

5.1 Solution representation

In order to utilize the differential evolution

approach in data clustering, it is needed to represent

each candidate cluster solution as a chromosome.

This proposed approach uses the centroid-based

representation that encodes the coordinates of cluster

centers as a real-valued vector. The ith chromosome

of the population is denoted as a vector 𝑋𝑖 =

{𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
(𝑘−1)𝑑+1, … , 𝑥𝑖

𝑘𝑑}, in which the first

d elements denote the first cluster center; the next d

elements denote the second one and so on. Each data

object is allocated to the closest cluster based on a

clustering criterion to carry out partitional clustering

of a dataset. This criterion is employed as an

objective (fitness) function to determine how fitting

each chromosome in the population for a given

clustering problem. The fitness of each chromosome

is determined by totaling the distance between data

instances and their respective cluster center as shown

in Eq. (13).

𝑓(𝑋) = ∑ ∑ 𝐷(𝑑, 𝑐𝑗)𝑑∈𝐶𝑗

𝑘
𝑗=1 (13)

Where k represents the number of cluster, d is a

data object in the given dataset, 𝑐𝑗 is the center of the

jth cluster 𝐶𝑗 , and D (.) is the Euclidean distance

between the data object and the center. The smaller

the fitness value, the fitter the chromosome performs.

5.2 Population initialization

For the initialization of the DE population,

random number generation is the typically used

choice. In this paper, the QBL scheme is utilized to

generate fitter initial candidate solutions. To obtain

the initial population, k data objects are randomly

selected from the given dataset, a vector is initialized

with these data objects, and then a quasi-opposite of

this vector is created. The fitter one from the pair of

vectors is assigned to the DE initial population based

on their fitness.

5.3 The proposed approach

In the proposed DE algorithm for clustering, a

modified mutation strategy is employed to adjust the

search behaviour of the DE algorithm. DE/best/1

strategy raises the convergence movement of the

algorithm, but it is vulnerable to premature

convergence. DE/rand/1 strategy conserves good

diversity, but it diminishes the speed of the

algorithm’s convergence. The proposed mutation

strategy consists of three random chromosomes and

the best and current chromosomes. The best

chromosome is used not only as a target vector but

also as a donor vector, and the parent and three

random chromosomes play as donor vectors. In other

words, the modified mutation strategy uses the best

one as a target vector, and three differentials from

three pairs of donor vectors, such as one difference

from the pair of parent and best chromosomes and the

other two differences from three random vectors. The

adoption of the guidance information of the best

chromosome increases the convergence rate and the

exploitation power of the algorithm, and the

application of three differentials increases the

diversity of the population and the exploration power

of the algorithm. For each parent chromosome 𝑋𝑖,𝑔 in

the current population, the modified mutation

strategy creates a trial vector 𝑉𝑖,𝑔 as shown in Eq.

(14).

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓1(𝑋𝑖,𝑔 − 𝑋𝑏𝑒𝑠𝑡,𝑔)

+ 𝑓2(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔) + 𝑓3(𝑋𝑎,𝑔 − 𝑋𝑐,𝑔) (14)

Received: June 5, 2020. Revised: July 27, 2020. 173

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Where 𝑋𝑏𝑒𝑠𝑡,𝑔 is the best chromosome of the gth

generation, a, b, and c are random integers within [1,

NP] such that i ≠ a ≠ b ≠ c, f is a scaled factor within

(0,). For crossover and selection operations, the

proposed approach applies the binomial crossover

and deterministic selection, respectively. The

pseudo-code for the proposed clustering algorithm

Algorithm: MDE-QBL

Input: Dataset (D), Number of clusters (k), Number of

population (NP), Scaling factors (f, f1, f2, f3), Crossover

rate (CR)

Output: Optimal Cluster Solution

For i=1 to NP

Initialize ith chromosome with k random data

instances from D

Create ith quasi-opposite chromosome

Calculate the fitness of ith chromosome and its

quasi-opposite chromosome

Assign the fitter one to the initial population P

End

For i=1 to maxIt

For i=1 to NP

Generate ith trial vector by applying the

proposed mutation strategy

Generate ith offspring solution by applying the

binomial crossover operator

End

For i=1 to NP

Calculate the fitness of ith offspring solution

Update the population by selection operation

End

End

Figure. 1 A clustering algorithm combining the modified

DE algorithm with the QBL scheme (MDE-QBL)

combining the modified DE algorithm with the

QBL scheme (MDE-QBL) is given in Fig. 1.

