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Abstract: Globus Pallidus is an object in Magnetic Resonance Imaging (MRI) with severe intensity inhomogeneity 

and noises, such as small, low contrast, and weak boundary. Existing active contour methods fall into false boundaries 

while segmenting objects, which is smaller than the background like Globus Pallidus. This paper proposes a new local 

gaussian variational level set (NGVLS) for Globus Pallidus segmentation. We developed an energy term to create a 

smooth curve and prevent evolving curve into the false boundary. In the experiment, we compare NGVLS qualitatively 

and quantitively with existing methods such as Chan-Vese (CV), Region Scalable Fitting (RSF), Improved Region 

Scalable Fitting (Im-RSF), Local Pre-Fitting (LPF), and Local Gaussian Distribution Fitting (LGDF). We use Dice 

Similarity Coefficent (DSC) and Misclassification Error (ME) to measure the accuracy and error of the segmentation, 

respectively. The experiment is using 40 MRI datasets from Rumah Sakit National Hospital Surabaya, Indonesia. 

Qualitatively, the results show that NGVLS shows the best segmentation compared to the existing methods. 

Quantitatively, NGVLS achieves the highest average, minimum, and maximum value from DSC in 0.8291, 0.7119, 

and 0.9050, respectively. Also, NGVLS achieves the lowest average, minimum, and maximum value from ME in 

0.0050, 0.0023, and 0.0155, respectively. 
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1. Introduction 

Neurodegenerative is a group of diseases that refers 

to the loss of progressive neuron cells without cause 

[1]. These diseases generally attack older people, e.g. 

Alzheimer and Parkinson’s. Parkinson’s Disease is 

known as the most common neurodegenerative 

disease after Alzheimer which is  mostly affects older 

women [1], with symptoms such as shaking, stiffness, 

and balance, followed by several psychical disorders. 

However, diagnosing Parkinson’s is difficult since it 

must recognize the patient's medical history and other 

diagnosis [2]. Therefore, we should use a diagnosis 

based on neurodegenerative disorder imaging to see 

the patient’s brain structure. 

Magnetic resonance imaging (MRI) is the most 

common neurodegenerative disorder imaging 

technology because of its good contrast quality, high 

resolution, and does not require any injection into the 

body [2]. Over the past three decades, MRI has been 

used to diagnose Parkinson’s Disease and distinguish 

its type based on the patient’s symptoms [3]. One of 

the techniques for diagnosing Parkinson’s is to look 

at the structure of the Globus Pallidus, which is 

involved in electrical stimulation in the functional 

area of the inner brain structure of Parkinson’s 

Disease [4]. Globus Pallidus is part of the subcortical 

brain or basal ganglia nuclei [5], whose structure is a 

small and low boundary in the brain. Consequently, 

the segmentation of Globus Pallidus in MRI is needed. 

Image segmentation that divides image into 

several regions to separate the object from the 

background is rapidly developed. The segmentation 

process helps to group medical images to determine 

the desired anatomical objects [6] such as thick blood 

in microscopic images [7–9]. Globus Pallidus 

segmentation is also widely developed. Methods that 

have been developed using the brain atlas, or called 

atlas-based segmentation [5, 10], and based on deep 

learning [11]. The obstacle of the atlas-based method 

is making the atlas manually by experts which can 

take quite a long time. Meanwhile, the use of deep 

learning requires a large amount of training data that 
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is difficult to find. Besides that, deep learning 

computing is so high that a special computer is 

needed to execute the program. 

Another segmentation method is Active Contour. 

Active Contour uses the concept of energy to carry 

out the process of contour evolution of its initial 

region of interest without the learning process 

Conventionally, Active Contour can be grouped into 

two models, namely edge-based and region-based 

[12]. Edge-based models or Snakes use edges in the 

image in for contour evolution such that very 

sensitive to noise [13]. Then, region-based model or 

Level Set guides the evolution of contours based on 

the inside and outside of the region with a region 

descriptor that significantly improves the edge-based 

model in handling objects with weak boundary [14]. 

Active Contour can be applied to medical images in 

very straightforward way, i.e. dental panoramic 

radiograph [15] and histophatological image [16]. 

One of the Active Contour with the popular Level Set 

model is the Chan-Vese Model (CV) [17]. CV 

developes energy functions related to Mumford-Shah 

segmentation, and the Level Set function was used to 

represent curves. However, CV uses global 

information and can not divide image regions that 

contain intensity inhomogeneity. Intensity 

inhomogeneity is a common problem that is caused 

by imperfections in the process of image acquisition, 

which causes variations in intensity in the same 

tissues [18]. Therefore, segmentation of images with 

intensity inhomogeneity is very difficult to do by 

methods that have assumption of uniform intensity 

[19]. The solution of the problem of intensity 

inhomogeneity in CV is proposed by [20], which is 

called Region-Scalable Fitting (RSF). RSF is able to 

deal with intensity inhomogeneity effectively 

through its evolutionary function, which can 

approximate the intensity locally in contour [20,21]. 

