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Abstract: One of the essential and well-known classes of combinatorial optimization problems commonly studies by 

researchers in the last five decades is called the Knapsack Problem (KP). Many variants of KP have been introduced 

for different real-world applications. Among them, the multiple-choice multi-dimensional Knapsack Problem (mm-

KP) is the most complex model with an NP-hard problem. Several authors have reported the robustness of heuristics 

for mm-KP; irrespective of its advantages, no method currently has the ability to solve the problem optimally all time. 

This paper aims to determine the best GA strategy and evaluate the performance of several heuristic algorithms to 

solve mm-KP. We investigate the use of two techniques that are included in the GA approach. The first, two different 

strategies are adopted to handle infeasible chromosomes, namely penalty and repairing procedure.  Second, we develop 

a new-simple local search to improve the quality of the solution found. Experimental studies on the 13 (thirteen) 

Benchmark instances are conducted to evaluate the effectiveness of the approach based on solutions quality, the 

number of the optimal solution reached, and average errors. The results showed that hr-GA tends to reach optimal/near-

optimal solutions. Furthermore, the results from studies on heuristic algorithms also show that hr-GA is a promising 

approach, with local search used to immensely improve the quality. 

Keywords: Repairing strategy, Local search, Heuristic method, Genetic algorithm, Knapsack problem. 

 

 

1. Introduction 

In 1950, Dantzig introduced the classical 

Knapsack Problem (KP), which is one of the famous 

combinatorial optimization problems. It represents 

the problem of selecting the subsets of the n items to 

maximize the corresponding profit, and the total 

weight does not exceed the Knapsack capacity. 

Practical applications of KP can be found in some of 

our daily life, such as the everyday diet program, an 

optimal investment plan, cargo loading, cutting stock, 

budget control, and financial management [1]. 

Different variants of KP are found in the literature, 

including, multiple-choice KP (mc-KP), multi-

dimensional KP (md-KP), and multiple-choices 

multi-dimensional KP (mm-KP) [2]. Among them, 

mm-KP is the most complex belongs to the class of 

an NP-hard problem.  It is considered as a variant of 

the md-KP where items are divided into groups, and 

precisely one item per group must be selected. The 

applications of mm-KP can be found in many real-

life applications, including Chip Multiprocessor Run-

time Resource Management [3], Global Routing of 

Wiring in Circuits [4], and Service Level Agreement 

[5].  

The methods proposed in the literature to solve 

mm-KP can be grouped into two classes: exact and 

heuristic methods. Since mm-KP is an NP-hard 

problem, its search space exponentially grows as the 

problem size increases. Therefore, many researchers 

pay more attention to develop heuristic methods to 
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solve mm-KP. Although the heuristics do not 

guarantee the finding of an optimal solution, those 

have been reported useful in determining 

optimal/near-optimal solutions for many hard 

optimization problems, including mm-KP. 

To our knowledge, the first heuristic algorithm to 

solve mm-KP was reported by Moser et al. [6]. The 

authors introduced a Lagrangian Relaxation 

algorithm that was repeatedly permuting to reduce 

the infeasibility of solutions. A heuristic algorithm 

based on aggressive resource usage was proposed by 

Khan et al. [7]. This heuristic algorithm performs 

better than Moser’s Algorithm. Then, Hifi presented 

several approaches to solve mm-KP. First, Hifi et al. 

proposed a heuristic approach with a guided-local 

search that used the principle based on trying several 

diversified solutions obtained after penalizing the 

costs of the objective function with penalties 

parameters [8]. Hifi et al. also developed an algorithm 

based on a reactive local search to try a 

diversification search and to escape local optima [9]. 

The authors reported that their methods are able to 

outperform Moser’s and Khan’s algorithms.  

Later, Cherfi and Hifi presented column 

generation methods hybridized with branch-and-

bound [10]. They reported that the approaches could 

obtain better solutions than former approaches on the 

benchmark instances. An ant colony algorithm 

approach to solve mm-KP was given by Iqbal et al. 

[11]. A heuristic method called oscillation (OSC 

Algorithm) was introduced by Htiouech et al. [12]. 

The authors used the constraint normalization 

method to improve the quality of solutions. Xia et al. 

developed another similar approach to the OSC 

algorithm, called Stochastic Local Search (SLS)  [13]. 

The algorithm adopted a simple additive weighting 

scheme to adjust the weight (multiplier) on 

dimensions.  
In one latest paper, Htiouech and Alzaidi 

proposed a heuristic algorithm called AMMKP [14]. 

