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Abstract: Differential Evolution (DE) has become an advanced, robust, and proficient alternative technique for 

clustering on account of their population-based stochastic and heuristic search manners.  Balancing better the 

exploitation and exploration power of the DE algorithm is important because this ability influences the performance 

of the algorithm. Besides, keeping superior solutions for the initial population raises the probability of finding better 

solutions and the rate of convergence. In this paper, an enhanced DE algorithm is introduced for clustering to offer 

better cluster solutions with faster convergence. The proposed algorithm performs a modified mutation strategy to 

improve the DE’s search behavior and exploits Quasi-Opposition-based Learning (QBL) to choose fitter initial 

solutions. This mutation strategy that uses the best solution as a target solution and applies three differentials 

contributes to avoiding local optima trap and slow convergence. The QBL based initialization method also contributes 

to increasing the quality of the clustering results and convergence rate. The experimental analysis was conducted on 

seven real datasets from the UCI repository to evaluate the performance of the proposed clustering algorithm. The 

obtained results showed that the proposed algorithm achieves more compact clusters and stable solutions than the 

competing conventional DE variants. Moreover, the performance of the proposed algorithm was compared with the 

existing state of the art clustering techniques based on DE. The corresponding results also pointed out that the proposed 

algorithm is comparable to other DE based clustering approaches in terms of the value of the objective functions.   

Therefore, the proposed algorithm can be regarded as an efficient clustering tool. 

Keywords: Differential evolution, Clustering, Mutation strategy, Quasi-opposition-based learning. 

 

 

1. Introduction 

There has been an enormous growth in the 

amount of data being generated from different 

sources in the era of information technology. It is 

needed to alter this raw data into useful information 

for various applications. Data mining, also known as 

Knowledge Discovery, is a manner of drawing out 

valuable knowledge and hidden patterns from raw 

data [1]. Data mining techniques have been majorly 

categorized into two types, such as supervised 

learning, which trains a model on labeled data and 

predicts the label of new data, and unsupervised 

learning, which explores hidden patterns and 

relationships in unlabeled data. Clustering is an 

unsupervised learning technique that partitions a 

dataset into meaningful sets called clusters based on 

the dissimilarity or similarity between data objects 

such that data objects in a cluster are more related 

than those in others. There are two types of clustering 

techniques, namely hard clustering and soft 

clustering. Hard clustering techniques find partitions 

of a dataset by inserting each data object into only one 

group, whereas soft clustering techniques can assign 

data objects into more than one cluster based on their 

different weights or likelihoods. 

Clustering has been broadly adopted in several 

applications such as market research, image 

processing, pattern recognition, etc. [2, 3]. Several 

clustering algorithms have been proposed and 

employed in different domains. They are mainly 

classified into hierarchical and partitional clustering. 

The hierarchical clustering algorithm discovers 

clusters either in bottom-up fashion (known as 

agglomerative approach) or in top-down fashion 
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(known as divisive approach). The agglomerative 

approach considers each data object as a distinct 

group and continuously combines the more similar 

pairs of groups into a larger group. The divisive 

approach considers the entire dataset as a cluster and 

divides it into smaller groups, recursively. Single-

link and complete-link are two of the most famous 

hierarchical algorithms. Partitional clustering 

algorithms identify a predefined number of non-

overlapping groups together. K-means is one of the 

most straightforward and famous partitional 

clustering algorithms [2-4]. 

Several nature-inspired metaheuristics have been 

recently introduced and widely used in numerous 

applications. Two major kinds of nature-inspired 

metaheuristics are swarm intelligence (SI) and 

evolutionary algorithms (EAs). The application of 

nature-inspired metaheuristics to clustering has 

become an attractive research topic in data mining. 

Researchers have recently designed various 

metaheuristics-based algorithms in this field [5-7]. 

Differential Evolution (DE) algorithm is one of the 

most prominent nature-inspired metaheuristic 

algorithms successfully used in clustering. DE is 

introduced by Storn and Price in 1995, which is a 

simple and efficient population-based optimization 

algorithm, and has been well and widely employed in 

many real-world problems [8]. The effectiveness and 

achievement of the DE algorithm are determined by 

the positions of the initial population, the adopted 

mutation and crossover strategies, and control 

parameters. Several DE variants are proposed and 

designed by modifying the population initialization, 

adopted strategies and setting of control parameters. 