However, RSF is very dependent on the initial 

position of the the initial contour and not able to 

overcome images with severe intensity 

inhomogeneity. Next, [22] improves RSF with a new 

variational level set, namely Improved Region 

Scalable Fitting (Im-RSF). However, Im-RSF still 

can not handle severe intensity inhomogeneity as in 

RSF. After that, [14] develops Active Contour based 

on Local Pre-Fitting  Function (LPF) with fast image 

segmentation. However, LPF cannot handle image 

with weak boundary and high noises. Then, [23] 

proposes Local Gaussian Distribution Fitting 

(LGDF) which is developed from bayes theory in the 

local gaussian distribution with mean and variance. 

LGDF considers local relationship to overcome 

intensity inhomogeneity with variational level set. It 

contains energy term as evolution driver, length and 

regularization term as smoother function and 

evolution stabilizer as used in RSF [20]. However, 

LGDF is hard to handle Globus Pallidus which has a 

smaller size than the background, since  the energy 

term can spread the boundary into the background 

which reduces the cleanliness of segmentation result. 

Therefore, the false boundary is segmented. 

In this research, we propose a new local gaussian 

variational level set (NGVLS) for the segmentation 

Globus Pallidus. NGVLS is developed from LGDF 

for contour evolution in local computation. NGVLS 

can smooth the curve into the boundary and avoid 

curve evolution to fall into false boundary in the 

range of initial contour. Firstly, we initialize the 

position of initial contour in Globus Pallidus 

manually. Secondly, we compute LGDF constants 

for the energy of the segmentation. Thirdly, we 

compute the gradient descent with NGVLS as our 

proposed method. Lastly, we update the contour until 

convergence and we get the Globus Pallidus 

segmentation. We compare NGVLS qualitatively and 

quantitively with existing methods such as Chan-

Vese (CV) [17] , Region Scalable Fitting (RSF) [20], 

Improved Region Scalable Fitting (Im-RSF) [22], 

Local Pre-Fitting (LPF) [14], and Local Gaussian 

Distribution Fitting (LGDF) [23]. 

This organization of this paper is arranged as 

follows. Section 2 discusses the basic of existing 

Active Contour in image segmentation, especially 

medical images have problems in noise such as 

intensity inhomogeneity, weak boundary, and low 

contrast. Section 3 presents the materials and method 

for the segmentation of Globus Pallidus using our 

New Local Gaussian Variational Level Set. Section 4 

describes the experiments and compares some 

existing methods with our proposed method. Finally, 

the conclusion and future work of this research are 

presented in Section 5.  We give list of mathematical 

notations that is used in this paper in Table 1. 

2. Literature review 

Table 1. Mathematical notations 

 

 

Notation Denote 

𝜙 Level set function 

∗ Convolution operator 

𝑑𝑖𝑣(… ) Divergence of vector 

∇𝜙 Gradient of level set function 

∇2𝜙 Laplacian of level set function 

𝑃(𝜙) Distance regularization term 
𝜕𝜙

𝜕𝑡
 Implicit difference of level set function 
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2.1 Chan-vese model 

The problem of edge-based models or Snakes that 

relies on image gradients to stop the curve evolution 

process results in the model only detect objects with 

edges that are defined by gradients, such that the 

curve is hard to detect boundary in noisy images [17]. 

Therefore, Chan-Vese (CV) model is not based on 

gradients in a stopping the process of curve evolution, 

but with the Mumford-Shah segmentation technique. 

The CV model can detect contours both with and 

without gradients as in objects with very smooth 

boundaries or non-continuous boundaries. 

The CV model minimizes energy in the process 

of segmentation. Let curve 𝐶 in image Ω as boundary 

𝐶0  of a region 𝜔 ⊂ Ω . Image  𝑢0  is formed from 

inside region 𝑢0
𝐼  and outside region 𝑢0

𝑂 . CV fitting 

term with constant values 𝑐1 and 𝑐2 is given in Eq. 

(1). 

 

𝐹1(𝐶) + 𝐹2(𝐶) = ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦
𝑢0

𝐼
 

+ ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2
𝑢0

𝑂 𝑑𝑥𝑑𝑦   (1) 

 

CV model minimizes fitting term above and adds 

regularizing term 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)  and region area 

𝐴𝑟𝑒𝑎(𝑢0
𝐼 )  such that functional energy 𝐹(𝑐1, 𝑐2, 𝐶) 

can be defined in Eq. (2).  

