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Abstract: Solar photovoltaic (PV) systems have recently attracted researcher’s attention as a clean source of energy. 

Thus, the importance to design appropriately the photovoltaic cells highly raises. The main problems faced in the 

design process are first, the development of a useful model describing the characteristics of the current vs. voltage able 

to simulate the real solar cells behaviours and then, the precise estimation of photovoltaic cells parameter values. This 

paper employs an improved version of Salp Swarm Algorithm called Chaotic Salp Swarm Algorithm (CSSA) for the 

parameters estimation of solar cells in both single and double diode models. CSSA approach benefits from chaotic 

maps proprieties, and has the advantage of providing good equilibrium between exploration and exploitation 

mechanisms as well. Performance of the proposed CSSA is compared to fourteen known algorithms. Experimental 

results demonstrate that the proposed algorithm has the ability to find the optimal solutions with an accurate estimation 

of parameters for the courant vs voltage characteristics of real solar cell with high performance. 
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1. Introduction 

Nowadays, the need for a clean and renewable 

energy is the most interesting challenge for different 

countries all over the world. Regenerative energy is 

the solution key for a variety of serious problems as 

environmental pollution, global warming and fuel 

exhaustion. Hence, solar energy has urged as the most 

promising alternative, being available, non-

expandable and eco-friendly. In this regard, 

Photovoltaic (PV) systems are used to regenerate 

electrical energy starting from solar energy.  

Therefore, the modelling of solar cells is very 

important and consists of two steps: the formulation 

of the appropriate mathematical model and the 

precise estimation of the parameter values of the cell. 

For the mathematical model, the behaviour of a solar 

cell is governed by the current vs. the voltage 

characteristics. There exist two equivalent electronic 

circuits modelling the behaviour of a solar cell, for 

one is the single diode (SD) model and for another is 

the double diode (DD) model. Whatever the model 

selected, it is necessary to estimate all its parameters, 

and then identify their optimal values applied to the 

selected models, to approximate the experimental 

data obtained by the true solar cell. 

In order to simulate, manage and optimize the real 

solar systems, many optimization techniques dealt 

with the identification of PV cell parameters. 

Guaranteed convergence particle swarm optimization 

(GCPSO) [1], enhanced leader particle swarm 

optimization (ELPSO) [2], improved JAYA (IJAYA) 

[3], artificial bee colony (ABC) [4], particle swarm 

optimization (PSO) [5, 6], genetic algorithms (GA) 

[7–9], evaporation rate based water cycle algorithm 

(ER-WCA) [10], simulated annealing (SA) [7], 

harmony search (HS) [11], teaching-learning based 

optimization (TBLO) [12], Bacterial Foraging 

Algorithm (BFA) [13], imperialist competitive 

algorithm (ICA) [14], self-adaptive teaching learning 

based optimization (SATLBO) [15], bird matting 

optimization (BMO) [16] and salp swarm algorithm. 

The recently developed Salp swarm algorithm 

SSA [17] has proved its potential among population 
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based metaheuristic methods due to simplicity and 

scalability. However, SSA still have the 

disadvantages of slow convergence speed and 

stagnation in local optima.  To overcome these 

drawbacks and enhance the performance of standard 

SSA it was incorporated with chaos theory.  In this 

way, feature selection using salp swarm algorithm 

with four chaotic maps was introduced in [18],where 

chaotic maps substitute random variables. In addition, 

Sayed et al. [19] proposed chaotic salp swarm 

algorithm using ten chaotic maps for solving 

benchmark dataset. Majhi et al. [20] uses Chaotic salp 

swarm algorithm for SDN multi-controller networks. 

Another  chaotic salp swarm algorithm based on 

quadratic integrate and fire neural model for function 

optimization  was presented by Ateya  et al [21]. 

In this paper, Chaotic Salp Swarm Algorithm (CSSA) 

is employed for the first time to estimate the 

parameters of solar cells in both single and double 

diode models. In CSSA the logistic map is used  to 

replace the random parameter in the mathematical 

model of the original SSA to provide a good balance 

between local and global searches. 

