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Abstract: Faces is a unique region in our body that can be used as a biometric identity. Furthermore, the face between 

two people that have a kinship relationship may share the same face features which can be used to decide whether two 

people have a kinship relationship or not. In this paper, we proposed a family-aware convolutional neural network 

(CNN) for the visual kinship verification problem. Our proposed classifier is constructed by paralleling the state-of-

the-art face recognition model and attaching two additional networks, a family-aware network, and a kinship 

verification network. The family-aware network weights adjusted by learning features specific to the family using deep 

metric learning loss while the kinship verification network use softmax loss to learn the kinship verification problem. 

One of the advantages of our proposed classifier is that the output of the classifier is normalized and can be represented 

as the probability of two images being kin or non-kin. To preserve the face recognition features extraction ability in 

the state-of-the-art face recognition model, we freeze the weights of the convolutional layers in the classifier for the 

training process. In the testing process, the family-aware network is detached to construct the final classifier. 

Experiments on FIW (Families In the Wild) dataset show that our proposed classifier performs better comparing with 

classifiers that trained without a family-aware network and the ensemble version of the classifier is comparable with 

several state-of-the-art methods with an average accuracy of 68.84%. 

Keywords: Deep metric learning, Family-aware convolutional neural network, Image-based kinship verification. 

 

 

1 Introduction 

In the era big data and internet-of-things, image 

and video can easily capture using a digital camera, 

e.g. DLSR Camera or CCTV, and uploaded to social 

media or photo storage server. One of the most 

captured objects on the internet is human faces. The 

human face is a unique region in the human body that 

can be used as a biometric identity along with 

fingerprint and retina. Furthermore, human faces can 

also be used to indicate the kinship relationship (e.g. 

father-son or mother-daughter) among persons. This 

is possible due to the descendant of DNA from 

parents to their children. Two-person that have a 

kinship relationship may share the same face features 

(e.g. face shape, eyes, nose, etc.) which can be used 

to develop a model for kinship verification using face 

images. To support the development of visual kinship 

verification, several different visual kinship datasets 

are formed, including KinFaceW-I [1, 2], KinFaceW-

II [1, 2], KFVW (Kinship Face Video in The Wild) 

[3], Cornell KinFace [4], Tri-Subject Kinship [5] and 

FIW (Family in The Wild) [6–8]. Although that all of 

the datasets are potentially used for developing the 

kinship verification model, Lopez et al. [9] and 

Dawson et al. [10] proved that not all of the kinship 

verification dataset is suitable to support the 

development of kinship verification model. 

In this paper, we proposed a family-aware CNN 

classifier for the visual kinship verification problem. 

Our proposed classifier constructed by paralleling the 

state-of-the-art face recognition model (FaceNet [11] 

and SphereFace [12]) and added additional networks 

to learn family-aware features. Our contributions can 

be listed as follows. 



Received:  April 9, 2020.     Revised: June 20, 2020.                                                                                                          21 

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020           DOI: 10.22266/ijies2020.1231.03 

 

• We have investigated the family-aware CNN 

classifier for the visual kinship verification 

problem. Experiments on the FIW dataset show 

that our family-aware features can improve the 

performance of the CNN classifier comparing 

with classifier without the additional features. 

• We have investigated two different state-of-the-

art deep recognition models, FaceNet and 

SphereFace, to construct our proposed classifier. 

• We have investigated two different metric 

learning loss functions, angular softmax and 

center loss, that attached at the end of the network 

to learn family–aware features. 
The rest of the paper organized as follows. 

Section 2 discussed related work on image-based 

kinship verification problems. The detail of our 

proposed method is described in section 3. Section 4 

and 5 discussed the results of experiments and 

comparisons with several state-of-the-art methods on 

image-based kinship verification problems. Lastly, 

we conclude the experiments in section 6. 

2 Related work 

In this section, several state-of-the-art methods 

for the visual kinship verification problem is 

discussed. We divided this section into two different 

subsections, metric-based learning and non-metric 

learning. 

2.1 Metric-based learning 

Deep metric learning is one of the methods that 

widely used in the face recognition problem. Some 

deep metric learning for face recognition tasks that 

already developed can be found in [11–16]. From 

those deep metric learning methods, there are several 

deep metric learning for the visual kinship 

verification problem that had been investigated by the 

researcher, including SphereFace [6], and triplet loss 

[17]. 

Robinson et al. [6] investigated several different 

methods that potentially used for the visual kinship 

verification problem, including non-deep learning 

methods, metric learning, deep learning, and deep 

metric learning. The evaluation method was 

conducted using a 5-fold training/testing split 

configuration. The experiments show that the best 

average accuracy achieved by the SphereFace 

method with an average accuracy of 69.18 ± 3.68. 