 

𝐹(𝑐1, 𝑐2, 𝐶) = 𝜇  .  𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣  .  𝐴𝑟𝑒𝑎(𝑢0
𝐼 ) 

    + 𝜆1 ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦
𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+

 𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2
𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑥𝑑𝑦   (2) 

 

Then, CV developing functional energy from 

Mumford-Shah with level set function 𝜙  for 

representing the curve as stopping process of curve 

evolution. The functional energy 𝐹(𝑐1, 𝑐2, ϕ) is 

shown in Eq. (3). 

 

𝐹(𝑐1, 𝑐2, ϕ)                                                       

= 𝜇 . 𝐿𝑒𝑛𝑔𝑡ℎ(𝜙 = 0) + 𝑣. 𝐴𝑟𝑒𝑎(𝜙 ≥ 0)   

+  𝑣  ∫ 𝛿(𝜙(𝑥, 𝑦))|∇𝜙(𝑥, 𝑦)|
Ω

𝑑𝑥𝑑𝑦 

+ 𝜆1 ∫ |𝑢0 − 𝑐1|2𝐻(𝜙(𝑥, 𝑦))
Ω

𝑑𝑥𝑑𝑦  

+ 𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2 (1 − 𝐻(𝜙(𝑥, 𝑦)))
Ω

𝑑𝑥𝑑𝑦 

(3) 

 

Where the definition of 𝐿𝑒𝑛𝑔𝑡ℎ(𝜙), 𝐴𝑟𝑒𝑎(𝜙), 

Heaviside function 𝐻𝜖 , and Dirac measure 𝛿𝜖  is 

explained in Eqs. (4)-(7). 

 

𝐿𝑒𝑛𝑔𝑡ℎ(𝜙 = 0) = ∫ |∇𝐻𝜖(𝜙)|
Ω

𝑑𝑥𝑑𝑦           

= ∫ 𝛿𝜖|∇𝜙|
Ω

𝑑𝑥𝑑𝑦          (4) 

 

𝐴𝑟𝑒𝑎(𝜙 ≥ 0) = ∫ |∇𝐻𝜖(𝜙)|
Ω

𝑑𝑥𝑑𝑦       (5) 

 

𝐻𝜖(𝑥) =
1

2
[1 +

2

𝜋
arctan (

𝑥

𝜖
)]          (6) 

 

𝛿𝜖(𝑥) = 𝐻′
𝜖

(𝑥) =
1

𝜋
[

𝜖

𝜖2+𝑥2]          (7) 

 

Through the function above, the constant values 

𝑐1 and 𝑐2 can be written in Eqs. (8) and (9). 

 

𝑐1(𝜙) =
∫ 𝑢0(𝑥,𝑦)𝐻(𝜙(𝑥,𝑦))Ω

𝑑𝑥𝑑𝑦

∫ 𝐻(𝜙(𝑥,𝑦))Ω
𝑑𝑥𝑑𝑦

            (8) 

 

𝑐2(𝜙) =
∫ 𝑢0(𝑥,𝑦)(1−𝐻(𝜙(𝑥,𝑦)))

Ω
𝑑𝑥𝑑𝑦

∫ (1−𝐻(𝜙(𝑥,𝑦)))𝑑𝑥𝑑𝑦
Ω

        (9) 

 

The energy function is minimized to obtain 

changes in level set function 𝜙  with the partial 

differential equation as shown in Eq. (10). The 

computation of Eq. (10) is done by a numerical 

analysis approach using implicit finite differences. 

 
𝜕𝜙

𝜕𝑡
= 𝛿𝜖(𝜙)[𝜇 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) − 𝑣     

 −𝜆1(𝑢0 − 𝑐1)2 +  𝜆2(𝑢0 − 𝑐2)]  (10) 

2.2 Region scalable fitting model 

In CV model,  image is assumed to have intensity 

homogeneity, which means the same object must 

have a homogeneous intensity [20]. This is certainly 

not suitable for the process of image segmentation 

with characteristic intensity inhomogeneity. When 

we applied the intensity homogeneity model to 

segment image with intensity inhomogeneity, the 

background can be detected as a region of interest. 

In general, the case of images with intensity 

inhomogeneity often occur in medical images, which 

causes by technical problems or noises on the object 

being photographed. In MRI, intensity 

inhomogeneity is not generated by radio frequencies 

and the variation of object susceptibility. Therefore, 

the MRI segmentation process generally requires an 

enhancement process on the homogeneity of the 

intensity as a preprocess stage. 
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Region Scalable Fitting (RSF) model was 

proposed by [20] to overcome image with 

inhomogeneous intensity through region-based 

Active Contour. RSF is seen as a contour with two 

fitting functions which approximate the intensity of 

the image locally from the two sides of the contour. 