The aim of this paper is to propose a DE variation 

for hard partitional clustering that provides better 

cluster solutions with faster convergence. In this 

work, the modified mutation strategy is presented for 

harmonizing the exploitation and exploration ability 

of the DE algorithm. This strategy uses the best 

solution as a target vector to get more exploitation 

ability, one differential between the best and current 

vector to lead to the good convergence characteristics, 

and two differentials between three random vectors 

to increase the exploration power of DE. Besides, the 

population initialization technique based on Quasi-

Opposition-based Learning (QBL) is also applied for 

improving the clustering performance of the 

proposed variant due to keeping fitter solutions for 

the initial population raises the probability of finding 

better solutions and the rate of convergence. 

The structure of this paper is as follows: Section 

2 gives the works related to the application of DE in 

clustering; Section 3 and 4 provides the basic idea of 

the standard DE algorithm and QBL scheme; Section 

5 explains the proposed approach; Section 6 gives the 

carried out tests for the comparison of clustering 

performance; Section 7 finishes the paper with a 

conclusion. 

2. Related work 

The utilization of the DE algorithm in clustering 

has become an attractive research subject for a long 

time. In various real-world applications, different DE 

variants have been used to employ clustering 

independently or incorporate within the existing 

clustering approaches. An improved variant of the 

conventional DE algorithm for the automatic 

clustering problem was introduced in [9]. The authors 

improved the population initialization step of the DE 

algorithm by embedding with a cluster 

decomposition algorithm (CDA). Moreover, the 

proposed algorithm dynamically self-adjusted the 

scaling factor and the crossover rate.  The authors 

also proposed four improvement scenarios to update 

chromosomes for evolving the population. The 

updating rules utilized the best solution effect and the 

acceleration mechanism for the faster convergence, 

and the handling downhill concept for leading to a 

better solution. Moreover, the saturated solution is 

also applied to maintaining population diversity. The 

work proposed in [10] is also for automatic clustering. 

In this work, an adaptive DE algorithm was combined 

with the neighborhood search (NS). The adaptive 

approach was operated to fine-tune the control 

parameter of DE, and NS was utilized to control the 

diversification of solutions. The proposed algorithm 

applied a new mutation approach in NS based on the 

success rate of DE and NS to balance the search 

ability. In [11], a dynamic shuffled differential 

evolution algorithm (DSDE) was offered for the 

improvement of the convergence performance of data 

clustering algorithms. In the proposed work, a novel 

random multistep sampling initialization method was 

incorporated to overcome the premature convergence, 

and a dynamic sorting and shuffled technique was 

also integrated to split the total population into two 

subpopulations for improving the population 

diversity. DE/best/1 mutation scheme was applied to 

both subpopulations that exchange the guidance 

information to adjust the exploitation and exploration 

ability of DSDE. 

In [12], a new DE variant with a new mutation 

strategy, Forced Strategy Differential Evolution 

(FSDE) was presented, and the application of FSDE 

on data clustering was also presented. In the proposed 

new mutation strategy, a variable parameter, besides 

the traditional scaling factor, was applied to enhance 

the quality of the donor vector and hence, the 
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effectiveness of the algorithm. For the 

implementation of FSDE in clustering, the outcome 

of the K-means algorithm was applied as an initial 

solution, and the remaining ones of the initial 

population were selected randomly. In [13], a 

variance-based differential evolution algorithm with 

an optional crossover for data clustering (VDEO) was 

proposed to adjust the search behaviors of the 

standard DE algorithm, and enhance its clustering 

efficiency. In the proposed algorithm, a single-based 

solution scheme was implemented instead of the 

population concept to reduce the computation cost for 

the objective function evaluations of the solutions in 

the population. VDEO employed DE/best/1 and 

DE/rand/1 mutation strategies with a switchable 

mechanism to control the search processes, and 

dynamically estimated the mutation factor by using a 

proposed vector-based technique. Besides, an 

optimal crossover strategy was presented and 

employed, in which the objective function value 

(fitness) of the mutant vector is also taken into 

account to generate the offspring vector, and the 

crossover rate is dynamically adjusted. The 

performance comparison of DE with local search 

algorithms for clustering problems was presented in 

[14]. The authors compared the effectiveness of DE 

with chaotic local search (CLS), levy flight (LF), and 

golden section search (GSS) in terms of solution 

quality and convergence speed. They concluded that 

DE-LF is simple and potential for hard partitional 

clustering problems.  