6. Experimental results

The experimental test was carried out on seven

numerical datasets from the UCI machine learning

repository, namely Iris, Wine, Thyroid, Breast

Cancer, Pima, Glass, and Ecoli. The summary of

these datasets is shown in Table. 1.

The achievement of the proposed algorithm was

compared to the conventional DE algorithm with four

of the most commonly used mutation strategies,

namely DE/best/1, DE/rand/1, DE/current-to-rand/1,

and DE/current-to-best/1. The control parameters

were set based on [11] and [13] as follows: the

number of maximum iterations, the number of

population and crossover rate were set to 100, 100

and 0.9, respectively for all methods, the scaling

factor was set to 0.5 for DE/best/1 and DE/rand/1,

and all of the scaling factors for the rest others were

set to 0.3. Each algorithm was separately tested 30

times on all of the selected datasets. The obtained

objective function values by each algorithm are

presented in Table 2 in terms of average and standard

deviation.

The listed results in Table 2 showed that the

proposed algorithm got better clustering results than

others for all datasets. Moreover, it also achieved

smaller standard deviation values than other methods

for all of the used datasets, which pointed out that the

proposed algorithm is more effective and stable than

other DE variants.

The obtained objective function values

throughout the iterations achieved by each competing

method for all datasets are shown in Fig. 2. Although

the proposed algorithm is slightly slower than

DE/best/1 in early stages, it is able to search more

extensively in later stages than all of the others,

especially for Glass and Ecoli datasets. The quality of

obtained clusters was also compared based on the

sum of squared error (SSE) and the quantization

errors. Table 3 and Table 4 presented the respective

obtained results in terms of average and standard

deviation. As shown in Table 3, the proposed

algorithm achieved better SSE results than others

except for Wine and Pima. Moreover, it got better

values of quantization error than others except for

Pima, as seen in Table 4. Specifically, the proposed

algorithm achieved improved clustering performance

in terms of solution quality and robustness with a

faster convergence rate.

The performance of the proposed algorithm was

also compared with the existing state of the art

clustering techniques based on DE, such as a dynamic

shuffled differential evolution algorithm for data

clustering (DSDE), a forced strategy differential

evolution algorithm for data clustering (FSDE), and

a variance-based differential evolution algorithm

with an optimal crossover for data clustering (VDEO).

The obtained objective function values are presented

in Table 5 in terms of average and standard deviation,

Table 1. Summary of datasets

Datasets Number of

data objects

Number of

features

Number of

clusters

Iris 150 4 3

Wine 178 13 3

Thyroid 215 5 3

Breast

cancer
699 9 2

Pima 768 8 2

Glass 214 9 6

Ecoli 336 7 8

Received: June 5, 2020. Revised: July 27, 2020. 174

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Table 2. Comparison of objective function values

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL

Iris

Average 97.3809244 97.1257265 98.2257235 96.7280826 96.6554664

Std. 0.28671121 0.28776993 0.2330539 0.067527291 3.09839E-06

Wine

Average 16293.9099 16316.9338 16306.5729 16296.246 16293.5275

Std. 1.79819462 5.23245848 4.953413693 1.755794977 0.3282158

Thyroid

Average 1869.45039 1883.38591 1888.41288 1874.91641 1866.48303

Std. 4.93738597 3.56456243 5.396856437 4.83995231 0.026051532

Breast

Cancer

Average 2966.53782 3018.80216 2987.84142 2969.47028 2964.38984

Std. 2.65086949 11.3991892 8.637445694 3.284382688 0.003417992

Pima

Average 47563.2065 47884.8688 47587.5049 47566.7832 47561.3404

Std. 3.09224461 54.8016675 17.31487431 2.977584547 0.16293707

Glass

Average 224.339602 229.798054 244.030698 222.542509 214.790303

Std. 7.93618395 2.58439611 2.155017781 4.262207958 1.32193952

Ecoli

Average 67.583721 67.9053545 72.1286431 66.9274105 63.7027324

Std. 2.17513627 0.90432126 0.66660349 1.263528514 0.32627646

where all reported results except for the last column

are directly obtained from [13]. As described in Table

5, the proposed algorithm is comparable to other

competing algorithms and it obtained more robust

solutions than others for almost all datasets.