Li et al. [17] utilize the triplet loss method to 

training a very deep residual network for the visual 

kinship verification problem. The classifier is trained 

using 1 million celeb dataset using softmax loss in the 

first steps and finetuning the weights on the FIW 

dataset using triplet loss. In the training process, 

several data augmentation process was applied to 

enrich the FIW dataset, including gamma correction, 

blurring (by up-sampling and down-sampling the 

input image), and random Gaussian noise. The best 

accuracy is achieved using an ensemble of ResNet-

80, ResNet-101, ResNet-152, and ResNet-269 with 

an average accuracy of 74.85% using RFIW’17 

training/testing split configuration. 

2.2 Non-metric learning 

Other approaches to solving visual kinship 

verification problems are by using non-metric 

learning, including that described by Robinson et al. 

[6], Dawson et al. [10], and Duan et al. [18]. 

Robinson et al. [6] investigate several different 

non-metric learning methods for visual kinship 

verification problem, including LBP+SVM [19], 

SIFT+SVM, VGGFace [20], and ResNet-22 [21]. 

The LBP+SVM and SIFT+SVM method still 

struggle to verify the kinship relationship with an 

average accuracy of 55.33 ± 1.01 and 56.80 ± 1.17. 

The last two deep learning approaches achieve an 

average accuracy of 61.34 ± 3.81 for ResNet-22 and 

64.89 ± 4.68 for VGGFace. Although the average 

accuracy is lower comparing to state-of-the-art 

performance, the non-metric learning method is still 

promising to extend the method and further 

adjustment or additional method may improve the 

performance of the classifier. 

Dawson et al. [10] found a flaw in several kinship 

verification datasets. They try to cheat the kinship 

verification by using FSP (From-Same-Photo) 

classifier which does not have any knowledge about 

visual kinship verification. The FSP classifier is used 

to detect whether two images came from the same 

photo or not. The training process is done without 

touching any training data in the kinship verification 

dataset, instead Dawson et al. creating a new dataset 

using images taken from the internet to train the 

classifier. Despite that the FSP classifier does not 

have any knowledge about face nor visual kinship 

relationships, the FSP classifier can achieve high 

accuracy in several datasets. The results indicate that 

some kinship dataset is not suitable to support the 

development of kinship verification model due to the 

high biases that appear in the dataset. Lopez et al. [9] 

also described that KinFaceW-I and KinFaceW-II are 

not suitable to support the development of the kinship 

verification model due to the large bias that appears 

in the dataset. 
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Figure. 1 The diagram of our proposed FA-CNN (Family-Aware Convolutional Neural Network) constructed using 

facenet 

 

Duan et al. [18] proposed an ensemble of several 

AdvNet and VGGFace to solve the visual kinship 

verification problem. The AdvNet constructed from 

residual CNN architecture by adding the adversarial 

loss and contrastive loss to learn intermediate 

features in the classifier. The best average accuracy 

of 66.58% was achieved using an ensemble of 3 

AdvNet and VGGFace classifier. The experiments 

are done using the FIW dataset with RFIW2017 

training/testing split configuration.  

2.3 Remarks 

As discussed before, we divided the approaches 

on kinship verification problem into two different 

categories, metric learning, and non-metric learning 

solution. The metric learning model is proved very 

good for the kinship verification problem, but the 

output of the classifier is a binary label instead of 

probability which is the downside of the approaches. 

On the other side, the non-metric learning model 

produces lower accuracy comparing with the metric 

learning model but the output of the classifier is a 

probability that can be interpreted as the confidence 

of the classifier with the decision. In this paper, we 

try to combine those two approaches by fed the 

features learned from deep metric learning to softmax 

classifier. The combination of those two approaches 

can improve the performance of the model while 

preserving the output classifier as a probability of two 

images being kin or non-kin. 

 

 

3 Proposed method 

The diagram of our proposed FA-CNN classifier 

constructed based on FaceNet CNN architecture can 

be viewed in Fig. 1. Our proposed FA-CNN classifier 

can be also constructed using another state-of-the-art 

deep face model, such as SphereFace, VGGFace, or 

ResFace-101. 

3.1 Family-aware convolutional neural network 

Given a pair of face images, Family-Aware CNN 

(FA-CNN) classifier will compute the deep features 

of each face image and classify the pair (kin or non-

kin) based on the extracted features. As viewed in Fig. 