The proposed CSSA is compared with recent 

well-known algorithms for the considered  parameter 

extraction problem as chaotic teaching-learning 

algorithm (CTLA) [22], biogeography-based 

learning particle swarm optimization (BLPSO) [23], 

simulated annealing (SA) [7], competitive swarm 

optimizer (CSO) [24], levy flight trajectory-based 

whale optimization algorithm (LWOA) [25], 

memetic adaptive differential evolution (MADE) 

[26],  cuckoo search algorithm (CS) [27],  hybridizing 

cuckoo search algorithm with biogeography-based 

optimization (CS-BBO) [27],  teaching-learning- 

based artificial bee colony (TLBO-ABC) [28],  

multiple learning backtracking search algorithm 

(LBSA) [29], chaotic whale optimization algorithm 

(CWOA) [30], improved opposition-based sine 

cosine algorithm (ISCA) [31], hybrid particle swarm 

optimization with whale optimization algorithm 

(PSO-WOA) [32],  hybrid algorithm based on grey 

wolf optimizer and cuckoo search (GWOCS) [33].  

Experimental results proved efficiency of the 

proposed approach to identify the PV cells 

parameters.   

The rest of the paper is organised as follows: 

Section 2 presents the standard salp swarm algorithm. 

Then, Section 3 detailed the chaotic salp swarm 

algorithm. The photovoltaic models and optimization 

problem formulation are presented in sections 4 and 

5 respectively. Simulation and comparison results are 

discussed in section 6. Finally, section 7 summarizes 

the conclusion. 

 

2. Standard salp swarm algorithm 

The Salp Swarm Algorithm (SSA) is a recent 

nature-inspired metaheuristic optimizer proposed by 

et al. [17] in 2017. The SSA algorithm mimics the 

swarming behaviour of salps that live in groups by 

forming a salp chain. The first salp is denoted as the 

leader, while the other salps are followers. In the 

mathematical model of the SSA, location of the 

leader salp should be updated following Eq. (1). 

 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 ≥ 0.5

𝐹𝑗 − 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)  𝑐3 < 0.5
 (1) 

 

where 𝑥𝑗
1 , j shows the position of the first salp 

(leader) in the jth dimension, Fj is the position of the 

food source in the jth dimension, ubj indicates the 

upper bound of jth dimension, lbj indicates the lower 

bound of jth dimension, c1, c2, and c3 are random 

numbers. 

Eq. (1) shows that the leader only updates its 

position with respect to the food source. The 

coefficient c1 is the most important parameter in SSA 

algorithm, because it balances exploration and 

exploitation and can be defined by: 

 

𝑐1 = 2𝑒
−(

4𝑘

𝐿
)

2

                              (2) 

 

where k represents the current iteration, L indicates 

the maximum number of iterations. 

The parameter c2 and c3 are random numbers 

uniformly generated in the interval of [0, 1]. In fact, 

they dictate if the next position in jth dimension 

should be towards positive infinity or negative 

infinity as well as the step size. 

The followers’ positions are updated using Eq. 

(3): 

 

 𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)      𝑖 ≥ 2              (3) 

 

where  𝑥𝑗
𝑖 represents the position of the ith follower 

at jth dimension. 

The pseudocode of the SSA algorithm is 

presented in Algorithm 1. 

3. Chaotic salp swarm algorithm 

Although SSA algorithm is among the most 

performing techniques, it still suffers from slow 

convergence speed and stagnation into local optimum. 

So, to reduce these disadvantages and improve the 

algorithm’s efficiency, we introduced chaos to SSA 

algorithm. Chaos theory studies the behaviour of  
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Algorithm 1. Pseudo code of SSA algorithm 
Initialize the random initial population of salps xi ( i = 

1, 2,..., n)  

while (stopping condition is not valid) do 

         Find the best salp and set it as F, the leader salp 

         Update c1 by Eq. (2) 

         for (each salp (xi)) do 

               if xi is a leader then 

                   Update the position of leader by Eq. (1) 

              else 

                   Update the position of followers by Eq. (3) 

              end 

         end 

Update all salps based on the upper and lower bounds  

of variables 

Return F 

 

systems that follow deterministic laws but appear 

random and unpredictable. In other words, a chaotic 

system is a dynamical system that has a sensitive 

dependence on its initial conditions; small changes in 

those conditions can lead to quite different outcomes 

[18–20]. Due to the ergodicity, non-repetition and 

sensitivity dependence on initial conditions 

properties of chaos, the algorithm can perform overall 

search steps at higher speeds compared to the 

stochastic searches relying on probabilities. Thus, it 

is very beneficial to replace randomness in 

metaheuristic algorithms by chaotic maps to ensure 

that solutions generated by the algorithm can be 

diverse enough to potentially reach the global 

optimum in the search space and avoid stagnation 

into local optimum [34]. 