An adaptive unified differential evolution 

(AuDE) was applied for optimal clustering in [15]. 

AuDE utilized a unified mutation strategy that is the 

combination of the two most used standard mutation 

strategies and also used an adaptive approach to 

adjust the scale factor and crossover rate. Another 

algorithm combining the DE algorithm and K-means 

for optimal clustering was presented in [16]. This 

proposed algorithm also applied K-means on the 

solution vectors created from the DE recombination 

processes. A heuristic reordering procedure of the 

cluster centers was introduced to improve the process 

of classification. In [17], a differential evolution 

algorithm with macromutations (DEMM) was 

proposed for data clustering. In DEMM, 

macromutations were applied instead of the 

traditional DE recombination processes. There was a 

set probability (the application probability and 

macromutation intensity) in the proposed 

macromutations. The linearly increased application 

probability managed to switch between the standard 

reproduction processes and the macromutations, and 

the exponentially decreased intensity (crossover rate) 

controlled the macromutations to generate the 

offspring. This dynamically adjusted set probability 

provided a good symmetry within the exploitation 

and exploration processes of DE. 

The problems to be taken into account and 

addressed to develop an efficient and robust 

clustering algorithm are as follows. The positions of 

initial solutions impact the performance of the DE 

algorithm. The fitter initial solutions lead to reach a 

better solution faster. Moreover, the adopted 

mutation strategy is critical for the search ability of 

the algorithm to overcome local optimal trap and 

slow convergence. The various approach proposed in 

the previous studies enhanced the clustering 

performance of the standard DE algorithm. It is still 

necessary to provide a simple, efficient, and robust 

algorithm with fewer input parameters which assures 

to achieve a globally optimal solution. Therefore, this 

work proposes a DE variation for hard partitional 

clustering that provides better cluster solutions with 

faster convergence. 

3. Differential evolution algorithm 

Differential Evolution (DE) algorithm is one of 

the most often utilized evolutionary algorithms (EAs) 

for various complex real-world optimization 

problems. Like other EAs, DE keeps up a population 

of nominee solutions to the given problem. The initial 

population is composed of NP chromosomes that are 

randomly chosen solutions from the search space. A 

chromosome of the population at the gth generation 

is denoted as the vector 𝑋𝑖,𝑔 = {𝑥𝑖,𝑔
1 , 𝑥𝑖,𝑔

2 , … , 𝑥𝑖,𝑔
𝑑 } 

where d is the feature of the problem, and i=1, 2,…, 

NP. Once the initial population is created, DE evolves 

the population generation by generation by 

performing three consecutive steps (mutation, 

crossover, and selection). 

Inspired from biology, the mutation process of 

DE is a perturbation or alternation with a random 

component. In classical DE, the mutation operation is 

carried out with three different random chromosomes. 

Any two of the three chromosomes are used as donor 

vectors, and the rest one is used as a target vector. For 

each parent chromosome 𝑋𝑖,𝑔  in the existing 

population, a trial vector is made by summing the 

scaled difference of donor vectors and the target 

vector as shown in Eq. (1). 

 

𝑉𝑖,𝑔 = 𝑋𝑎,𝑔 + 𝑓(𝑋𝑏,𝑔 −  𝑋𝑐,𝑔)             (1) 

 

Where 𝑉𝑖,𝑔 is a trial vector, 𝑋𝑎,𝑔 is a target vector, 

and 𝑋𝑏,𝑔 and 𝑋𝑐,𝑔 are donor vectors such that i is an 

integer within [1, NP], a, b, and c are random integers 
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within [1, NP], and i ≠ a ≠ b ≠ c, and then f is a scaled 

factor within (0,). 

The crossover operation generates an offspring 

vector 𝑈𝑖,𝑔 by recombining the recently created trial 

vector 𝑉𝑖,𝑔 and the parent vector𝑋𝑖,𝑔. In classical DE, 

the binomial crossover is implemented as shown in 

Eq. (2). 