The optimal fitting function is the average of the local 

intensity of the two sides of the contour. The region-

scalability is based on kernel functions with 

parameters that allows to use information from 

intensity in regions at controlled scales 

Let Ω1 = 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶) and Ω2 = 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶). Energy 

function local intesity fitting 𝜀𝑥
𝐹𝑖𝑡  is defined with 

Heaviside function 𝐻(𝜙)  through 𝑀1 = 𝐻(𝜙)  and 

𝑀2 = 1 − 𝐻(𝜙) as shown in Eq. (11). 

 

𝜀𝑥
𝐹𝑖𝑡(𝜙, 𝑓1(𝑥), 𝑓2(𝑥))                           

= ∑ 𝜆𝑖 ∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓𝑖(𝑥)|2𝑀𝑖(𝜙(𝑦)) 𝑑𝑦

2

𝑖=1

 

(11) 

 

In Eq. (11), 𝑓1(𝑥), 𝑓2(𝑥)  are two fitting values 

which approximates image intensity Ω𝑖,𝑖 = 1,2, 𝐼(𝑦) 

is an intensy in local region which lies in the middle 

of coordinate 𝑦, and 𝐾𝜎 is Gaussian kernel as defined 

in Eq. (12). 

 

𝐾𝜎(𝑢) =
1

(2𝜋)
𝑛
2𝜎𝑛

exp (−
|𝑢|2

2𝜎2)                 (12) 

 

The local intesity fitting 𝜀𝑥
𝐹𝑖𝑡  is a weighted 

average square error from image intensity  𝐼(𝑦) from 

contour 𝐶  by fitting value 𝑓1(𝑥), 𝑓2(𝑥), with 𝐾𝜎  as 

weight which determines intensity 𝐼(𝑦) in pixel 𝑦 . 

Then, the contribution of intensity 𝐼(𝑦)  in energy 

function 𝜀𝑥
𝐹𝑖𝑡 is reducing and approaching zero when 

the pixel 𝑦 stays away from mid pixel 𝑥. Therefore, 

the energy 𝜀𝑥
𝐹𝑖𝑡 is influenced by intensity 𝐼(𝑦) from 

pixel 𝑦 inside neighborhood 𝑥. 

RSF uses levet set regularization term in the level 

set function 𝜙  to maintain the regularization that 

needs for validation of computation and stabilization 

of level set curve. This level set regularization is 

defined in Eq. (13). After that, RSF minimizes energy 

function of contour evolution 𝐹(𝜙, 𝑓1, 𝑓2) as shown 

in Eq. (14). 

 

𝑃(𝜙) = ∫
1

2
(|∇𝜙(𝑥)| − 1)2 𝑑𝑥             (13) 

 

𝐹(𝜙, 𝑓1, 𝑓2) = 𝜀𝑥
𝐹𝑖𝑡(𝜙, 𝑓1(𝑥), 𝑓2(𝑥)) + 𝜇𝑃(𝜙)    

(14) 

 

In Eq. (14), 𝜇  is a positive constant. For 

minimizing the energy function, RSF uses gradient 

descent flow as the evolution curve equation. The 

function is computed through calculus of variation as 

show in Eq. (15). 

 

𝑓𝑖 =
𝐾𝜎(𝑥)∗[𝑀𝑖(𝜙(𝑥)𝐼(𝑥)]

𝐾𝜎(𝑥)∗𝑀𝑖(𝜙(𝑥))
, 𝑖 = 1,2            (15) 

 

Parameter 𝑓1 and 𝑓2 in Eq. (15) is fixed. Then, energy 

function 𝐹  is minimized using the gradient flow 

equation as in Eq. (16), with 𝑒1 and 𝑒2 are function 

which includes Gaussian kernel as shown in Eq. (17). 

 
𝜕𝜙

𝜕𝑡
= 𝛿𝜖(𝜙) (𝜆1𝑒1 − 𝜆2𝑒2)                                    

+ 𝑣𝛿𝜖(𝜙) 𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
) +  𝜇 (∇2𝜙 − 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
)) 

(17) 

 

In Eq. (17), the first term is fitting data energy or 

data fitting term, which plays an important role for 

contour evolution. The second term is arc length term, 

which gives smoothing effects in zero level set 

contour Then, the third term is level set regularization 

which keeps regularization of level set function. 