Chaotic sequences were successfully applied in a 

number of popular nature inspired metaheuristic 

algorithms as: krill herd optimization algorithm [35], 

grey wolf optimization algorithm [36], grasshopper 

optimization algorithm [37], firefly algorithm (FA) 

[38], bee colony algorithm [39], whale optimization 

algorithm [40] and bat algorithm [41].  

In SSA algorithm c2 parameter which contain 

random numbers can be modified with chaos 

mappings. Our suggestion would be using the 

successions made by the logistic mapping instead of 

above-mentioned random numbers. Sequences 

generated by the logistic mapping are formulated 

below: 

 

𝑥(𝑘 + 1) = 4𝑥(𝑘)(1 − 𝑥(𝑘))                 (4) 

 

Where x(k) is the kth chaotic number, with k 

denoting the iteration number. Obviously, 𝑥 ∈ [0,1] 
and that x(0) should not be 0, 0.25, 0.5, 0.75 or 1. Fig. 

1 shows the chaotic x(t) value using a logistic map for 

100 iterations where x(0) = 0.7. 

 

 
Figure. 1 Chaotic values distribution’s during 100 

iteration 

4. Photovoltaic models 

In general, there exist two models of solar cells: 

single diode (SD) and double diode (DD) [30]. A 

good mathematical model is necessary to generate a 

precise design of solar cells with an accurate 

parameter values estimation. This section describes 

the SD and DD models and formulate their objective 

functions. 

4.1 Double diode model (DD) 

As its name implies, a double diode model 

consists of two diodes:  One of these diodes is set as 

a rectifier and the second diode is used to model the 

charge recombination current and some non-

idealities. These diodes are used to shunt the photo-

generated current source (Iph)  and are connected in 

series with a resistor [5, 19]. Fig. 2 defines the 

equivalent circuit for a double diode (DD) model. 

The cell terminal current is computed as follows: 

 

𝐼𝑡 = 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑠ℎ                      (5) 

 

where the terminal current is It, Iph is the photo-

generated current, Id1, Id2 are the first and second 

diode currents respectively, whereas Ish is the shunt 

resistor current. 

For the proper modelling of PV cells, we have 

used the Shockley diode equation. Hence, Eq. (5) is 

rewritten as shown in Eq. (6). 

 

𝐼𝑡𝑒 =  𝐼𝑝ℎ−𝐼𝑠𝑑1 [𝑒𝑥𝑝 ((
𝑉𝑑

𝑛1 ∙ 𝑉𝑡𝑒
) − 1]         

−𝐼𝑠𝑑2 [𝑒𝑥𝑝 ((
𝑉𝑑

𝑛2∙𝑉𝑡𝑒
) −  1] −

𝑉𝑡+𝐼𝑡𝑒∙𝑅𝑠

𝑅𝑠ℎ
      (6) 
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Figure. 2 Solar cells with double diode model 

 

where Vt is the terminal voltage, whereas the series 

and shunt resistances are represented by Rs and Rsh 

respectively. Isd1 and Isd2 are the diffusion and 

saturation current, respectively. n1 and n2 are 

respectively the diffusion and recombination diode 

ideality factors, Therefore, (Rs, Rsh, Iph, Isd1, Isd2, n1 and 

n2) are the seven unknown parameters in Eq. (6). The 

identification of these parameters improves the 

optimal performance of the solar cell. 

