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Abstract: Orthogonal Frequency Division Multiplexing (OFDM) signal would be damaged significantly by inter-

carrier interference (ICI) in higher time-varying fading channels. The ICI leads to fatal degradation of bit error rate 

(BER) performance due to the loss of orthogonality among subcarriers. To solve this problem, this paper proposes a 

high accuracy time-domain channel impulse response (CIR) estimation method and low-complexity based time-

domain equalization (TDE) method for solving the simultaneous equations instead of using an inverse matrix 

calculation which can achieve better BER performance and lower computation complexity even in higher time-varying 

fading channels. The salient features of proposed method are to employ a time-domain training sequence (TS) in the 

estimation of channel impulse response (CIR) instead of using pilot subcarriers in the frequency domain and to employ 

the time domain equalization (TDE) method with maximum likelihood (ML) estimation instead of using a conventional 

frequency domain equalization (FDE) method. This paper also proposes a low-complexity iterative method for solving 

the simultaneous equations instead of using an inverse matrix calculation, which remains the computation complexity 

up to 7.8% of inverse matrix calculation with the same BER performance but achieves the BER performance when 

compared with the conventional method. This paper presents various simulation results in higher time-varying fading 

channels (vehicle speed ≈ 381 km/hrs) to demonstrate the effectiveness of the proposed method as compared with 

conventional FDE and TDE methods. 
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1. Introduction 

Orthogonal frequency division multiplexing 

(OFDM) technique has been received very much 

attention especially in the field of wireless 

communications because of its efficient usage of 

frequency bandwidth and robustness to multipath 

fading channels. From these advantages, OFDM 

already adopted as standard transmission techniques 

in various wireless communications systems such as 

digital video broadcasting (DVB), wireless local area 

network (WLAN), and fourth-generation (4G) 

cellular systems [1-5]. 

The frequency-domain equalization (FDE) 

method is usually employed to compensate for the 

fading distortion in the OFDM systems under the 

quasi-static multipath fading channels, where 

channel impulse response (CIR) in the time domain 

can be considered as a constant during one OFDM 

symbol period. In other words, the channel frequency 

response (CFR) which be used in the conventional 

FDE method and assumes constant during one 

OFDM symbol period. However, the CIR would be 

no more constant even during one OFDM symbol 

period in higher time-varying fading channels and 

causes the loss of orthogonality among subcarriers 

due to inter-carrier interference (ICI) [6-8]. From this 

fact, it is hard to compensate for the ICI by using the 

conventional FDE method, and the bit error rate 

(BER) performance of the OFDM signal would be 

degraded relatively in higher time-varying fading 

channels. 

To solve the above problems, many authors have 

contributed many equalization methods to combat the 

ICI and also many methods are employed the 
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estimated CIR at every sampling time to compensate 

for the ICI [9-13]. In [9] and [10], the equalization 

method is operated in the frequency domain. These 

would lead to higher computational complexity due 

to the reconstruction of the inverse matrix. In [11] and 

[12], the ICI mitigation methods were proposed in the 

time domain, however, both methods using pilot 

subcarriers in the estimation of CIR. The CIR 

estimation accuracy would be degraded in higher 

time-varying fading channels. In [13], we proposed 

the ICI mitigation method both for channel 

estimation and TDE methods in higher time-varying 

fading channels. The proposed method can achieve 

better BER performance. However, in demodulation 

processing, this method requires calculating the 

direct inverse at every OFDM symbol which leads to 

high computation complexity and not suitable in a 

practical system. 

Although the proposed equalization methods [9]-

[13] can achieve better BER performance than the 

conventional FDE method, however, all methods 

require the higher CIR estimation accuracy at every 

sampling time. This would cause higher computation 

complexity for calculation inverse matrix at every 

OFDM symbol. 