The authors presented the way to decompose the mm 

-KP into many smaller sub-problems, and each 

subproblem then solved by an agent. The results 

show that the approach is able to solve several 

benchmark instances in the literature effectively. 
Since Holland introduced it in 1975 [15], the 

Genetic Algorithm (GA) has been a prevalent 

heuristic method.  Previous studies have shown the 

robustness of GA for various hard optimization 

problems, including the logistic problem [16] [17], 

scheduling problem [18], vehicle routing problem 

[19], and so on. For some specific cases, however, it 

often tends to provide local optimum and takes more 

time to reach optimal solutions. Therefore, it is 

crucial to carry out studies on designing an effective 

and efficient GA approach. 

The most essential and influential component 

associated with the implementation of GA is the 

method used to represent the chromosome. For many 

optimization problems, it is difficult to express the 

chromosome in a way capable of fulfilling the 

constraint functions. This is because the generated 

chromosome in the population is either feasible or 

infeasible. Two strategies are usually adopted to 

overcome the infeasible situation, namely repairing 

and penalty [20]. Another critical issue in the 

applications of GA is associated with the strategies 

used to quit the local-optimal solution. The most 

common approach is to develop and hybridize GA 

with a local search technique [21].  
This paper aims to determine the best GA strategy 

to solve mm-KP. To improve the quality of the 

solution, we developed a new simple local search and 

hybridized it into the GA loop. The approaches adopt 

both repairing and penalty strategy, namely as 

repairing-based (sr-GA), hybrid repairing-based GA 

(hr-GA), and hybrid penalty-based GA (hp-GA). 

Furthermore, some comparisons with other heuristic 

methods are also made based on the solution quality, 

average error, and the number of instances solved 

optimally. 

To evaluate the approaches, we conducted some 

numerical experiments on set Benchmark test 

problems taken from OR-Library. The 13 (thirteen) 

widely studied instances are used to measure the 

performances of the algorithms. The experimental 

results show that hr-GA has the merit of high 

effectiveness and can obtain competitive results with 

the other heuristics. 

We organize this paper into five sections. The 

second outlines the mathematical formulation of mm-

KP. The brief designs of the proposed algorithms, 

including the chromosome representation, genetic 

operation, and local search technique, are presented 

in the third section. The numerical experiments and 

the comparison of results to other methods are 

described in the fourth section. Finally, conclusions 

are drawn in the last part.  

2. Mathematical model and algorithm 

Let 
𝑖 
𝑗 

𝑘 

𝑅𝑘 

𝑟𝑖𝑗
𝑘 

index of class 

index of item  

index of resource 

resource constraint 𝑅 =  𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚 

the need for the kth resource for the jth item 

in the ith class 

mm-KP aims to fill one item from each class of 

Knapsack in order to satisfy the resource capacity 
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constraints and maximize the total profit values. 

Formally the mathematical formulation of mm-KP 

can be written as follows: 

 

max  𝑍 = ∑ .𝑛
𝑖=1 ∑ 𝑥𝑖𝑗𝑣𝑖𝑗

𝑟𝑖
𝑗=1                    (1) 

 

s.t. 

 

∑ .𝑛
𝑖=1 ∑ 𝑟𝑖𝑗

𝑘  𝑥𝑖𝑗 
𝑟𝑖
𝑗=1 ≤ 𝑅𝑘 , 𝑘 ϵ{1 … . . , 𝑚}        (2) 

 

∑ 𝑥𝑖𝑗 = 1, 𝑖 ϵ {1, … . . 𝑛}                
𝑟𝑖
𝑗=1 (3) 

 

𝑥𝑖𝑗 𝜖{0,1), 𝑖𝜖{1, … . . 𝑛}, 𝑗𝜖{1, … . . 𝑟𝑖}          (4) 

 

Here, the value of  𝑥𝑖𝑗  is either 1 or 0, which 

implies that item j in the i-th class is chosen, or not 

chosen. The 𝑣𝑖𝑗 represents the profit value of item j in 

the i-th class. 

3. Design of the algorithms 

3.1 Chromosome representation and evaluation 

When implementing GA for a specific 

application, the first step is to determine a way to 

represent a possible solution to the problems. We 

have to generate some feasible chromosomes, which 

is as much as the desired population size. For this 

research, we represent chromosome by using a string, 

that its length is equal to the number of classes. For 

example, the dataset I01 comprises of five groups (𝑖), 
five items (𝑗), and five resources (𝑘) in each class, 

with a resource constraint ( 𝑅𝑘 ) of 25. The 

chromosome representation for this instance I01 can 

be illustrated in Fig. 1. The data for this instance (I01) 

is as follows: 

In the above chromosome, the index represents 

the class, while the value item gene represents the 

item index 𝑗 in each class 𝑖. From the chromosome, 

the selected items are 4, 5, 3, 2, and 4 in the 1st, 2nd, 

3rd, 4th, and 5th class.  The decoding mechanism is 

done by selecting one item for each category. The 

number of resource consumption (𝑟𝑖𝑗𝑘) of each item 

is used to check for the resource constraint. Here, the 

total value of 𝑟𝑖𝑗𝑘 cannot exceed the (𝑅𝑘) amount of 

each class, as shown in Table 2. 