4.2 Single diode model (SD) 

The diffusion current Isd1 and the saturation 

current Isd2 currents in a single diode model are 

represented by a non-physical ideality factor n. The 

equivalent circuit of single diode model is presented 

in Fig. 3. In this model, only five parameters are to be 

estimated Rs, Rsh, Iph, Isd and n. Then, the single diode 

model adapted is given in Eq. (7): 

 

𝐼𝑡𝑒 = 𝐼𝑝ℎ −  𝐼𝑠𝑑 [𝑒𝑥𝑝 ((
𝑉𝑡+𝐼𝑡𝑒∙𝑅𝑆

𝑛∙𝑉𝑡
) − 1] −

𝑉𝑡+𝐼𝑡𝑒∙𝑅𝑆

𝑅𝑠ℎ
  

(7) 

5. Optimization problem formulation 

To define the optimization problem, the 

parameters of each equivalent circuit (DD and SD) 

must be formulated as variable vectors. The bounds 

of the parameters were chosen in order to include 

RTC France PV cell technology, in conformity with 

the literature. Eq. (8) indicates the ranges for both 

single and double diode models. 

 

𝑚𝑖𝑛 𝑓(𝑥) , 𝑥 = [𝑥1, 𝑥2 … . . 𝑥𝑑], 𝑑 𝜖[5,7] 
 

with 

 

 

𝑑 = 5(𝑆𝐷)
0 ≤ 𝑥1(𝑅𝑠) ≤ 0.5

0 ≤ 𝑥2(𝑅𝑠ℎ) ≤ 100
0 ≤ 𝑥3(𝐼𝑝ℎ) ≤ 1

0 ≤ 𝑥4(𝐼0) ≤ 1
1 ≤ 𝑥5(𝑛) ≤ 2

𝑑 = 7(𝐷𝐷)
0 ≤ 𝑥1(𝑅𝑠) ≤ 0.5

0 ≤ 𝑥2(𝑅𝑠ℎ) ≤ 100
0 ≤ 𝑥3(𝐼𝑝ℎ) ≤ 1

0 ≤ 𝑥4(𝐼𝑠𝑑1) ≤ 1
0 ≤ 𝑥5(𝐼𝑠𝑑2) ≤ 1
1 ≤ 𝑥6(𝑛1) ≤ 2

1 ≤ 𝑥7(𝑛2) ≤ 2

   (8) 

Figure. 3 Solar cells with single diode model 
 

To determine the quality of the estimated 

parameters we define the objective function of the 

Root Mean Square Error (RMSE): 

 

Min RMSE(𝑥) = 𝑀𝑖𝑛√
1

𝑁
∑ (𝐼𝑡 − 𝐼𝑡𝑒)2𝑁

𝑖=1     (11) 

 

where N represents a set of empirical point (It, Vt) 

measured and Ite is the estimated value of current as a 

function of the unknown parameters x that 

characterize the model described by Eqs. (6) and (7). 

A good set of parameters produces a precise 

approximation between the measurements of the 

current with respect to the voltage (I-V) of the 

physical cell and the values of the mathematical 

model [30]. In the case of a solar cell with a single 

diode the error is defined by Eq. (9): 

 

 𝑓𝑆𝐷(𝑉𝑡, 𝐼𝑡, 𝑥 ) = 𝐼𝑡 − 𝑥3 + 𝑥4                     

[exp (
𝑞(𝑉𝑡+𝑥1∙𝐼𝑡𝑒)

𝑥5∙𝑘∙𝑇
) − 1] +   

𝑉𝑡+𝑥1∙𝐼𝑡𝑒

𝑥2
        (9) 

 

Meanwhile, the error in case of double diode is given 

by Eq. (10):  

 

𝑓𝐷𝐷 (𝑉𝑡,𝐼𝑡,𝑥) = 𝐼𝑡 − 𝑥3 + 𝑥4 [exp (
𝑞(𝑉𝑡 + 𝑥1 ∙ 𝐼𝑡𝑒

𝑥6 ∙ 𝑘 ∙ 𝑇
)

−1

] 

+𝑥5 [exp (
𝑞(𝑉𝑡+𝑥1∙𝐼𝑡𝑒

𝑥7∙𝑘∙𝑇
) − 1] +

𝑉𝑡+𝑥1∙𝐼𝑡𝑒

𝑥2
   (10) 

 

In both functions (fDD and fSD), the values of Vt 

and It are experimentally collected from the solar cell, 

x is a vector that contains the model parameters, 

where x = {Rs, Rsh, Iph, Isd1, Isd2, n1, n2} is the model 

parameters for DD and x = {Rs, Rsh, Iph, Isd, n} for SD. 