7. Conclusion

This paper presented a DE based clustering

algorithm. In the proposed algorithm, a new mutation

strategy is introduced to increase the searchability of

the DE algorithm, and QBL based population

initialization technique is also applied to get fitter

initial solutions. The proposed mutation strategy

adopts the guidance information of the best

chromosome to raise the exploitation power and

convergence rate, and then, it applied three

differentials to keep the diversity of the population

and the exploration power of the algorithm. The

exploitation and exploration ability of the algorithm

are well balanced in this work. The conducted

experiments on the seven real datasets indicated that

the proposed algorithm outperforms the convention

DE with four mutation strategies in term of their

objective function values. It achieves superior quality

and robust results with a faster convergence rate.

Moreover, the proposed algorithm was also

compared with the existing state of the art DE based

clustering techniques on five datasets. The related

results showed that the proposed algorithm is a

comparable technique for hard partitional clustering.

Further extension of this work is related to the

implementation of the proposed algorithm on the

distributed processing framework.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, P. P. W. C. and T. T. S. N.;

methodology, P. P. W. C.; investigation, P. P. W. C.;

writing—original draft preparation, P. P. W. C.;

writing—review and editing, T. T. S. N.; supervision,

T. T. S. N.

Received: June 5, 2020. Revised: July 27, 2020. 175

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

(a) (b)

(c) (d)

(e) (f)

(g)

Figure. 2 Comparison of convergence performance on the selected dataset: (a) iris, (b) wine, (c) thyroid, (d) breast

cancer, (e) pima, (f) glass, and (g) ecoli

96

98

100

102

104

106

108

110

112

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Iris

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1

16275

16350

16425

16500

16575

16650

16725

16800

16875

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Wine

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1

1860

1875

1890

1905

1920

1935

1950

1965

1980

1995

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Thyroid

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1

2950

3000

3050

3100

3150

3200

3250

3300

3350

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Breast cancer

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1

47500

48000

48500

49000

49500

50000

50500

51000

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective functionevaluations

Pima

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1
MDE-QBL

212

217

222

227

232

237

242

247

O
b

je
ct

iv
e

fu
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Glass

DE/best/1

DE/rand/1

63
64
65
66
67
68
69
70
71
72
73
74

O
b

je
ct

iv
es

 f
u
n
ct

io
n
 v

al
u
es

Number of objective function evaluations

Ecoli

DE/best/1
DE/rand/1
DE/current-to-best/1
DE/current-to-rand/1

Received: June 5, 2020. Revised: July 27, 2020. 176

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Table 3. Comparison of sum of squared error