1, FA-CNN classifier constructed using only the 

convolutional layers of the state-of-the-art deep face 

model and attaching an additional network to learn 

family-aware features and classify the features using 

three fully-connected layers. The weights in the 

convolutional are initialized by taking the state-of-

the-art deep face model weights and freeze the 

weights in the training process. We argue that by 

freezing the weights of convolutional layers, the FA-

CNN classifier can preserve the ability to extract 

discriminate features for face recognition tasks and 

use those features for visual kinship verification tasks. 

We freeze the weights based on our preliminary 

experiments which conclude that freezing the 

weights can reduce the chance of overfitting and 

force the classifier to use only face features instead of 

other features, like FSP (From-Same-Photo) 

classifier proposed by Dawson et al. [10]. 
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Let f1  and f2  is the extracted features using 

convolutional layers of FA-CNN, the family-aware 

features are computed using the following equation, 

 

fa1 = W𝑇f1 + 𝑏                            (1) 

 

fa1 = W𝑇f1 + 𝑏                            (2) 

 

with W  and 𝑏  is the shared weights and bias for 

computed the family-aware features. To learn the 

family-aware features, deep metric learning is used 

for individual features ( f1  and f2 ) in the training 

process. After the family-aware features extracted, 

the features than concatenated and goes to three fully-

connected layers with two outputs (kin or non-kin) in 

the last fully-connected layer. The final output of the 

classifier is computed using softmax function as 

follows 

 

𝑝𝑐 =
𝑒𝑥𝑝(w𝑐

𝑇x+𝑏𝑐)

∑ 𝑒𝑥𝑝(w𝑝
𝑇x+𝑏𝑝)𝑁

𝑝=1
                        (3) 

 

where w𝑘  and 𝑏𝑘  is the weights and bias used to 

compute the output of class k. In the training process, 

the cross-entropy loss function is used to perform 

weights update in the classifier. 

We constructed two different FA-CNN classifiers 

which can be listed as follows 

• FA-CNN with angular loss (FA-AS). In this 

configuration, the angular loss described in 

[12] is used to learn the family-aware 

features. 

• FA-CNN with the combination of angular 

and center loss (FA-ASCL). In this setting, 

we utilize two metric losses, the angular loss 

[12] and center loss [28], to learn family-

aware features. 

4 Deep metric learning 

As discussed before, the family-aware features 

are learned using deep metric learning approaches. 

There is a lot of deep metric learning that already 

proposed by researchers and in this subsection, we 

will focus to discuss two deep metric learning that 

originally used for face recognition, SphereFace and 

Center Loss. 

4.1 SphereFace 

The first deep metric we use to learn family-

aware features is SphereFace. SphereFace is the loss 

function that utilizes the angular or cosines distance. 

Let 𝐱 and W is the input and weights of the last layer 

of the classifier, the softmax output of the classifier 

can be computed using equation 3. The angular 

softmax (A-Softmax) works by transform-ing the 

features from Euclidean space to angular space. Some 

other approaches that also use a similar method are 

CosFace [16], ArcFace [13], and NormFace [15]. In 

this paper, we use the SphereFace approach which 

using the following loss function 

 

      𝐿𝑎 =
1

𝑁
∑ − log (

𝑒
‖𝐱𝑖‖𝜓(𝜃𝑐𝑖,𝑖)

𝑒
‖𝐱𝑖‖𝜓(𝜃𝑐𝑖,𝑖)

+𝑓𝑠(𝑐𝑖)

)𝑁
𝑖=1     (4) 

 

𝑓𝑠(𝑐𝑖) = ∑ 𝑒‖𝐱𝑖‖ cos(𝜃𝑗,𝑖)                            
𝑗≠𝑐𝑖

(5) 
 

where 𝜓(𝜃𝑐𝑖,𝑖) define as 𝜓(𝜃𝑐𝑖,𝑖) =  (−1)𝑘𝑐𝑜𝑠(𝑚𝜃𝑐𝑖,𝑖
)  −

 2𝑘 , 𝜃𝑐𝑖,𝑖 ∈ [
𝑘𝜋
𝑚

,
(𝑘+1)𝜋

𝑚
] , and 𝑘 ∈ [0, 𝑚 − 1] . In the 

original paper, the 𝑚 parameter is set to a minimum 

of 𝑚 = 4  which proved by analysing the lower-

bound of m on the binary class case and multi-class 

case. To conducting the training process for deep 

metric learning, we use 𝑚 = 4  in our experiments. 

4.2 Center loss 

Other deep metric learning used in our proposed 

classifier is center-loss [21]. Unlike SphereFace, 

center loss is developed based on Euclidean space. 