In the Shockley diode equation, q = 1.602×10−19 

(coulombs) is the magnitude of charge on an electron, 

k = 1.381×10−23 (J/K) is the Boltzmann constant and 

T is the cell temperature (K). 
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6. Results and discussion 

6.1 Comparison of CSSA and SSA 

In this section, we aim to apply the Chaotic Salp 

Swarm Algorithm (CSSA), to estimate the 

parameters of solar cell models. Then, we evaluate 

the performance of the proposed CSSA compared to 

the standard SSA.  For a fair comparison, CSSA and 

SSA algorithms are executed 10 times under the same 

conditions of 30 search agents and 500 iterations. The 

experimental measurements adopted in this study are 

taken from [30], where authors uses a silicon solar 

cell with a diameter of 57 mm to measure current and 

voltage of 26 samples under the conditions: one sun 

(1000W/m2) at T = 33°C and respecting the 

constraints defined by Eq. (8). 

The parameters of the identified photovoltaic 

cells obtained by the methods of CSSA and SSA 

using Root Mean Square Error (RMSE) for the single 

diode (SD) and double diode (DD) models are shown 

in Tables 1 and 2 respectively 

From Tables 1 and 2, we observe that the 

algorithm CSSA with the RMSE performance 

criterion has a better performance (smaller value) to 

identify the parameters of both SD and DD models of 

solar compared to the standard SSA obtained values. 

Fig. 4 shows the evolution of the objective function 

(RMSE) by the two competitive algorithms CSSA 

and SSA in accordance to the number of iterations in 

both cases of single and double diode models. This 

figure shows that the CSSA algorithm has a faster 

convergence speed compared to standard SSA 

algorithm. 

 
Table 1. Comparison results for the SD model 

Parameters CSSA SSA 

Iph(A) 0.755081 0.729161 

Isd(μA) 0226751 0.332893 

n 1.44753 1.49995 

Rs(Ω) 0.0351985 0.0308495 

Rsh(Ω) 52.4437 53.1931 

RMSE 8.9064×10-3 0.010368 

 

Table 2. Comparison results for the DD model 

Parameters CSSA SSA 

Iph(A) 0.761222 0.758726 

Is1(μA) 0.216042 0.107877 

Is2(μA) 0.262701 0.578480 

n1 1.74375 1.38726 

n2 1.46755 1.82912 

Rs(Ω) 0.0362049 0.0390374 

Rsh(Ω) 51.1869 89.3002 

RMSE 1.0501×10-3 2.07×10-3 

 

 

 
(a) 

 

 
(b) 

Figure. 4 RMSE evolution: (a) single diode model and (b) 

double diode model obtained by CSSA and SSA 

 

Fig. 5 shows the current vs the voltage and the 

power vs the voltage curves for SD model.  These 

curves are calculated using the parameters estimated 

by CSSA and SSA algorithms and the experimental 

data. 

From Fig. 5 we can clearly notice that, the 

solutions yielded by the proposed CSSA algorithm 

for the solar cell with single diode model can 

accurately represent the characteristics of the real 

photovoltaic cell than the results obtained by SSA 

algorithm. It also indicates that CSSA algorithm 

obtained an accurate approximation to the current 

estimated. 

The current vs the voltage and the power vs the 

voltage characteristic curves for DD model are shown 

in Fig. 6. These curves are reconstructed using the 

parameters estimated by CSSA and SSA algorithms 

and the experimental data. Analyzing Fig. 6, we can 

see that CSSA algorithm has the potential to provide 
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(a) 

 

 
(b) 

Figure. 5 :(a) Current vs measured voltage and (b) power 

vs the measured voltage for the SD model computed 

using CSSA and SSA algorithms 

 

results that accurately approximate the 

experimentally measured data. 

To further evaluate the quality of values obtained 

by the proposed CSSA algorithm for the various 

parameters; the current estimated with these values is 

compared with the experimental current. For this, the 

individual absolute error (IAE) for each of the 26 

curve points of the measured current is calculated 

using Eq. (11). 