3. Materials and method 

3.1 Local gaussian distribution fitting model 

Image segmentation with Local Gaussian 

Distribution Fitting (LGDF) is developed using the 

distribution of local intensities through dividing 

image itu partitions from neighborhood [23]. Let Ω 

denotes an image domain for every point 𝑥 . We 

defines a circular neighborhood 𝑂𝑥 ≜ {𝑦 |  |𝑥 − 𝑦| ≤
𝑟}  with radius 𝑟 . Then, {Ω𝑖  }𝑖=1

𝑛  denotes a set of 

number of image regions 𝑛  such that Ω = ⋃ Ω𝑖
𝑛
𝑖=1  

and Ω𝑖 ∩ Ω𝑗 ≠ ∅, ∀𝑖 ≠ 𝑗 . The regions {Ω𝑖 }𝑖=1
𝑛  is 

dividing image Ω  based on the neighborhood 𝑂𝑥 

such that {Ω𝑖  }𝑖=1
𝑛 = {Ω𝑖 ∩ 𝑂𝑥 }𝑖=1

𝑛 . The 

segmentation of circular neighborhood 𝑂𝑥  is 

considered as Max A Posteriori Probability (MAP). 

Let 𝑃(𝑦 ∈ Ω𝑖 ∩ 𝑂𝑥|𝐼(𝑦))  be the A Posteriori 

Probability of the subregions Ω𝑖 ∩ 𝑂𝑥  with the 

neighborhood of intensity 𝐼(𝑦) . Based on the 

Bayesian theorem, 𝑃(𝑦 ∈ Ω𝑖 ∩ 𝑂𝑥|𝐼(𝑦)), or can be 

denoted by 𝑃𝑖,𝑥(𝐼(𝑦))  is the probabilty density in 

region Ω𝑖 ∩ 𝑂𝑥  with 𝑃(𝑦 ∈ Ω𝑖 ∩ 𝑂𝑥) as the A Priori 

Probability of Region Ω𝑖 ∩ 𝑂𝑥  for all possible 

divided by neighborhood 𝑂𝑥  and 𝑃(𝐼(𝑦))  as the A 

Priori Probability of Pixel Intensity 𝐼(𝑦) . The 

Bayesian theorem is given in Eq. (18). 
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Figure. 1 Flowchart of the proposed method (NGVLS) 
 

𝑃(𝑦 ∈ Ω𝑖 ∩ 𝑂𝑥|𝐼(𝑦)) =
𝑃(𝑦∈Ω𝑖∩𝑂𝑥|𝐼(𝑦)  𝑃(𝑦∈Ω𝑖∩𝑂𝑥) 

𝑃(𝐼(𝑦))
 

(18) 

 

Since the A Priori Probability Pixel Intensity 

𝑃(𝐼(𝑦))  is independent of choosing regions and 

given all partitions are equally possible such that 

𝑃(𝑦 ∈ Ω𝑖 ∩ 𝑂𝑥) =
1

𝑛
, therefore they can be neglected 

in computation of Bayesian theorem in this case. 

LGDF assumes the pixel for every region is 

independent such that the MAP can be achieved by 

the maximization of  𝑃𝑖,𝑥(𝐼(𝑦)) across the regions 𝑂𝑥. 

Then, the maximization is converted to the 

minimization for getting energy of LGDF 𝐸𝑛𝑥
𝐿𝐺𝐷𝐹 

through taking a logarithm. The energy is defined in 

Eq. (17). 

 

𝐸𝑛𝑥
𝐿𝐺𝐷𝐹 =  ∑ ∫ −log |𝑃𝑖,𝑥(𝐼(𝑦))| 𝑑𝑦     𝑛

𝑖=1 (19) 

 

For approaching A Posteriori Probability 

𝑃𝑖,𝑥(𝐼(𝑦)), LGDF uses Gaussian probability density 

and assumes the mean and variance of the Gaussian 

distribution are spatially varying parameters. 

Therefore, the A Posteriori Probability 𝑃𝑖,𝑥(𝐼(𝑦)) in 

Gaussian distribution with local average 𝑢𝑖  and 

standard deviation 𝜎𝑖 can be written in Eq. (18). 

 

𝑃𝑖,𝑥(𝐼(𝑦)) =
1

√2𝜋 𝜎𝑖
𝑒𝑥𝑝 (

(𝑢𝑖−𝐼(𝑦))
2

2𝜎𝑖
2 )          (20) 

 

Then, LGDF uses non-negative weighting 

function 𝑤  for fast image segmentation such that 

object can be closer to be segmentated. The energy 

𝐸𝑛𝑥
𝐿𝐺𝐷𝐹 can be rewritten as in Eq. (21). 