The CIR estimation usually employs scattered 

pilot subcarriers which inserted into data subcarriers 

periodically in the frequency axis. The pilot 

subcarriers based CIR estimation can achieve higher 

CIR estimation accuracy only when the number of N-

point FFT/IFFT is equal to the number of M-point 

data subcarriers, which corresponds to the Nyquist 

sampling [14]. However, in the practical OFDM 

transmitter, a certain number of null subcarriers (zero 

paddings) are added at both ends of OFDM data 

subcarriers to reject the aliasing that occurs at the 

output of digital to analog (D/A) converter. Since 

actual CIR is occurred based on overall bandwidth 

including zero paddings, the estimated CIR by using 

the pilot subcarriers inserted within OFDM allocated 

bandwidth is different from actual CIR, especially 

when increasing the number of zero paddings. To 

solve this problem, we proposed a time-domain CIR 

estimation method by using a time-domain training 

sequence (TS), which can achieve higher CIR 

estimation accuracy even when the sampling rate of 

the OFDM signal is non-Nyquist sampling [13]. 

To reduce computation complexity and to solve 

the simultaneous equations for the equalization 

method in [9] and [13], an iterative method is 

employed instead of direct inverse matrix calculation. 

To employ an iterative method, the coefficients 

matrix of the simultaneous equations must be the 

square matrix. And to satisfy the above requirement, 

[9] employed the OFDM signal with guard interval 

(GI) in which the coefficients matrix for the CIR over 

one data symbol period becomes the square matrix. 

On the other hand, the method in [13] employed the 

OFDM signal without GI in which the square 

coefficients matrix is generated by using the overlap 

and add (OLA) matrix operation after removing the 

interference from time-domain TS. The coefficients 

matrixes obtained from both [9] and [13] are entirely 

the same, which means that the time domain TS in 

[13] plays the role of GI in [9]. In [15], we proposed 

the TDE method with a partial differential solution 

for the OFDM signal without GI in quasi-static 

environments. The proposed TDE method shows 

much better BER performance than the conventional 

FDE method in which the data information is 

demodulated based on maximum likelihood (ML) 

estimation. From the results in [15], it can be 

expected that BER performance of proposed TDE 

without GI would have the possibility to improve 

BER performance further as compared with TDE 

methods in [9] and [13] even in higher time-varying 

fading channels. 

To achieve superior BER performance both for 

quasi-static and higher time-varying fading channels, 

this paper firstly proposes the CIR estimation method 

by using the TS signal. The feature of the proposed 

CIR estimation method is to employ the TS signal 

added to each data symbol over one frame instead of 

conventional pilot subcarriers. Secondly, this paper 

proposes a low complexity equalization method for 

OFDM with the TS signal, which uses the CIR matrix 

in the time domain instead of using the CFR matrix 

in the conventional FDE method. The significant 

feature of the proposed TDE method is to employ the 

partial differential solution in solving the maximum 

likelihood (ML) equation of the expected time-

domain information. As for the result of the 

minimization problem for solving ML equation, the 

coefficient matrix of the simultaneous equations in 

the proposed method becomes a square matrix, which 

can be solved iteratively without using inverse matrix 

calculation. 

The rest of this paper is shown by the following. 

Section 2 introduces the problem of conventional 

FDE in higher time-varying fading channels. Section 

3 describes the problem of Pilot subcarrier base CIR 

estimation in non-Nyquist sampling and also 

proposes a CIR estimation method by using the TS 

signal. Section 4 proposes the TDE method and low-

complexity based TDE method in conjunction with 

estimated CIR at every sampling time. Section 5 

presents different computer simulation results to 

verify the effectiveness of the proposed method as 

compared with conventional FDE methods. Section 6 

draws some conclusions. 
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2. Problem of conventional FDE method in 

the higher time-varying fading channel 

2.1 OFDM signal and channel models 

In OFDM systems, input data are encoded by a 

forward error correction (FEC) code [16]. The M 

encoded data are modulated by quadrature amplitude 

modulation (QAM) method. The OFDM signal 

XD(m,k) at k-th subcarriers of an m-th symbol is 

mapped into a certain frequency band with M 

subcarriers continuously from subcarrier number NZ1 

to NZ2 (NZ2 ‒ NZ1+1=M) within N subcarriers. The 

null subcarriers (zero paddings) are added at both 

ends of M data subcarriers. The data information over 

N subcarriers is given by, 
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where (N‒M) is the number of zero paddings (NZ) 

added at both ends of M data subcarriers in the 

frequency domain. After added zero paddings, 

XZ(m,k1) is converted into the time domain signal by 

mean of N-point inverse fast Fourier transform (IFFT) 

which can be given by, 
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where x(m,n1) is the transmitted OFDM signal in the 

time domain at an n1-th sampling time of m-th symbol. 