 

𝐼𝐴𝐸 = |𝐼𝑡 − 𝐼𝑡𝑒|                        (11) 

 

Fig. 7 shows the individual absolute error IAE 

between the experimentally measured current and 

that estimated for the single diode model. Analyzing 

the plot of Fig. 7, we can clearly notice that all IAE 

values are less than 0.014, which indicate a very close 

approximation of the estimated current values to the 

measured current values. 

 
(a) 

 

 
(b) 

Figure. 6 :(a) Current vs measured voltage and (b) 

power vs the measured voltage for the DD model 

computed using CSSA and SSA algorithms 

 

 
Figure. 7 Individual absolute error curve between 

experimentally measured and estimated currents for 

single diode model 
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Figure. 8 Individual absolute error curve between 

experimentally measured and estimated currents for 

double diode model. 

 

In case of double diode model, the individual 

absolute error IAE curve between the estimated 

and experimentally measured currents is shown in 

Fig. 8. All the IAE values obtained are less than 0.008, 

indicating that the estimated current and the 

measured current curves are coincident. 

From the individual absolute error (IAE) curves of 

experimentally measured and estimated currents for 

both   SD and DD models, we can conclude that the 

proposed CSSA algorithm has the potential to 

estimate very precise parameters values for the solar 

cell. 

6.2 Comparison of CSSA with well-known 

algorithms 

To evaluate the performance of CSSA algorithm 

to identify the parameters of PV cell using SD and 

DD models, a fair comparison with a set of 

optimization algorithms is conducted in this 

subsection. The comparative algorithms considered 

are chaotic teaching-learning algorithm (CTLA) [22], 

biogeography-based learning particle swarm 

optimization (BLPSO) [23], simulated annealing 

(SA) [7], competitive swarm optimizer (CSO) [24], 

levy flight trajectory-based whale optimization 

algorithm (LWOA) [25], memetic adaptive 

differential evolution (MADE) [26]  cuckoo search 

algorithm (CS) [27], hybridizing cuckoo search 

algorithm with biogeography-based optimization 

(CS-BBO) [27],  teaching-learning- based artificial 

bee colony (TLBO-ABC) [28], multiple learning 

backtracking search algorithm (LBSA) [29], chaotic 

whale optimization algorithm (CWOA) [30], 

improved opposition-based sine cosine algorithm 

(ISCA) [31], hybrid particle swarm optimization with 

whale optimization algorithm (PSO-WOA) [32],  

hybrid algorithm based on grey wolf optimizer and 

cuckoo search (GWOCS) [33]  and the proposed 

CSSA. 

Tables 3 and 4 report the optimal estimated 

parameters obtained by all the competitive 

algorithms for the SD and DD models respectively.  

Comparing the results in Table 3 for the single diode 

model, CSSA outperforms   CTLA, BLPSO, SA, 

CSO, LWOA, CS, LBSA, PSO-WOA algorithms 

obtaining the lowest RMSE value of 9.906×10-4 and 

showed quite competitive performance with the 

second best RMSE value after MADE, CS-BBO, 

TLBO-ABC, CWOA, ISCA and GWOCS. 

Analysing the results of Table 4 for the double 

diode model, CSSA showed the best performance 

over CTLA, BLPSO, SA, CSO, LWOA, CS, PSO-

WOA algorithms achieving an RMSE value of 

1.050×10-3 and not much outperformed by MADE, 

CS-BBO, TLBO-ABC, LBSA, CWOA, ISCA and 

GWOCS. 

 
Table 3. Comparison of estimated parameters by the applied algorithms for the SD model 