 

𝐸𝑛𝑥
𝐿𝐺𝐷𝐹 = ∑ ∫ − 𝑤  log |𝑃𝑖,𝑥(𝐼(𝑦))| 𝑑𝑦  𝑛

𝑖=1 (21) 

 

In the case of image segmentation, the domain of 

image Ω can be divided into two regions: foreground 

(object) region Ω𝐹 and background region Ω𝐵. There 

regions can be represented into level set function𝜙 

such that Ω𝐹 = {𝜙 < 0} and  Ω𝐵 = {𝜙 > 0}. Same 

with CV and RSF, LGDF uses 𝐿𝑒𝑛𝑔𝑡ℎ(𝜙), 𝐴𝑟𝑒𝑎(𝜙), 

Heaviside function 𝐻𝜖, and Dirac measure 𝛿𝜖 in the 

zero level set functions. 

Parameters 𝑢𝑖 and 𝜎𝑖
2 in A Posteriori Probability 

𝑃𝑖,𝑥(𝐼(𝑦))  is minimized by calculus of variations 

such that satisfy Euler-Lagrange equations. Then, 

LGDF obtains 𝑢𝑖  and 𝜎𝑖
2 as given in Eqs. (22) and 

(23). 

 

𝑢𝑖 =
∫ 𝑤 𝐼(𝑦) 𝑀(𝜙(𝑦))𝑑𝑦

∫ 𝑤 𝑀(𝜙(𝑦))𝑑𝑦
                 (22) 

 

𝜎𝑖
2 =

∫ 𝑤 (𝑢𝑖−𝐼(𝑦))
2

 𝑀(𝜙(𝑦))𝑑𝑦

∫ 𝑤 𝑀(𝜙(𝑦))𝑑𝑦
            (23) 

 

The funtional energy should be minimized 

through the solution of gradient descent flow 

equation as in RSF. The gradient descent flow 

includes energy term as the first term, length term as 

the second term, and regularization term that can be 

seen in Eq. (24). The constant 𝑒1 and 𝑒2 for driving 

LGDF segmentation  is defined in Eqs. (25) and (26). 

 
𝜕𝜙

𝜕𝑡
= −𝛿𝜖(𝜙) (𝑒1 − 𝑒2) +  𝑣𝛿𝜖(𝜙) 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
)  

+ 𝜇 (∇2𝜙 − 𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
))                    (24) 

 

𝑒1 = ∫ 𝑤 [log(𝜎1) +
(𝑢𝑖−𝐼(𝑦))

2

2𝜎1
2 ] 𝑑𝑦          (25) 

 

𝑒2 = ∫ 𝑤 [log(𝜎2) +
(𝑢𝑖−𝐼(𝑦))

2

2𝜎2
2 ] 𝑑𝑦          (26) 

 

3.2 New local gaussian variational level set 

We develop the energy term from LGDF by 

arctan variational level set [22] for limiting the 

segmentation range in image with severe intensity 

inhomogeneity. Consequently, the gradient descent 

flow is upgraded into the New Local Gaussian 

Variational Level Set (NGVLS) as in Eq. (27). 
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𝜕𝜙

𝜕𝑡
= − 𝛾 𝛿𝜖(𝜙) 𝑎𝑟𝑐𝑡𝑎𝑛(𝑒1 − 𝑒2) +  𝑣 𝛿𝜖(𝜙)  

𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
) +  𝜇 (∇2𝜙 − 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
))  (27) 

 

The arctan (… )  function is used in NGVLS to 

manage and smooth the data driver. Parameter 𝛾 is a 

constant which sets the segmentation speed and limits 

the segmentation range such that the slope of the 

curve is fixed. This new gradient descent flow leads 

to as minimize as possible to the segmented image for 

having false boundary in the initialized contour.  

The flowchart step of the proposed method of 

Globus Pallidus segmentation is shown in Fig. 1. The 

input is selected 2D MRI Image which concludes 

Globus Pallidus and then doing this following steps: 

Step 1: Initialize the various parameters: number 

of iteration 𝑁, 𝑐0, 𝜎, Δ𝑡, 𝛾, 𝑣, 𝜇, and zero level set 

function (contour) 𝜙0   in region of foreground Ω𝐹 

and region of background Ω𝐵 in image Ω with pixel 

𝑥 as defined in Eq. (28). 