 

 
Figure. 1 Chromosome representation for instance I01 

 

 

Table 1. Data for IO1 Instance 

1 

7 1 3 1 1 6 

17 1 4 9 9 3 

25 4 3 9 8 2 

35 4 5 8 0 6 

36 6 8 3 0 7 

2 

9 0 0 4 4 2 

10 0 0 1 8 7 

10 1 1 6 0 6 

39 9 1 2 2 4 

44 8 7 0 8 2 

3 

15 2 0 5 5 5 

19 2 3 2 6 2 

20 3 1 6 4 7 

44 6 7 5 6 9 

50 9 5 9 2 2 

4 

5 0 1 3 8 0 

25 2 2 7 0 8 

32 5 5 6 1 9 

37 6 3 6 9 1 

37 7 9 7 2 3 

5 

24 4 0 7 0 2 

30 4 8 9 0 0 

32 5 2 7 2 0 

43 5 5 9 5 2 

44 9 2 2 2 3 

 

Table 2. The decoding of the chromosome 

 4 5 3 2 4 

𝑟𝑖𝑗1 4 8 3 2 5 

𝑟𝑖𝑗2 5 7 1 2 5 

𝑟𝑖𝑗3 8 0 6 7 9 

𝑟𝑖𝑗4 0 8 4 0 5 

𝑟𝑖𝑗5 6 2 7 8 1 

𝑅𝑘 23 25 21 19 25 

 

3.2 Crossover and mutation 

When implementing GA, two genetic operations 

are usually used to involve the new solution space, 

namely as crossover and mutation. The crossover 

operation is used to produce new offspring by 

recombining gen between selected parents. When 

choosing the crossover method, we have to consider 

the chromosome representation. There are several 

variants of the crossover methods introduced in the 

literature, such as one-point crossover, two-point 

crossover, PMX, WMX, etc.[8]. For this research, we  
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Figure. 2 The illustration of two-point crossover 

 

Figure. 3 The illustration of swap mutation operation 

 

adopted the two-point crossover technique, as 

illustrated in  Fig. 2 [22]. The following process 

explains the steps of the crossover operation. 

Step 1:  Choose two parents arbitrarily for crossover.  

Step 2: Randomly determine two points  

Step 3: Exchange the substring between these two 

points.   

3.3 Selection strategy 

The last stage of the GA process is the selection 

strategy to determine the chromosomes for the next 

generation. This stage adopted the elitist selection 

method. The pop_size best chromosomes (the highest 

fitness value) are chosen for the next generation. 

3.4 Local search 

Genetic algorithms (GA) function as a global 

search technique; however, it may often take a 

relatively long computational time to converge for a 

global optimum [24].  To solve this, many researchers 

suggested hybridizing GA with the local search 

technique. In this research, we developed a new and 

simple local search technique called Switching Local 

Search (SLS). It is done by first selecting a gene in 

the chromosome and changing its value randomly. 

The following Algorithm 1 illustrates the 

overall description of the proposed algorithms. 
 

Algorithm 1: GAs for mm-KP 

Input: data for the mm-KP test problem 

Output: the best solution 
Genetic Algorithm { 

Generate Initial population P(t); 

Evaluation Initial population P(t); 

Penalty strategy; 

While (not STOPPING CONDITION) 

 Crossover; 

 Mutation; 

 Evaluation; 

 (Penalty/Repairing strategy); 

 Selection; 

 Local Search Best chromosome P(t); 

 P = P(t+l); 

} 

} 

 

It is shown that two different strategies are used 

to handle an infeasible chromosome resulted in 

crossover and mutation operations. The first strategy 

includes a procedure to repair the infeasible 

chromosome. The second strategy applies the penalty 

value for the infeasible chromosome. As mm-KP is 

the maximization problem, the penalty value will 

decrease the objective value. Thus, it will reduce the 

opportunity of the chromosome to be selected for the 

next generation. The local search procedure was 

included in the GA loop and implemented to the best 

chromosome to improve the solution quality. 