The idea of center loss is to minimize the intra-class 

variation while keeping the features for different 

classes separable. To minimizing the intra-class 

variation, the center loss function is used which can 

be written as follows 

𝐿𝑐 =
1

2
∑ ‖𝐱𝑖 − 𝐜𝑦𝑖

‖
2

2𝑁
𝑖=1                        (6) 

 

where 𝐱𝑖 is the extracted features and 𝐜𝑦𝑖
 is the 𝑦𝑖-th 

class center. Ideally, the class center 𝐜𝑦𝑖
 need to be 

updated when the deep features changed or we can 

say that to effectively update the class center 𝐜𝑦𝑖
, all 

training data must be taken into account which is 

impractical for train deep CNN classifier. To solve 

the problem, Wen et al. [21] proposed a joint loss 

function between softmax and center loss with 

additional function to update each class center. The 

final equation for center loss can be written as follows 

 

𝐿 = 𝐿𝑠 + 𝜆𝐿𝑐 

= − ∑ log
𝑒

𝐖𝑦𝑖
𝑇 𝐱𝑖+𝑏𝑦𝑖

∑ 𝑒
𝐖𝑗

𝑇𝐱𝑖+𝑏𝑗𝑚
𝑗=1

𝑁
𝑖=1 +

𝜆

2
∑ ‖𝐱𝑖 − 𝐜𝑦𝑖

‖
2

2𝑁
𝑖=1     (7) 

 

where 𝐿𝑠 is the softmax loss, 𝐿𝑐 is the center loss, 𝜆 

is a parameter to balancing between intra-class  

 



Received:  April 9, 2020.     Revised: June 20, 2020.                                                                                                          24 

International Journal of Intelligent Engineering and Systems, Vol.13, No.6, 2020           DOI: 10.22266/ijies2020.1231.03 

 

Figure. 2 Examples of face image pair and their kinship relationship on the FIW dataset 

 

variations with separability of the features. The class 

center 𝐜𝑦𝑖
 is updated by taking the gradient of the 

center loss 𝐿𝑐 with respect to 𝐱𝑖 which can be written 

as follows 

 
𝜕𝐿𝑐

𝜕𝐱𝑖
= 𝐱𝑖 − 𝐜𝑦𝑖

                                        (8) 

 

∆𝐜𝑗 =
∑ 𝛿(𝑦𝑖=𝑗)(𝐜𝑗−𝐱𝑖)𝑚

𝑖=1

1+∑ 𝛿(𝑦𝑖=𝑗)𝑚
𝑖=1

                             (9) 

 
𝐜𝑗 = 𝐜𝑗 − 𝛼∆𝐜𝑗                                     (10) 

 

where 𝛼 is a parameter to control the update speed of 

the class center, 𝛿 is 1 if the condition in the bracket 

is true and 0 if the condition in the bracket is false. In 

our experiments, we set 𝜆 = 0.008 and use the same 

learning rate 𝛼 to update the class center 𝐜𝑦𝑖
. 

5 Results and discussion 

In this section, we describe the experiments 

conducted to evaluate the performance of our 

proposed family-aware convolutional network. All of 

the experiments are done using Caffe Deep Learning 

Framework [22] and FIW dataset [6-8]. 

5.1 FIW dataset 

Family in The Wild (FIW) dataset is a visual 

kinship verification dataset proposed by Robinson et 

al. [6-8] in 2016. FIW dataset is the biggest visual 

kinship verification dataset that currently available. 

FIW dataset consists of 3 kinship categories, siblings, 

parent-child, and grandparent-grandchild, with total 

of 11 kinship relationship class, including father-son 

(FS), father-daughter (FD), mother-son (MS), 

mother-daughter (MD), sister (SS), brother (BB), 

sibling (SIBS), grandfather-grandson (GFGS), 

grandfather-granddaughter (GFGD), grandmother-

grandson (GMGS), and grandmother-granddaughter 

(GMGD). Although there are several other visual 

kinship verification datasets, we use the FIW dataset 

as our main evaluation dataset based on the results 

discussed in [10] and [9]. The FIW dataset consists of 

11,932 natural family photos of 1,000 family and 

656,954 face pairs for 11 different kinship 

relationship types. Fig. 2 shows face pairs for 11 

kinship relationships on the FIW dataset. 

One of the disadvantages when using the FIW 

dataset for evaluating a proposed method is that there 

is a lot of variant for training/testing split 

configuration. The FIW dataset has a least 4 different 

training and testing split configuration, including 5-

fold configuration, RFIW (Recognize Family in The 

Wild) 2016 challenge configuration, RFIW 2017 

configuration, RFIW 2018 configuration, and RFIW 

2020 configuration. Those variants of training/testing 

split configuration will limit the comparison between 

proposed methods.  

In this paper, we use the original 5-fold training 

and testing split configuration in the experiments. 