 

𝑢𝑖,𝑔
𝑗

= {
 𝑣𝑖,𝑔

𝑗
     𝑖𝑓 𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅

𝑥𝑖,𝑔
𝑗

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
           (2) 

 

Where 𝑢𝑖,𝑔
𝑗

, 𝑣𝑖,𝑔
𝑗

, and 𝑥𝑖,𝑔
𝑗

 are the jth elements of 

𝑈𝑖,𝑔, 𝑉𝑖,𝑔, and 𝑋𝑖,𝑔 such that i an integers within [1, 

NP], j is an integer within [1, d], the crossover rate, 

CR  (0,1), and rand(j)  U(0,1). 

The selection operation decides the survival 

vector 𝑋𝑖,𝑔+1  for the next generation among the 

parent 𝑋𝑖,𝑔 and offspring 𝑈𝑖,𝑔 such that the offspring 

vector is selected if its obtained objective function 

value is better than this obtained by the parent; 

otherwise, the parent is taken for the subsequent 

generation. The deterministic selection is 

implemented as shown in Eq. (3). 

 

𝑋𝑖,𝑔+1 = {
𝑉𝑖,𝑔     𝑖𝑓 𝑓(𝑉𝑖,𝑔) > 𝑓(𝑋𝑖,𝑔)

𝑋𝑖,𝑔      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
      (3) 

 

Where 𝑓(𝑈𝑖,𝑔)and𝑓(𝑋𝑖,𝑔)  are fitness values of 

the offspring and parent vectors. 

3.1 Different mutation strategies in differential 

evolution 

Different mutation strategies are applied to 

choose the target vector and to determine the number 

of differentials between donor vectors. DE/x/y 

notation is used to characterize the various strategies, 

in which x is the way to take the target vector, and y 

is the number of differentials. The random mutation 

strategy (DE/rand/1) mentioned in above is 

commonly utilized in the classical DE algorithm. The 

most commonly used mutation strategies [18] are as 

follow. 

DE/best/1: 

 

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔)  (4) 

 

DE/best/2: 

 

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓1(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔) + 𝑓2(𝑋𝑐,𝑔 − 𝑋𝑑,𝑔) 

(5) 

 

DE/rand/2: 

 

𝑉𝑖,𝑔 = 𝑋𝑎,𝑔 + 𝑓(𝑋𝑏,𝑔 −  𝑋𝑐,𝑔) + 𝑓2(𝑋𝑑,𝑔 − 𝑋𝑒,𝑔) 

(6) 

 

DE/current-to-rand/1: 

 

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋𝑎,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑏,𝑔 −  𝑋𝑐,𝑔) 

(7) 

DE/current-to-best/1: 

 

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋𝑏𝑒𝑠𝑡,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔) 

(8) 

 

Where a, b, c, d, and e are random integers within 

[1, NP] such that i ≠ a ≠ b ≠ c ≠ d ≠ e, f is a scaled 

factor within (0,), and 𝑋𝑏𝑒𝑠𝑡,𝑔  is the best 

chromosome in the existing population. 

4. Quasi-opposition based learning 

Opposition-based learning (OBL), introduced by 

Tizhoosh in 2005, was apioneering scheme for 

machine intelligence algorithms [19]. The core idea 

of OBL is exploring a better approximation of a 

number by regarding this number and its opposite one 

together. Several researches have conducted the 

incorporation of the OBL scheme in evolutionary 

algorithms to increase their search behaviors, 

accuracy, and convergence [20-23]. Quasi-

opposition Based Learning (QBL) is an improved 

form of OBL which applies quasi-opposite points 

instead of opposite points. These points produced 

through QBL have more likelihood to be nearer to 

unknown solutions than the points created using OBL 

[24-25]. In this paper, the QBL scheme is utilized to 

generate fitter initial candidate solutions.  The 

concept of opposite number and point described in 

[18] are as follow: 

Definition 1 - Let x ∈ [a, b] be a real number. 