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL

Iris
Average 82.0800965 80.9866801 83.3685664 80.3149833 80.136041

Std. 0.94004685 0.65430367 1.488298053 0.154577131 0.001648966

Wine
Average 2564749 2549237.9 2580781.38 2581293.87 2585936.43

Std. 27068.7995 31776.9966 32488.16905 21449.25797 16270.2647

Thyroid
Average 34884.4144 35391.341 35288.382 35201.0054 34793.6624

Std. 239.216845 533.12527 537.5361905 237.0561105 111.3198744

Breast

Cancer

Average 19503.1858 20163.7867 19871.8596 19568.6758 19457.6884

Std. 58.336493 271.258444 169.3518486 84.81113703 1.775117536

Pima
Average 5876531.25 5909666.1 5916646.85 5878205.2 5877247.55

Std. 1418.1087 57765.5027 28769.17591 2936.693797 765.3682647

Glass
Average 451.584795 504.460414 521.978414 467.785169 435.987293

Std. 51.7028711 21.259169 34.68964865 32.75475979 40.9550011

Ecoli
Average 17.0615069 17.5507899 19.4565839 17.2151671 15.7089617

Std. 1.06417957 0.73688293 0.552628073 0.597203844 0.412725648

Table 4. Comparison of quantization error

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL

Iris
Average 0.648230088 0.647316521 0.654163175 0.644522413 0.64375

Std. 0.002096196 0.003001606 0.002575488 0.00101929 1.3E-08

Wine
Average 95.7610459 96.0187704 95.8116934 95.668115 95.6275

Std. 0.185679641 0.211108131 0.182229921 0.12394908 0.10682

Thyroid
Average 9.09637795 9.15417135 9.2730773 9.1844789 9.00613

Std. 0.115034208 0.161775128 0.107299489 0.083235219 0.05606

Breast

Cancer

Average 5.19391174 5.29663055 5.22435062 5.19876374 5.18876

Std. 0.006918966 0.031849959 0.012082721 0.007111739 6.3E-06

Pima
Average 67.803803 68.247306 67.7693949 67.8087031 67.8006

Std. 0.005570987 0.221579355 0.067872086 0.004526859 0.00023

Glass
Average 1.42850018 1.36619334 1.5327666 1.38235998 1.24923

Std. 0.216891528 0.120531122 0.193121642 0.156474922 0.06684

Ecoli
Average 0.212012397 0.205757483 0.2186906 0.206791102 0.19406

Std. 0.010604917 0.004651351 0.008642931 0.020067601 0.00332

Received: June 5, 2020. Revised: July 27, 2020. 177

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Table 5. Comparison of objective function values

Datasets DSDE FSDE VDEO
MDE-

QBL

Iris
96.65

± 0.00

96.70

± 0.10
96.54

± 0.00

96.65

± 0.00

Wine
16292.28

± 0.20

16325.26

± 38.92

16293.5

6 ± 0.87

16293.52

± 0.32

Thyroid
1874.00

± 11.76

1882.60

± 11.74

1867.51

± 0.91

1866.48

± 0.02

Breast

Cancer

2968.28

± 9.45

2964.47

± 0.05

2964.43

± 0.02

2964.38

± 0.00

Glass
220.83

± 12.16

245.02

± 12.13

213.62±

1.99
214.79

± 1.32

References

[1] O. Maimon and L. Rokach, Data Mining and

Knowledge Discovery Handbook, 2nd ed.,

Springer, New York, 2010.

[2] R. Xu and D. Wunsch, “Survey of clustering

algorithms”, IEEE Transactions on Neural

Networks, Vol. 16, No. 3, pp.645-678, 2005.

[3] A. K. Jain, “Data clustering: 50 years beyond K-

means”, Pattern Recognition Letters, Vol. 31,

No. 8, pp.651-666, 2010.

[4] K. C. Wong, “A short survey on data clustering

algorithms”, In: Proc. of International Conf. on

Soft Computing and Machine Intelligence,

Hong Kong, China, pp. 64-68, 2015.

[5] S. J. Nanda and G. Panda, “A survey on nature

inspired metaheuristic algorithms for partitional

clustering”, Swarm and Evolutionary

Computation, Vol. 16, pp. 1-18, 2014.

[6] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and

S. U. Rehman, “Research on particle swarm

optimization based clustering: A systematic

review of literature and techniques”, Swarm and

Evolutionary Computation, Vol. 17, pp. 1-13,

2014.

[7] E. R. Hruschka, R. J. G. B. Campello, A. A.

Freitas, and A. C. P. L. F. de Carvalho, “A

Survey of Evolutionary Algorithms for

Clustering”, IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and

Reviews), Vol. 39, No. 2, pp.133-155, 2009.

[8] R. Storn and K. Price, “Differential evolution—

a simple and efficient heuristic for global

optimization over continuous spaces”, Journal

of Global Optimization, Vol. 11, No. 4, pp. 341-

359, 1997.

[9] R. J. Kuo and F. E. Zulvia, “An improved

differential evolution with cluster

decomposition algorithm for automatic

clustering”, Soft Computing, Vol. 23, No. 18,

pp.8957-73, 2019.

[10] O. Tarkhaneh, J. Karimpour, S. Mazaheri, and

E. Zamiri, “Automatic Clustering for Customer

Segmentation by Adaptive Differential

Evolution Algorithm”, In: Proc. of Iranian Conf.

on Signal Processing and Intelligent Systems

(ICSPIS), Shahrood, Iran, pp. 1-9, 2019.