4. Experimental design and results 

4.1 Experimental design 

To evaluate the effectiveness of the algorithms, 

several experimental studies have been conducted on 

13 (thirteen) different size Benchmark instances 

taken from OR-Library.  The test problems were 

divided into 3 (three) groups according to the size; 

small size (I01-I06), medium (I07-I09), and large 

(I10-I13). The number of variables in these 13 test 

problems varies from 25 to 4000. The detail of the  

 
Table 3. Details of the instances, where n denotes the 

number of classes, 𝑟𝑖 is the number of items in each 

group, and m is the number of resources 

No.  
Test 

problem 

Data Parameter 

N 𝒓𝒊 m Rk 
Pop 

_size 

Max 

_gen 

1 I01 5 5 5 25 50 1000 

2 I02 10 5 5 50 50 1500 

3 I03 15 10 10 75 50 2000 

4 I04 20 10 10 100 100 1000 

5 I05 25 10 10 125 100 1500 

6 I06 30 10 10 150 100 2000 

7 I07 100 10 10 500 200 1000 

8 I08 150 10 10 750 200 1500 

9 I09 200 10 10 1000 250 2000 

10 I10 250 10 10 1250 300 1000 

11 I11 300 10 10 1500 300 1500 

12 I12 350 10 10 1750 450 2000 

13 I13 400 10 10 2000 500 2000 
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Table 4. Performance of the GA approaches on all instances (SD: Standard Deviation) 

Dataset Optimum 
sr-GA hp-GA hr-GA 

Best Average SD Best Average SD Best Average SD 

I01 173 173 173 0 173 170 2.9 173 173 0 

I02 364 364 351 6.7 355 346.1 5.2 364 361 0.9 

I03 1602 1536 1502.5 15.9 1556 1518 14.5 1600 1552.5 28.7 

I04 3597 3433 3380.8 32.5 3488 3410 39.2 3571 3541.4 22 

I05 3905.7 3900.4 3800.8 103 3905.7 3892 26.9 3905.7 3902 2.6 

I06 4799.3 4787.2 4698.3 72.6 4799.3 4769.9 30.5 4799.3 4796 4.2 

I07 24587 23071 22997.8 39.7 23717 23627 51.1 23870 23541.1 79.2 

I08 36877 35536 34819.8 345.1 35547 32933 7764 35626 34932.4 90.2 

I09 49167 47309 46237.6 540.7 47415 45946 748.1 47370 47338.1 43.8 

I10 61437 58876 57826 568 59226 58898 245.1 59228 59056 40.3 

I11 73773 70706 70557.3 142.1 70724 66620 1724.7 71021 70782.5 99.4 

I12 86071 82089 89510.1 212 82305 77908 1195.6 82627 82342.8 104.5 

I13 98429 94006 93478 279.2 94116 88429 1319.2 94570 94321.2 163 

sr-GA: standard repairing-based GA (without local search) 

hr-GA: hybrid repairing-based GA 

hp-GA: hybrid penalty-based GA 

 

test problems used for the experiments is shown in 

Table 3. 

4.2 Results and discussion 

A total of three GA approaches were developed, 

namely standard repairing GA (sr-GA), hybrid 

penalty-based (hp-GA), and hybridized penalty-

based GA (hp-GA) by using Mathlab R2015b and run 

on PC Processor intel® Core TMi5-3470S. For the 

experiments, we set the values of crossover 

probability and mutation probability as 0.4 and 0.2, 

respectively. Each algorithm is run 20 (twenty) times 

for each test problem.  

Table 4 summarizes the overall results of the 

experiments, where the best and the average values 

represent the best and the average fitness value from 

the 20 (twenty) running times. Standard deviation 

(SD) is the distribution of statistical measures of the 

data distribution. Optimum is the best-obtained 

solution in the literature. The results highlight that 

repairing-based GA has better performance than 

penalty-based GA. Due to the difficulties in 

generating feasible chromosomes, the penalty 

strategy cannot give good results for all of the test 

problems. In addition, many offspring, which led to 

GA operations is also infeasible. It can be seen from 

these results that combining GA with the local search 

will improve the solution quality immensely. The 

overall results show that hr-GA has better 

performance to solve mm-KP all of the time.  

To assess the merit and limit of the proposed 

approach, we compare the performance of the new 

hr-GA to other heuristic algorithms available in the 

following literature: Moser [6], Heuristic [25], 

Modified-Reactive-Local-Search (MRLS) [9], Khan-

Li-Manning-Akbar Algorithm (KLMA) [7], Derived 
algorithm [8], Ant Colony Algorithm [11], OSC 

Algorithm [12], SLS Algorithm [13] and AMMKP 

algorithm [14].  