The opposite number �̆� of x can be specified as 

follows: 

 

�̆� = 𝑎 + 𝑏 − 𝑥                            (9) 

 

Definition 2 – Let P= (𝑥1, 𝑥2, … , 𝑥𝑑) is a point in 

d-dimensional space such that (𝑥1, 𝑥2, … , 𝑥𝑑) ∈
𝑅 and 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] . Each element of the opposite 

point 𝑃 =̆ (𝑥1̆, 𝑥2̆, … , 𝑥�̆�) can be defined as follows: 

 

𝑥�̆� = 𝑎�̆� + 𝑏�̆� − 𝑥𝑖                         (10) 
 

The concept of quasi-opposite number and point 

described in [24] are as follows: 
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Definition 3 - Let x ∈ [a, b] be a real number. 

The quasi-opposite number �̆�𝑞 is defined as follows: 

 

�̆�𝑞 = {
𝑟𝑎𝑛𝑑(𝑚, x̆)       𝑖𝑓 �̆� ≤ 𝑚 

𝑟𝑎𝑛𝑑(x̆, 𝑚)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (11) 

 

Where 𝑚 =
𝑎+𝑏

2
 . 

Definition 4 - Let P= (𝑥1, 𝑥2, … , 𝑥𝑑) is a point in 

d-dimensional space such that (𝑥1, 𝑥2, … , 𝑥𝑑) ∈
𝑅 and 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] . Each element of the opposite 

point �̌�𝑞 = (𝑥1
𝑞

, 𝑥2
𝑞

, … , 𝑥𝑑
𝑞

)  can be specified as 

follows: 

 

𝑥𝑖
𝑞

= {
𝑟𝑎𝑛𝑑(𝑚𝑖, 𝑥𝑖

𝑞
)       𝑖𝑓 𝑥𝑖

𝑞
≤ 𝑚𝑖

𝑟𝑎𝑛𝑑(𝑥𝑖
𝑞

, 𝑚𝑖)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (12) 

 

Where 𝑚𝑖 =
𝑎𝑖+𝑏𝑖

2
 . 

Quasi-opposition based optimization creates a 

quasi-opposite chromosome for each candidate 

chromosome. By employing anobjective function, 

the fitness of each pair of chromosomes is measured. 

If the fitness of the quasi-opposite chromosome is 

superiorto this of the candidate chromosome, the 

candidate one is exchanged with the quasi-opposite 

one. Otherwise, the evolution process proceeds with 

the candidate one. 

5. A clustering algorithm combining the 

modified DE algorithm with the QBL 

scheme 

5.1 Solution representation 

In order to utilize the differential evolution 

approach in data clustering, it is needed to represent 

each candidate cluster solution as a chromosome. 

This proposed approach uses the centroid-based 

representation that encodes the coordinates of cluster 

centers as a real-valued vector. The ith chromosome 

of the population is denoted as a vector  𝑋𝑖 =

{𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
(𝑘−1)𝑑+1, … , 𝑥𝑖

𝑘𝑑}, in which the first 

d elements denote the first cluster center; the next d 

elements denote the second one and so on. Each data 

object is allocated to the closest cluster based on a 

clustering criterion to carry out partitional clustering 

of a dataset. This criterion is employed as an 

objective (fitness) function to determine how fitting 

each chromosome in the population for a given 

clustering problem. The fitness of each chromosome 

is determined by totaling the distance between data 

instances and their respective cluster center as shown 

in Eq. (13). 
 

𝑓(𝑋) =  ∑ ∑ 𝐷(𝑑, 𝑐𝑗)𝑑∈𝐶𝑗

𝑘
𝑗=1          (13) 

 

Where k represents the number of cluster, d is a 

data object in the given dataset, 𝑐𝑗 is the center of the 

jth cluster 𝐶𝑗 , and D (.) is the Euclidean distance 

between the data object and the center. The smaller 

the fitness value, the fitter the chromosome performs. 

5.2 Population initialization 

For the initialization of the DE population, 

random number generation is the typically used 

choice. In this paper, the QBL scheme is utilized to 

generate fitter initial candidate solutions. To obtain 

the initial population, k data objects are randomly 

selected from the given dataset, a vector is initialized 

with these data objects, and then a quasi-opposite of 

this vector is created. The fitter one from the pair of 

vectors is assigned to the DE initial population based 

on their fitness. 