Algorithm Rs(Ω) Rsh(Ω) Iph(A) Isd(μA) n RMSE 

CTLA 0.0357 61.1131 0.7650 0.4280 1.5092 1.09×10-3 

BLPSO 0.0347 96.5115 0.7599 0.4977 1.5257 1.48×10-3 

SA 0.0345 43.1034 0.7620 0.4798 1.5172 1.70×10-3 

CSO 1.2122 1689.005 1.0205 0.3658 48.8206 1.63×10-3 

LWOA 1.2218 1272.0197 1.0284 0.3145 48.2413 1.087×10-3 

MADE 0.0364 53.7185 0.7608 0.3230 1.4812 9.8602×10-4 

CS 0.03492 43.84232 0.76048 0.36015 1.4929 2.0119×10-3 

CS-BBO 0.03638 53.71852 0.76078 0.32302 1.48118 9.8602×10-4 

TLBO-ABC 0.03638 53.71636 0.76078 0.32302 1.48118 9.8602×10-4 

LBSA 0.0362 59.0978 0.7606 0.34618 1.4881 1.0143×10-3 

CWOA 0.03636 53.7987 0.76077 0.3239 1.4812 9.8602×10-4 

ISCA 0.03638 53.7182 0.760778 0.323017 1.4812 9.8602×10-4 

PSO-WOA 0.036124 59.323133 0.760563 0.340158 1.4863 1.0710×10-3 

GWOCS 0.03639 53.6320 0.760773 0.32192 1.4808 9.8607×10-4 

CSSA 0.03519 52.4437 0.755081 0226751 1.44753 8.9064×10-3 
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Table 4. Comparison of estimated parameters by the applied algorithms for the DD model 

Algorithm Rs(Ω) Rsh(Ω) Iph(A) Isd1(μA) Isd2(μA) n1 n2 RMSE 

CTLA 0.0313 89.6464 0.7570 0.8542 0.3812 1.7879 1.5230 1.32×10-3 

BLPSO 0.0338 78.6922 0.7607 0.5481 0.0542 1.5442 1.5765 1.57×10-3 

SA 0.0345 43.1034 0.7623 0.4767 0.0100 1.5172 2.0000 1.90×10-2 

CSO 0.0409 15.773 0.7628 0.7954 0.6780 1.6936 1.8138 1.70×10-3 

LWOA 0.0355 86.8763 0.7597 0.2342 0.3709 1.4679 1.6989 1.31×10-3 

MADE 0.03680 55.4329 0.7608 0.7394 0.2246 1.9963 1.4505 9.8261×10-4 

CS 0.03530 97.73242 0.76223 0.02732 0.50832 1.7027 1.52893 2.4440×10-3 

CS-BBO 0.03674 55.48544 0.76078 0.74935 0.22597 2 1.45102 9.8249×10-4 

TLBO-ABC 0.03667 54.66797 0.76081 0.42394 0.24011 1.9075 1.45671 9.8415×10-4 

LBSA 0.0363 60.1880 0.7606 0.29814 0.27096 1.4760 1.9202 1.0165×10-3 

CWOA 0.03666 55.2016 0.76077 0.24150 0.6 1.4565 1.9899 9.8272×10-4 

ISCA 0.03674 55.48543 0.76078 0.74935 0.22597 2 1.45102 9.8237×10-4 

PSO-WOA 0.034223 82.82299 0.761091 0.20123 0.93611 1.4633 1.773674 1.6700×10-3 

GWOCS 0.03666 54.7331 0.76076 0.53772 0.24855 2 1.4588 9.8334×10-4 

CSSA 0.0362 51.1869 0.7612 0.2160 0.2627 1.7437 1.4675 1.050×10-3 

 

The proposed CSSA with singer map showed a 

good performance for parameter estimation of both 

single and double diode models, due to good 

equilibrium between exploration and exploitation 

mechanisms provided by embedding chaos to 

standard SSA. 

7. Conclusion 

This paper applied an optimization method based 

on metaheuristic algorithm and chaotic maps called 

Chaotic Salp Swarm Algorithm (CSSA) for 

estimating the parameters of a single diode (SD) and 

double diode (DD) models of a solar cell. In this 

study, the logistic map is integrated into the original 

Salp Swarm algorithm (SSA), to enhance its 

convergence speed and overall performance, by 

substituting the algorithm’s random parameter. 

Performance of the proposed CSSA is compared with 

CTLA, BLPSO, SA, CSO, LWOA, MADE, CS, CS- 

BBO, TLBO-ABC, LBSA, CWOA, ISCA, PSO-

WOA and GWOCS algorithms based on the 

minimization of the objective function of root mean 

squared error. 

Experimental results proved evidently good 

performance of CSSA over other comparative 

algorithms for parameter estimation problem in both 

SD and DD models. In future work, we will extend 

the use of CSSA to other challenging renewable 

energy problems. 
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