Table 5 summarizes the comparison of the results 

obtained by the heuristic algorithms. Similarly, in this 

Table, we also indicate our achievements that have 

the values greater than or equal to the best-published 

results in bold. These results show that hr-GA tends 

to reach optimal/near-optimal solutions to the 

problem. It can obtain the number of solution that 

better than or equal to the best solution in 5 cases 

among 13 cases, which better or same as the results 

given by Moser (1 case), Heuristic (1 case), RLS (4 

cases), KLMA (2 cases), Derived Algorithm (2 

cases), Ant Colony algorithm (5 cases), OSC 

algorithm (4 cases), SLS algorithm (6 cases) and 

AMMKP (11 cases). 

In this research, we calculate the percentage error 

value for each instance by using the following 

formula:  

 

𝐸𝑟𝑟𝑜𝑟  =   
𝑏𝑒𝑠𝑡−𝑜𝑝𝑡𝑖𝑚𝑢𝑚

  𝑜𝑝𝑡𝑖𝑚𝑢𝑚
 𝑥 100%        (5) 

 

The error comparisons of the heuristic methods for 

each test problem are illustrated in Figure 4.  It shows 

that hr-GA can obtain good quality and reach 

optimal/optimal solution to the problem most of the 

time.  

In this research, we also analyze the algorithm 

based on the average errors given by the methods for  
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Table 5. Results of some heuristic methods on all mm-KP instances 

Dataset Optimum Moser Heuristic RLS KLMA 
Der_ 

Algo 
Ant OSC SLS AMMKP hr-GA 

I01 173 151 167 173 167 173 173 173 173 173 173 

I02 364 291 354 364 354 356 364 364 364 364 364 

I03 1602 1464 1533 1595 1533 1553 1602 1594 1602 1594 1600 

I04 3597 3375 3437 3564 3437 3502 3569 3514 3592 3592 3571 

I05 3905.7 3905.7 3899.1 3905.7 3905.7 3905.2 3905.7 3905.7 3905.7 3905.7 3905.7 

I06 4799.3 4115.2 4799.3 4799.3 4799.3 4799.3 4799.3 4799.3 4799.3 4799.3 4799.3 

I07 24857 23556 23912 24121 23912 23983 24159 24162 24311 24310 24170 

I08 36877 35373 35979 36110 35979 36007 36240 36405 36463 36530 36641 

I09 49167 47205 47901 48291 47901 48048 48367 48567 48580 48711 48191 

I10 61437 58648 59811 60291 59811 60176 60475 60858 60661 60911 60228 

I11 73773 70532 71760 72283 71760 72003 72558 73022 72778 73200 72003 

I12 86071 82377 84141 84446 84141 84160 84707 85284 84889 85338 85015 

I13 98429 94166 96003 96850 96003 96103 96834 97545 97082 97744 97050 

#Best 1 1 4 2 2 5 4 6 11 5 

 

 

 
Figure 4. Error comparison between heuristic approaches on all mm-KP instances 

 

those 13 test problems. The computation indicates 

that hr-GA provides competitive solutions with the 

average error equal to 1.02%, better than those 

obtained by Moser (7.13%), Heuristic (2.62%), RLS 

(1.2%), KLMA (2.6%), and Derived algorithm 

(1.93%), and the ant colony algorithm (1.03%). 

However, in comparison to the OSC algorithm 

(0.91%), SLS algorithm (0.77%), and AMMKP 

(0.61%), it still has a slightly larger average error. We 

illustrate the comparison of the average error for each 

method in the following Figure 5.  

5. Conclusion 

This paper analyzed three different GA 

approaches to solving mm-KP. The proposed 

methods adopt different strategies to handle  



Received:  May 11, 2020.     Revised: July 22, 2020.                                                                                                        461 

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020           DOI: 10.22266/ijies2020.1031.40 

 

Figure 5. Comparison of the average errors between 

the heuristic methods 

 

infeasible chromosomes, namely penalty and 

repairing procedure. Those are also hybridized a new 

simple local search technique to improve the solution 

quality. Several numerical experiments on a set of 

Benchmark instances taken from OR-Library have 

been conducted to evaluate the performance of the 

algorithms. The results show that repairing-based GA 

has better performance than penalty-based GA. 

Hybridizing GA with local search has also improved 

the solution quality immensely. The comparisons 

with other heuristic algorithms are also made based 

on the solution quality, the number of optimal 

solutions obtained, and average errors. It concludes 

that hr-GA is able to get competitive results with the 

other heuristics. These findings add to a growing 

body of literature on the applications of GA. 
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