5.3 The proposed approach 

In the proposed DE algorithm for clustering, a 

modified mutation strategy is employed to adjust the 

search behaviour of the DE algorithm. DE/best/1 

strategy raises the convergence movement of the 

algorithm, but it is vulnerable to premature 

convergence. DE/rand/1 strategy conserves good 

diversity, but it diminishes the speed of the 

algorithm’s convergence. The proposed mutation 

strategy consists of three random chromosomes and 

the best and current chromosomes. The best 

chromosome is used not only as a target vector but 

also as a donor vector, and the parent and three 

random chromosomes play as donor vectors. In other 

words, the modified mutation strategy uses the best 

one as a target vector, and three differentials from 

three pairs of donor vectors, such as one difference 

from the pair of parent and best chromosomes and the 

other two differences from three random vectors. The 

adoption of the guidance information of the best 

chromosome increases the convergence rate and the 

exploitation power of the algorithm, and the 

application of three differentials increases the 

diversity of the population and the exploration power 

of the algorithm. For each parent chromosome 𝑋𝑖,𝑔 in 

the current population, the modified mutation 

strategy creates a trial vector 𝑉𝑖,𝑔  as shown in Eq. 

(14). 
 

𝑉𝑖,𝑔  =  𝑋𝑏𝑒𝑠𝑡,𝑔  +  𝑓1(𝑋𝑖,𝑔 − 𝑋𝑏𝑒𝑠𝑡,𝑔)  

+ 𝑓2(𝑋𝑎,𝑔 − 𝑋𝑏,𝑔)  + 𝑓3(𝑋𝑎,𝑔 − 𝑋𝑐,𝑔)  (14) 
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Where  𝑋𝑏𝑒𝑠𝑡,𝑔 is the best chromosome of the gth 

generation, a, b, and c are random integers within [1, 

NP] such that i ≠ a ≠ b ≠ c,  f is a scaled factor within 

(0,). For crossover and selection operations, the 

proposed approach applies the binomial crossover 

and deterministic selection, respectively. The 

pseudo-code for the proposed clustering algorithm  

 
Algorithm: MDE-QBL 

Input: Dataset (D), Number of clusters (k), Number of 

population (NP), Scaling factors (f, f1, f2, f3), Crossover 

rate (CR) 

Output: Optimal Cluster Solution 

For i=1 to NP 

Initialize ith chromosome with k random data 

instances from D 

Create ith quasi-opposite chromosome 

Calculate the fitness of ith chromosome and its 

quasi-opposite chromosome 

Assign the fitter one to the initial population P 

End 

For i=1 to maxIt 

For i=1 to NP 

Generate ith trial vector by applying the 

proposed mutation strategy 

Generate ith offspring solution by applying the 

binomial crossover operator 

End 

For i=1 to NP 

Calculate the fitness of ith offspring solution  

Update the population by selection operation  

End 

End 

Figure. 1 A clustering algorithm combining the modified 

DE algorithm with the QBL scheme (MDE-QBL) 

combining the modified DE algorithm with the 

QBL scheme (MDE-QBL) is given in Fig. 1. 

6. Experimental results 

The experimental test was carried out on seven 

numerical datasets from the UCI machine learning 

repository, namely Iris, Wine, Thyroid, Breast 

Cancer, Pima, Glass, and Ecoli. The summary of 

these datasets is shown in Table. 1. 

The achievement of the proposed algorithm was 

compared to the conventional DE algorithm with four 

of the most commonly used mutation strategies, 

namely DE/best/1, DE/rand/1, DE/current-to-rand/1, 

and DE/current-to-best/1. The control parameters 

were set based on [11] and [13] as follows: the 

number of maximum iterations, the number of 

population and crossover rate were set to 100, 100 

and 0.9, respectively for all methods, the scaling 

factor was set to 0.5 for DE/best/1 and DE/rand/1, 

and all of the scaling factors for the rest others were 

set to 0.3. Each algorithm was separately tested 30 

times on all of the selected datasets. The obtained 

objective function values by each algorithm are 

presented in Table 2 in terms of average and standard 

deviation. 