 

𝜙0(𝑥) = {
−𝑐0, 𝑥 ∈ Ω𝐹 ⊂ Ω
𝑐0, 𝑥 ∈ Ω𝐵 ⊂ Ω 

                   (28) 

 

Step2: Compute LGDF constants 𝑒1  and 𝑒2 

according to Eqs. (25) and (26) 

Step3: Compute gradient descent flow NGVLS 

with Eq. (27) 

Step4: Update the level set function evolution 

with Eq. (29) 

 

𝜙𝑖+1(𝑥) = 𝜙𝑖(𝑥) + Δ𝑡.
𝜕𝜙

𝜕𝑡
                (29) 

 

Step5: Return to Step 2 until convergence or the 

maximum 𝑁 is reached. 

4. Results and analysis 

4.1 Datasets 

The MRI datasets are obtained from Rumah Sakit 

National Hospital in Surabaya, Indonesia. This 

research is using 40 MRI datasets which is from 40 

patients. 

The images are available in DICOM (.dcm) 

Format and in Sagittal slicing by default. Then, we 

change the default Sagittal slicing into Axial slicing 

for the need of seeing Globus Pallidus for the 

research. After that, we convert the DICOM into the 

BITMAP (.bmp) for 2D image segmentation using 

active contour and choose the image slice which 

contains Globus Pallidus. The ground truth images 

are segmented manually and confirmed by the 

experts (doctors). 

4.2 Performance metrics evaluation 

In this research, we measure the performance of 

segmentation result quantitatively. For the first 

performance metrics, we use Dice Similarity 

Coefficient (DSC) to calculate accuracy of the 

segmentation. Thus, the more DSC is close to 1, the 

more accurate the segmentation result. 

Let 𝑆𝑀  and 𝑆𝐺  present region of segmentation 

from the model and ground truth, respectively. The 

segmentation from ground truth is achieved by 

manual segmentation which is must be confirmed by 

the experts. DSC is defined in Eq. (30). 

 

𝐷𝑆𝐶 =
2(𝑆𝑀∩𝑆𝐺)

𝑆𝑀+𝑆𝐺
                             (30) 

 

For the second performance metrics, we use 

Misclassification Error (ME) to measure the error of 

segmented foreground (object). As a result, the more 

ME is close to 0 , the more minimize error of 

segmentation result produced by model from the 

ground truth. 

Let 𝐹𝐺 and 𝐵𝐺 be the pixels of foreground and the 

background from the ground truth image, 

respectively. Let 𝐹𝑀  and 𝐵𝑀  be the pixels of 

foreground and the background from the model 

(segmented) image, respectively. ME is defined in Eq. 

(31). 

 

𝑀𝐸 = 1 −
|𝐹𝐺∩𝐹𝑀|+|𝐵𝐺∩𝐵𝑀|

|𝐹𝐺|+|𝐵𝐺|
                  (31) 

4.3 Comparison with existing methods 

We compare NGVLS as the proposed method 

with popular existing methods such as Chan-Vese 

(CV) [17], Region Scalable Fitting (RSF) [20], 

Improved Region Scalable Fitting (Im-RSF) [22], 

Local Pre-Fitting (LPF) [14], and Local Gaussian 

Distribution Fitting (LGDF) [23]. The parameters of 

NGVLS are choosed by default for all images to test: 

𝑁 = 200 , 𝑐0 = 1.0 , 𝜎 = 5.0 , Δ𝑡 = 0.1 , 𝛾 = 1.0 , 

𝑣 = 0.001 × 255 × 255, 𝜇 = 1.0. We initialize the 

contour manually before segmentation on same 

position for every segmentation method before 

segmentation for comparing our proposed method 

with other existing methods.  

We give examples result of experiment in Fig. 2 

for qualitative analysis. As seen in Fig. 2 (a), Globus 

Pallidus as the object has smaller size than the 

background. CV, RSF, Im-RSF, and LPF have failed  

to segment Globus Pallidus very well. Performance 
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Figure. 2 Examples result of experiment: (a) initial contour, (b) ground truth, (c) result of CV [17], (d) result of RSF 

[20], (e) result of im-RSF [22], (f) result of LPF [14], (g) result of LGDF [23], and (h) result of NGVLS 

(a) 

     

(b) 

     

(c) 

     

(d) 

     

(e) 

     

(f) 

     

(g) 

     

(h) 
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Table 2. Comparison of performance metrics 

 

of CV depends on the edge quality of the image 

which assumes intensity homogeneity, while MRI 

has intensity inhomogeneity and the object Globus 

Pallidus is very low boundary and smaller than the 

background. RSF can not handle severe intensity 

inhomogeneity in the image such that the detected 

boundary is spread into background. Im-RSF is still 

can not handle severe intensity inhomogeneity as 

RSF. LPF can not handle weak boundary in Globus 

Pallidus such that it gives bad segmentation. LGDF 

shows better result since the local computation 

searches the object based on the initial contour. 