The 5-fold training/testing split configuration is very 

challenging configuration due to the no overlapping 

family appears between the fold. To perform the 

training process, we change the visual kinship 

verification problem to binary classification (the pair 

have kinship relationship or not) instead of 11 

different binary classification problems.  

5.2 Training dan testing process 

The training process is done by constructed the 

FA-CNN classifier as showed in Fig. 1 and freeze the 

state-of-the-art face recognition model weights. The 

weights that freeze will preserve the ability of the 

classifier to extract the face features for face 

recognition tasks which based on our experiments 

will reduce the overfitting problem in the training 

process. 

The training process is done for around 16-24 

epochs (depending on the fold split configuration) 

and NAG (Nesterov Accelerated Gradient) [23] 

training algorithm. The learning rate is set to 0.001 

and reduce by polynomial policy so that in the last 

iteration the learning rate will be 0. We only use 
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Table 1. Verification results (%) on FIW dataset for 5-fold experiments. 

 

simple data augmentation (random crop) by resizing 

the input image to 256×256 and cropping the image 

randomly to 224×224. The family-aware features will 

be learn using three different configurations, angular 

softmax loss or sphereface loss, center loss, and the 

combination between those two losses.  For 

sphereface loss, we use an annealing optimization 

strategy which also used in the original SphereFace 

paper [12]. Let the original softmax loss function  

𝐿 =
1

𝑁
∑ − log (

𝑒
𝑓𝑦𝑖

∑ 𝑒
𝑓𝑗

𝑗

)𝑖 , the annealing optimization 

strategy works by changing the function 𝑓𝑦𝑖
 with  

𝑓𝑦𝑖
=

𝜆‖𝐱𝐢‖ cos(𝜃𝑦𝑖
)+‖𝐱𝐢‖𝜓(𝜃𝑦𝑖

)

𝜆+1
, such that the equation 

consists of original softmax loss function and angular 

softmax loss function with 𝜆 as a hyperparameter to 

control the proportion of the original softmax loss 

function, During the training process, we start set 

large 𝜆  as initialization and gradually reduce 𝜆 

during training. We conducted the training process 

using two different scenarios which described as 

follows 

• Scenario 1 (SC1). We initialize the 𝜆 = 1000 

and reduce to 𝜆 = 150 for 2 epoch, 𝜆 = 50 for 

6 epoch respectively, and perform the final 

finetuning for 8 epoch by freeze the deep metric 

layer. At the first 8 epoch we use sigmoid cross-

entropy loss for the kinship verification layer 

and changing the loss function in the final 

finetuning to softmax loss function. 

• Scenario 2 (SC2). In this scenario we want to 

further reduce the 𝜆  to 15. We initialize 𝜆 =
1000, reduce to 𝜆 = 150 for 2 epoch, 𝜆 = 50 

for 2 epoch, 𝜆 = 25 for 4 epoch, 𝜆 = 15 for 8 

epoch respectively, and perform the final 

finetuning for 8 epoch. Same as used in scenario 

1, we utilize the sigmoid cross-entropy loss 

function while reducing the 𝜆 and change it to 

softmax loss function in the final finetuning. 

In the testing process, the angular softmax loss 

layer is detached and only the family-aware features 

used for the testing process. The input image in the 

testing process is resized to 256×256 and cropping 

into 10 different crop regions (left-top, left-bottom, 

right-top, and right-bottom) with a resolution of 

224×224. The final classification decision is taken by 

averaging the prediction scores from those 10 

different crop regions. To decide whether a pair have 

a kinship relationship or not, we use the threshold of 

0.3 which 0.2 lower comparing with the standard 

threshold. The threshold is decided by performing a 

validation process using validation data in the 

training process.  