The listed results in Table 2 showed that the 

proposed algorithm got better clustering results than 

others for all datasets. Moreover, it also achieved 

smaller standard deviation values than other methods 

for all of the used datasets, which pointed out that the 

proposed algorithm is more effective and stable than 

other DE variants. 

The obtained objective function values 

throughout the iterations achieved by each competing 

method for all datasets are shown in Fig. 2. Although 

the proposed algorithm is slightly slower than 

DE/best/1 in early stages, it is able to search more 

extensively in later stages than all of the others, 

especially for Glass and Ecoli datasets. The quality of 

obtained clusters was also compared based on the 

sum of squared error (SSE) and the quantization 

errors. Table 3 and Table 4 presented the respective 

obtained results in terms of average and standard 

deviation. As shown in Table 3, the proposed 

algorithm achieved better SSE results than others 

except for Wine and Pima.  Moreover, it got better 

values of quantization error than others except for  

Pima, as seen in Table 4. Specifically, the proposed 

algorithm achieved improved clustering performance 

in terms of solution quality and robustness with a 

faster convergence rate. 

The performance of the proposed algorithm was 

also compared with the existing state of the art 

clustering techniques based on DE, such as a dynamic 

shuffled differential evolution algorithm for data 

clustering (DSDE), a forced strategy differential 

evolution algorithm for data clustering (FSDE), and 

a variance-based differential evolution algorithm 

with an optimal crossover for data clustering (VDEO). 

The obtained objective function values are presented 

in Table 5 in terms of average and standard deviation,  
 

Table 1. Summary of datasets 

Datasets Number of 

data objects 

Number of 

features 

Number of 

clusters 

Iris 150 4 3 

Wine 178 13 3 

Thyroid 215 5 3 

Breast 

cancer 
699 9 2 

Pima 768 8 2 

Glass 214 9 6 

Ecoli 336 7 8 
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Table 2. Comparison of objective function values 

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL 

Iris 

Average 97.3809244 97.1257265 98.2257235 96.7280826 96.6554664 

Std. 0.28671121 0.28776993 0.2330539 0.067527291 3.09839E-06 

Wine 

Average 16293.9099 16316.9338 16306.5729 16296.246 16293.5275 

Std. 1.79819462 5.23245848 4.953413693 1.755794977 0.3282158 

Thyroid 

Average 1869.45039 1883.38591 1888.41288 1874.91641 1866.48303 

Std. 4.93738597 3.56456243 5.396856437 4.83995231 0.026051532 

Breast 

Cancer 

Average 2966.53782 3018.80216 2987.84142 2969.47028 2964.38984 

Std. 2.65086949 11.3991892 8.637445694 3.284382688 0.003417992 

Pima 

Average 47563.2065 47884.8688 47587.5049 47566.7832 47561.3404 

Std. 3.09224461 54.8016675 17.31487431 2.977584547 0.16293707 

Glass 

Average 224.339602 229.798054 244.030698 222.542509 214.790303 

Std. 7.93618395 2.58439611 2.155017781 4.262207958 1.32193952 

Ecoli 

Average 67.583721 67.9053545 72.1286431 66.9274105 63.7027324 

Std. 2.17513627 0.90432126 0.66660349 1.263528514 0.32627646 

 

where all reported results except for the last column 

are directly obtained from [13]. As described in Table 

5, the proposed algorithm is comparable to other 

competing algorithms and it obtained more robust 

solutions than others for almost all datasets. 

7. Conclusion 

This paper presented a DE based clustering 

algorithm. In the proposed algorithm, a new mutation 

strategy is introduced to increase the searchability of 

the DE algorithm, and QBL based population 

initialization technique is also applied to get fitter 

initial solutions. The proposed mutation strategy 

adopts the guidance information of the best 

chromosome to raise the exploitation power and 

convergence rate, and then, it applied three 

differentials to keep the diversity of the population 

and the exploration power of the algorithm. The 

exploitation and exploration ability of the algorithm 

are well balanced in this work. The conducted 

experiments on the seven real datasets indicated that 

the proposed algorithm outperforms the convention 

DE with four mutation strategies in term of their 

objective function values. It achieves superior quality 

and robust results with a faster convergence rate. 