[11] W.-l. Xiang, N. Zhu, S.-f. Ma, X.-l. Meng, and

M.-q. An, “A dynamic shuffled differential

evolution algorithm for data clustering”,

Neurocomputing, Vol. 158, pp. 144-154, 2015.

[12] M. Ramadas, A. Abraham, and S. Kumar,

“FSDE-Forced Strategy Differential Evolution

used for data clustering”, Journal of King Saud

University-Computer and Information Sciences,

Vol. 31, No. 1, pp. 52-61, 2019.

[13] M. Alswaitti, M. Albughdadi, and N. A. M. Isa,

“Variance-based differential evolution

algorithm with an optional crossover for data

clustering”, Applied Soft Computing, Vol. 80,

pp. 1-7, 2019.

[14] I. Mishra I, I. Mishra, and J. Prakash,

“Differential evolution with local search

algorithms for data clustering: A comparative

study”, In: Proc. of Soft Computing: Theories

and Applications, Springer, Singapore, pp. 557-

567,2019.

[15] M. A. Fitriani, A. Musdholifah, and S. Hartati,

“Adaptive Unified Differential Evolution for

Clustering”, Indonesian Journal of Computing

and Cybernetics Systems, Vol. 12, No. 1, pp. 53-

62, 2018.

[16] J. Tvrdík and I. Křivý, “Hybrid differential

evolution algorithm for optimal clustering”,

Applied Soft Computing, Vol. 35, pp. 502-512,

2015.

[17] G. Martinović and D. Bajer, Data Clustering

with Differential Evolution Incorporating

Macromutations”, In: Proc. of International

Conf. on Swarm, Evolutionary, and Memetic

Computing, Chennai, India, pp. 158-169, 2013.

[18] M. Leon and N. Xiong, “Investigation of

mutation strategies in differential evolution for

solving global optimization problems”, In: Proc.

of International Conf. on Artificial Intelligence

and Soft Computing, Zakopane, Poland, pp.

372-383, 2014.

[19] H. R. Tizhoosh, “Opposition-Based Learning: A

New Scheme for Machine Intelligence”, In:

Proc. of International Conf. on Computational

Intelligence for Modeling Control and

Automation and International Conf. on

Intelligent Agents, Web Technologies and

Received: June 5, 2020. Revised: July 27, 2020. 178

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020 DOI: 10.22266/ijies2020.1231.15

Internet Commerce, Vienna, Austria, pp. 695-

701, 2005.

[20] S. Rahnamayan, H. R. Tizhoosh, and M. M.

Salama, “Oppositionbased differential

evolution for optimization of noisy problems”,

In: Proc. of IEEE International Conf. on

Evolutionary Computation, Vancouver, BC,

Canada, pp. 1865-1872, 2006.

[21] S. Rahnamayan, H. R. Tizhoosh, and M. Salama,

“A novel population initialization method for

accelerating evolutionary algorithms”,

Computers and Mathematics with Applications,

Vol. 53, No. 10, pp. 1605-1614, 2007.

[22] S. Rahnamayan, H. R. Tizhoosh, and M. Salama,

“Opposition versus randomness in soft

computing techniques”, Applied Soft Computing,

Vol. 8, No. 2, pp. 906-918, 2008.

[23] C. Yanguang, M. Zhang, and C. Hao, “A hybrid

chaotic quantum evolutionary algorithm,” In:

Proc. of IEEE International Conf. on Intelligent

Computing and Intelligent Systems, Xiamen,

China, pp. 771-776, 2010.

[24] S. Rahnamayan, H. R. Tizhoosh, and M. M.

Salama, “Quasioppositional differential

evolution”, In: Proc. of IEEE Congress on

Evolutionary Computation, Singapore, pp.

2229-2236, 2007.

[25] B. Kazimipour, X. Li, and A. K. Qin, “A review

of population initialization techniques for

evolutionary algorithms”, In: Proc. of IEEE

Congress on Evolutionary Computation,

Beijing, China, pp. 2585-2592, 2014.