5.3 Results 

The summary of the FA-CNN experiments using 

the FIW dataset with 5-fold training/testing split 

configuration can be viewed in Table 1. We evaluate 

two different base CNN architecture that is taken  

No. Method 
siblings parent-child grandparent-grandchild 

Avg 
SS BB SIBS FD FS MD MS GFGD GFGS GMGD GMGS 

1 P-FaceNet 72.75 66.48 68.54 66.47 66.40 68.66 67.88 62.38 60.59 60.23 60.34 65.52 

2 
P-FaceNet + FA- 

AS-SC1 
75.42 69.30 71.32 68.41 68.09 71.15 70.52 62.32 61.38 62.16 61.88 67.46 

3 
P-FaceNet + FA- 

AS-SC2 
76.44 70.59 71.85 68.88 68.04 71.24 70.53 61.74 60.70 62.74 62.85 67.78 

4 
P-FaceNet + FA-

ASCL-SC1 
75.93 70.14 71.39 69.29 68.34 71.57 70.55 62.38 61.68 63.29 62.74 67.94 

5 
P-FaceNet + FA-

ASCL-SC2 
76.52 69.98 71.40 68.41 67.24 70.87 69.89 61.09 60.35 62.18 62.46 67.31 

6 P-SphereFace 70.28  65.01  66.00  65.89  65.84  67.54  65.92  60.75  60.07  59.78  59.90  64.27 

7 
P-SphereFace + FA-

AS-SC1 
73.39 67.15 69.39 67.87 67.78 69.84 68.70 64.02 61.50 62.59 61.60 66.72 

8 
P-SphereFace + FA-

AS-SC2 
74.57 68.25 69.82 67.63 68.20 70.38 70.19 61.57 61.73 61.13 61.79 66.85 

9 
P-SphereFace + FA-

ASCL-SC1 
73.62 68.05 69.65 67.37 67.28 70.12 68.73 63.09 61.47 62.21 62.09 66.70 

10 
P-SphereFace + FA-

ASCL-SC2 
74.36 69.25 69.84 66.72 67.22 70.34 68.82 61.24 61.05 61.18 61.58 66.51 
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Table 2. Verification results (%) on FIW dataset for 5-fold experiment using ensemble configuration. The number in the 

ensemble configuration is associated with single classifier in Table 1 

No. Method 
siblings parent-child grandparent-grandchild 

Avg 
SS BB SIBS FD FS MD MS GFGD GFGS GMGD GMGS 

1 
Ensemble (2) + 

(3) 
76.50 70.39 72.22 69.22 68.43 71.68 71.07 62.11 61.11 62.30 62.50 67.96 

2 
Ensemble (4) + 

(5) 
76.93 70.63 72.02 69.44 68.18 71.91 70.89 62.33 60.83 62.75 62.27 68.02 

3 
Ensemble (2) -

(5) 
77.30 70.79 72.60 69.94 68.76 72.36 71.66 62.40 61.58 63.10 62.43 68.45 

4 
Ensemble (7) + 

(8)  
74.64 68.04 70.23 68.28 68.50 70.98 69.40 63.09 62.32 62.37 62.18 67.28 

5 
Ensemble (9) + 

(10)  
74.40 69.05 70.33 67.43 67.60 70.79 69.29 62.62 61.35 61.82 62.19 66.99 

6 
Ensemble (7) -

(10) 
75.28 68.95 70.80 68.53 68.58 71.29 69.82 63.60 61.57 61.91 62.73 67.55 

7 
Ensemble (2) – 

(5) & (7) – (10)  
77.32 70.93 72.67 70.13 69.59 72.89 71.90 64.19 61.68 62.94 62.91 68.84 

 

from the deep face recognition model, including 

SphereFace and FaceNet. The weights for 

SphereFace CNN architecture are taken from the 

original implementation of SphereFace while the 

weights for FaceNet CNN architecture are taken from 

trained the FaceNet CNN classifier on LFW using 

center loss. As viewed in Table 1, the best average 

accuracy is achieved using the P-FaceNet+FA-

ASCL-SC1 classifier with an average accuracy of 

67.94%. The grandparent-grandchild kinship 

relationship is the most difficult case for our proposed 

classifier with a maximum average accuracy of 

around 62%. Our proposed classifier is struggling to 

classify grandparent-grandchild kinship relationship 

types due to the limited data available in the training 

dataset. The simplification process of the problem 

(from individual kinship relationship to kin/non-kin 

classification problem) may also be contributed to the 

performance of the classifier on grandparent-

grandchild kinship relationship types. The best 

performance of our proposed classifier is achieved on 

sister-sister (SS) kinship relationship type with an 

average accuracy of around 74-77%. Comparing with 

the classifier without family-aware features, our 

proposed can improve the performance of the 

classifier by around 2%.  

To further improve the performance of our 

proposed classifier, we conducted additional 

experiments by ensemble several classifiers. 

Ensemble configuration is constructed by taking 

several single classifiers that achieve top 

performance as showed in Table 1. Table 2 shows a 

summary of our experiments using the ensemble 

classifier on the FIW dataset. By using ensemble 

configuration, the performance of our proposed 

classifier is increased around 1-2%. The best 

performance of the ensemble classifier is achieved 

using an ensemble of top 8 single classifiers with an 

average accuracy of 68.84%. As showed in Table 2, 

all kinship relationship types performance is 

increased except for grandparent-grandchild types 

which achieved in around the same accuracy as the 

non-ensemble classifier.  