However, the result of segmentation is dirty. The 

background can be detected as object which effects 

on the cleanliness of the segmentation. Our proposed 

method (NGVLS) gives the best segmentation result. 

Through arctan variational level set, the contour is 

smooth through the boundary and the segmentation 

range is limited such that the curve is not fall into 

false boundary which improves LGDF in cleanliness 

of segmentation result. 

The result of performance metrics is shown in 

Table 2. We give the comparison of performance 

metrics based on descriptive statistics for measuring 

the quantitative result of the experiments, such as 

average, standard deviation (Std), minimum value of 

the performance metrics (Min), and maximum value 

of the performance metrics (Max). As seen in Table 

2, LPF performes the lowest value of DSC and the 

highest value of ME. This means the accuracy of 

segmentation is very little followed by the highest 

error in segmenting Globus Pallidus. Even though the 

Im-RSF achieves higher than CV and RSF, Im-RSF 

does not improve the accuracy and error of 

segmentation since CV, RSF, Im-RSF and LPF give 

small average DSC (below 0.1) and big ME (above 

0.1). LGDF performes better than CV and RSF. 

However, LGDF still the biggest Std which means 

the spread of the segmentation result is variant. This 

can be seen that LGDF has very poor Min value and 

suddenly has very big Max value that means there is 

image with good segmentation and another with 

worst segmentation. Our proposed method (NGVLS) 

achieves the best segmentation result between 

existing methods with highest DSC in accuracy 

performance and lowest ME in error performance. 

Lower Std in NGVLS shows that each result is closer 

to the average. Then, the Min value of DSC is still 

high in 0.7119 and can achieve the Max value of DSC 

in 0.9050. The significance of NGVLS achieves the 

highest accuracy and the lowest error in segmenting 

Globus Pallidus is proved either qualitatively as in 

Fig. 2 or quantitatively as in Table 2. 

5. Conclusion 

This paper proposes a new local gaussian 

variational level set (NGVLS) for Globus Pallidus 

segmentation.  NGVLS improves the energy term in 

LGDF with arctan function in case of smoothing 

contour into the boundary and avoiding segmented 

image into false boundary. NGVLS is evaluated 

quantitavely by looking the output image 

segmentation and qualitatively by calculating 

performance metrics, such as Dice Similarity 

Coefficent (DSC) for measuring accuracy and 

Misclassification Error (ME) for measuring error of 

segmentation. The performance metrics evaluation is 

presented by descriptive average, such as average, 

standard deviation (Std), minimum value of the 

performance metrics (Min), and maximum value of 

the performance metrics (Max). 

The experiment is implemented on 40 MRI 

datasets which is converted into 2D images. The 

experimental results show that NGVLS achieves the 

best segmentation result both in quantitative and 

qualitative. Qualitatively, NGVLS is segmenting the 

Globus Pallidus accurately through the exact 

boundary. Quantitatively, NGVLS achieves the best 

Method 
Evaluation 

Metrics 

Descriptive Statistics 

Average Std Min Max 

CV 

[17] 

DSC 0.0216 0.0189 0.0015 0.0642 

ME 0.4659 0.0860 0.0052 0.5630 

RSF 

[20] 

DSC 0.0744 0.0239 0.0131 0.1199 

ME 0.2925 0.0741 0.1763 0.4923 

Im-RSF 

[22] 

DSC 0.0886 0.02682 0.0604 0.1937 

ME 0.2499 0.04650 0.1461 0.356 

LPF 

[14] 

DSC 0.0038 0.00330 0 0.011 

ME 0.3939 0.04958 0.1836 0.4692 

LGDF 

[23] 

DSC 0.6914 0.1730 0.276 0.8857 

ME 0.0129 0.0126 0.0024 0.0548 

Proposed 

(NGVLS) 

DSC 0.8291 0.0503 0.7119 0.905 

ME 0.005 0.0025 0.0023 0.0155 
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segmentation with the highest DSC average in 0.8291 

and lowest ME average in 0.0050. The lower Std is 

proved the stabilization of each result from the 

average. Moreover, NGVLS is still achieve the 

highest result in Min (0.7119 in DSC and 0.0023 in 

ME) and Max (0.9050 in DSC and 0.0155 in ME).  

Therefore, NGVLS as the proposed method gives 

significant improve to the segmentation of Globus 

Pallidus with characteristic of severe intensity 

inhomogeneity, low boundary, and having smaller 

size than the background. Furthermore, the 

segmentation of Globus Pallidus can be used for 

detecting Parkinson’s Disease in medical application. 

For future work, NGVLS can be applied into other 

medical images for improving better image 

segmentation.  
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