Moreover, the proposed algorithm was also 

compared with the existing state of the art DE based 

clustering techniques on five datasets. The related 

results showed that the proposed algorithm is a 

comparable technique for hard partitional clustering. 

Further extension of this work is related to the 

implementation of the proposed algorithm on the 

distributed processing framework. 
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(a)                                                                                                   (b) 

(c)                                                                                                   (d) 

(e)                                                                                                 (f) 

(g) 

Figure. 2 Comparison of convergence performance on the selected dataset: (a) iris, (b) wine, (c) thyroid, (d) breast 

cancer, (e) pima, (f) glass, and (g) ecoli 
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Table 3. Comparison of sum of squared error 

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL 

Iris 
Average 82.0800965 80.9866801 83.3685664 80.3149833 80.136041 

Std. 0.94004685 0.65430367 1.488298053 0.154577131 0.001648966 

Wine 
Average 2564749 2549237.9 2580781.38 2581293.87 2585936.43 

Std. 27068.7995 31776.9966 32488.16905 21449.25797 16270.2647 

Thyroid 
Average 34884.4144 35391.341 35288.382 35201.0054 34793.6624 

Std. 239.216845 533.12527 537.5361905 237.0561105 111.3198744 

Breast 

Cancer 

Average 19503.1858 20163.7867 19871.8596 19568.6758 19457.6884 

Std. 58.336493 271.258444 169.3518486 84.81113703 1.775117536 

Pima 
Average 5876531.25 5909666.1 5916646.85 5878205.2 5877247.55 

Std. 1418.1087 57765.5027 28769.17591 2936.693797 765.3682647 

Glass 
Average 451.584795 504.460414 521.978414 467.785169 435.987293 

Std. 51.7028711 21.259169 34.68964865 32.75475979 40.9550011 

Ecoli 
Average 17.0615069 17.5507899 19.4565839 17.2151671 15.7089617 

Std. 1.06417957 0.73688293 0.552628073 0.597203844 0.412725648 

 

Table 4. Comparison of quantization error 

Datasets Index DE/rand/1 DE/best/1 DE/current-to-rand/1 DE/current-to-best/1 MDE-QBL 

Iris 
Average 0.648230088 0.647316521 0.654163175 0.644522413 0.64375 

Std. 0.002096196 0.003001606 0.002575488 0.00101929 1.3E-08 

Wine 
Average 95.7610459 96.0187704 95.8116934 95.668115 95.6275 

Std. 0.185679641 0.211108131 0.182229921 0.12394908 0.10682 

Thyroid 
Average 9.09637795 9.15417135 9.2730773 9.1844789 9.00613 

Std. 0.115034208 0.161775128 0.107299489 0.083235219 0.05606 

Breast 

Cancer 

Average 5.19391174 5.29663055 5.22435062 5.19876374 5.18876 

Std. 0.006918966 0.031849959 0.012082721 0.007111739 6.3E-06 

Pima 
Average 67.803803 68.247306 67.7693949 67.8087031 67.8006 

Std. 0.005570987 0.221579355 0.067872086 0.004526859 0.00023 

Glass 
Average 1.42850018 1.36619334 1.5327666 1.38235998 1.24923 

Std. 0.216891528 0.120531122 0.193121642 0.156474922 0.06684 

Ecoli 
Average 0.212012397 0.205757483 0.2186906 0.206791102 0.19406 

Std. 0.010604917 0.004651351 0.008642931 0.020067601 0.00332 
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Table 5. Comparison of objective function values 

Datasets DSDE FSDE VDEO 
MDE-

QBL 

Iris 
96.65 

± 0.00 

96.70 

± 0.10 
96.54 

± 0.00 

96.65 

± 0.00 

Wine 
16292.28 

± 0.20 

16325.26 

± 38.92 

16293.5

6 ± 0.87 

16293.52 

± 0.32 

Thyroid 
1874.00 

± 11.76 

1882.60 

± 11.74 

1867.51 

± 0.91 

1866.48 

± 0.02 

Breast 

Cancer 

2968.28 

± 9.45 

2964.47 

± 0.05 

2964.43 

± 0.02 

2964.38 

± 0.00 

Glass 
220.83 

± 12.16 

245.02 

± 12.13 

213.62± 

1.99 
214.79 

± 1.32 
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