5.4 Experiment on RFIW 2017 

To provide more comprehensive performance 

evaluation, we tested our proposed model using FIW 

dataset with training/testing split configuration used 

for RFIW 2017 challenge. Unlike the dataset used in 

the previous experiment, the FIW dataset with RFIW 

2017 split configuration only consists of two kinship 

relationship types, siblings and parent-child. 

The training process is done using the same scenario 

and hyperparameters as used in the 5-fold RFIW 

dataset. Table 3 shows the validation results on the 

FIW dataset using RFIW 2017 split configuration. As 

showed in Table 3, the best accuracy is achieved 

using the ensemble of four P- FaceNet classifiers that 

trained using two different scenarios with an average 

accuracy of 72.39%. Unfortunately, our proposed 

classifier cannot be tested using the testing dataset on 

RFIW 2017 because the submission server is closed 

by the organizer.  
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Table 3. Validation results (%) on FIW dataset using RFIW 2017 split configuration 

No. Method 
siblings parent-child 

Avg 
SS BB SIBS FD FS MD MS 

1 P-FaceNet 71.26 66.1 70.55 66.51 67.14 68.59 68.02 68.31 

2 P-FaceNet + FA-AS-SC1 75.05 71.5 71.15 68.9 70.17 71.2 71.12 71.29 

3 P-FaceNet + FA-AS-SC2 75.86 71.61 72.06 66.67 68.87 69.55 70.83 70.78 

4 P-FaceNet + FA-ASCL-SC1 75.39 73.31 72.12 69.32 70.99 71.84 71.13 72.01 

5 P-FaceNet + FA-ASCL-SC2 76.13 70.77 71.68 66.31 68.65 70.49 69.77 70.54 

6 Ensemble (2) + (3) 76.47 72.91 72.27 68.38 70.37 71.27 72.11 71.96 

7 Ensemble (4) + (5) 76.45 73.03 71.99 68.19 70.33 71.46 70.67 71.73 

8 Ensemble (2) – (5) 76.72 73.73 73.11 68.69 70.92 71.79 71.77 72.39 

 
Table 4. Validation results (%) on FIW dataset using RFIW 2018 split configuration 

 

5.5 Experiment on RFIW 2018 

Additionally, we also tested our proposed model 

using RFIW 2018 dataset. The training process is 

done for around 20 epoch (we reduce the epoch after 

analyzing the validation results) and the same 

hyperparameter configuration as used in the previous 

experiment. Unlike the RFIW 2017 dataset that only 

consists of two type kinship relationships, the 

grandparent-grandchild kinship relationship is added 

in the RFIW 2018 dataset. 

Table 4 shows the validation results on RFIW 

2018 validation set. As showed in Table 4, the best 

accuracy is achieved using an ensemble of P-FaceNet 

+ FA-ASCL-SC1 and P-FaceNet + FA-ASCL-SC2 

with an average accuracy of 68.25 %. Same as the 

experiments on the FIW dataset using 5-fold 

training/testing split configuration, the proposed 

classifiers also struggle to classify grandparent-

grandchild kinship types. To compare the 

performance of our proposed classifier with other 

approaches, we tested our best model with the RFIW 

2018 testing set and achieved the 2nd best 

performance with an average accuracy of 66.96 %. 

5.6 Time Execution 

To analyze the characteristic of our proposed 

classifier, we compute the number of parameters and 

execution time of our proposed classifier. For GPU, 

we tested our proposed classifier on NVIDIA TITAN  

No. Method 
siblings parent-child grandparent-grandchild 

Avg 
SS BB SIBS FD FS MD MS GFGD GFGS GMGD GMGS 

1 P-FaceNet 68.86 74.40 73.67 66.69 67.33 67.17 68.35 56.14 60.85 56.97 58.94 65.39 

2 
P-FaceNet + FA- 

AS-SC1 
70.65 75.46 77.52 68.63 68.91 68.93 70.56 56.66 63.13 59.02 58.94 67.12 

3 
P-FaceNet + FA- 

AS-SC2 
72.77 76.16 78.06 69.41 68.73 70.40 70.61 56.23 63.55 59.04 60.08 67.73 

4 
P-FaceNet + FA-

ASCL-SC1 
71.98 75.53 76.9 69.10 69.37 69.87 70.68 58.25 65.16 60.77 59.76 67.94 

5 
P-FaceNet + FA-

ASCL-SC2 
73.58 76.44 77.55 69.21 68.54 69.99 69.84 56.76 65.16 59.55 59.97 67.87 

6 Ensemble (2) + (3) 71.98 75.96 78.08 69.35 69.11 70.01 70.98 56.35 64.43 59.18 59.05 67.68 

7 Ensemble (4) + (5) 73.2 76.07 77.71 69.71 69.26 70.3 70.69 57.86 65.52 60.96 59.49 68.25 

8 Ensemble (2) – (5)  72.95 76.19 78.41 69.55 69.46 70.66 71.22 57.05 64.69 60.48 59.59 68.20 
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Table 5. The number of parameters and execution time of 

our proposed classifier. 

No. Classifier #Params 

Execution 

Time (ms) 

GPU CPU 

1 
P-FaceNet + 

FA- AS 
73.94 M 16.82 1498 

2 
P-FaceNet + 

FA- ASCL 
102.26 M 17.52 1536 

3 
P-SphereFace 

+ FA- AS 
77.84 M 11.38 947 

4 
P-SphereFace 

+ FA- ASCL 
131.32 M 12.05 998 

 
Table 6. Comparison with several state-of-the-art 

classifier on FIW dataset. 

No. Method Split 
Avg.  

Acc 

1 SphereFace [6] 5-fold 69.18 % 

2 SDMLoss [24]  5-Fold 68.68 % 

3 LASL [25]  5-Fold1  63.71 % 

4 DML [26]  5-Fold2  71.03 % 

5 Fusion CNN [27] 5-Fold 64.22 % 

6 KinNet [17]  RFIW’17  74.85 % 

7 AdvNet [18]  RFIW’17  66.58 % 

8 LPQ-SIEDA [28]  RFIW’17  54.81 % 

9 Multi-Set Learning [29]  RFIW’17  63.10 % 

10 Parallel-SPCNN [30]  RFIW’17  61.33 % 

11 FSP Classifier [10]  n/a  58.60 % 

12 SelfKin [31]  RFIW’18  68.20 % 

13 FA-CNN (Our)  5-Fold  67.94 % 

14 
Ensemble of FA-CNN 

(Our)  
RFIW‘173 72.39 % 

15 
Ensemble of FA-CNN 

(Our)  
RFIW’18 66.96 % 

16 
Ensemble of FA-CNN 

(Our)  
5-Fold  68.84 % 

1)The tasks are face retrieval instead of verification 

2)Less face images comparing with standard 5-Fold training/testing split 

configuration 
3)Tested on validation set instead of testing set 

 

RTX GPU with 24 GB RAM. PC with Intel i5-8400 

@2.80 GHz equipped with 32 GB RAM was used to 

analyze the execution time on CPU. The execution 

time is taking by averaging 100 forward-pass of our 

proposed classifier. Table 5 shows the number of 

parameters of our proposed classifier along with the 

execution time on GPU and GPU. For GPU, we do 

not count the time for transferring the input image 

and the output of the classifier to from GPU.  

As shown in Table 5, our proposed classifier can 

run around 9 fps using GPU and about 1 fps to 0.67 

fps using CPU. Surprisingly, although the P-

SphereFace variant classifier has more parameters, 

the execution time is lower than the P-FaceNet 

variant classifier which has a smaller number of 

parameters. Those phenomena appear because a huge 

number of parameters on the P-SphereFace variant 

classifier occurs in the fully-connected layers. 

6 Comparison 
For comparison, we cannot directly compare our 

classifier with other methods due to the different 

training/testing split configuration. Table 5 shows a 

comparison between our proposed classifier with 

several other methods. We also include the 

information of training/testing split configuration that 

used to evaluate each classifier to make fair 

information regarding the performance of the 

classifier. As shown in Table 5, our proposed 

classifier is comparable with other state-of-the-art 

methods and achieved 2nd best performance on all 

training/testing split configuration of the FIW dataset. 

Unfortunately, we cannot test the proposed model 

with RFIW 2017 test set because the submission 

server for the test evaluation is already closed by the 

organizer.  

7 Conclusion 

We have presented our proposed family-aware 

convolutional neural network (FA-CNN) for the 

visual kinship verification problem. Our proposed 

FA-CNN classifier constructed by taking state-of-

the-art face recognition CNN architecture, freeze the 

weights and attaching layer for family-aware features 

learning with three additional fully-connected layers 

for the final classification decision. In short, we try to 

utilize deep metric learning features and combined 

with a softmax classifier to provide a probability 

output of the kin/non-kin category. Experiments on 

the FIW dataset show that our proposed classifier can 

achieve an average accuracy of 68.84% on the 5-fold 

configuration, 72.39% on RFIW 2017 dataset, and 

66.96% on RFIW 2018 dataset.  

An additional gating mechanism for the classifier 

may improve the performance of the classifier. One 

of the interesting questions is which area of the face 

is important or non-important regarding the visual 

kinship verification problems. Those phenomena can 

be used for gating the classifier and analyze the 
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performance of the classifier based on the selected 

area of the faces. 
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