For compensation of inter symbol interference (ISI), 

introduced by signal propagation through multipath 

fading channels, the OFDM signal employs the guard 

interval (GI) which is a copy of the last Ng sampling 

time of data symbol inserted into the front of the 

signal [17] which can be expressed by, 
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In higher time-varying fading channels such as 

high-speed vehicles or trains communications [18], 

[19] the channel communication is often modeled as 

the Rician multipath fading channels. Here, the 

channel impulse response (CIR) hl(m,n2) for l-th 

delay path at an n2-th sampling time of m-th symbol 

in time-varying fading channels can be given by, 
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where hl(m) is the complex amplitude of CIR for l-th 

delay path of an m-th symbol. 

2.2 Problem of conventional FDE method 

Assuming that the length of GI is longer than the 

maximum delay paths in the wireless channel and 

perfect synchronization timing is considered at the 

receiver. The received time-domain signal after 

removing GI at the n2-th sample time during the m-th 

symbol can be expressed by, 

 
1

2 2 2 2

0

1

2 2

0

2

( , ) ( , ) ( , ) ( , ),

( ) ( , ) ( , ),

1

L

l G

l

L

l G g

l

g g

r m n h m n x m n w m n

h m x m n N l w m n

N n N N

−

=

−

=

=  +

=  − − +

  + −




    (5) 

 

where   represents the convolution. r(m,n2) is the 

received time-domain signal without GI and w(m,n2) 

is the zero-mean additive white Gaussian noise 

(AWGN) with variance σ2. The xG(m,n2‒Ng‒l) in Eq. 

(5) corresponds to x(m,n1‒l), which given in Eq. (2) 

satisfies the followings, 
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The received time-domain signal r(m,n2) in Eq. (5) 

is converted to the frequency domain by N-point FFT 

which can be represented by, 
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where XZ(m,k1) is the transmitted data information, 

which given in Eq. (1) and Hm is the channel 

frequency response (CFR). From Eq. (7), it can be 

seen that the second term is the ICI causes from time-

varying fading channels. Fig. 1 shows a schematic 
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diagram for the relationships between the CIR in the 

time domain and the channel frequency response 

(CFR) in the frequency domain. In the figure, the 

CFR is obtained by converting the CIR at a certain 

sampling time during one OFDM symbol period by 

using a discrete Fourier transform (DFT). Fig. 1.1 and 

1.2 show the CIR and CFR in both quasi-static 

channels and high time-varying channels. From the 

figure, the CFR in high time-varying fading channels 

is changing according to the CIR at the different 

sampling times. From this fact, it is difficult to 

compensate for the time-varying fading distortion by 

using the conventional FDE method. 

3. CIR Estimation methods 

3.1 Problem of conventional CIR estimation 

method 

In the conventional CIR estimation method, the 

pilot subcarrier usually employed, which be inserted 

periodically in frequency and time axis. The received 

frequency domain signal of an m-th symbol at k1-th 

subcarrier in Eq. (7) can be rewritten by, 

 

1 1 1 1( , ) ( , ) ( , ) ( , )ZR m k X m k H m k W m k=  +      (8) 

 

Here, the estimated CFR of the m-th symbol at kp-th 

pilot subcarrier can be expressed by, 
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where Ĥ(m,kp) is the estimated CFR, R(m,kp) received 

frequency-domain pilot subcarriers and P(m,kp) is the 

pilot pattern as known at the receiver. By using Eq. 

(9) with assumed that the ĥl(m) is the unknown 

parameter, the estimated CFR is given by, 
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By using Eqs. (9) and (10), the estimated CIR ĥl(m) 

at every pilot symbol can be estimated by solving ML 

equation [17] under the constraint condition error 

between Ĥl(m,kp) in Eqs. (9) and (10) is minimized as 
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where NP is the number of pilot subcarriers inserted 
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Figure. 1 Relationships between CIR and CFR 
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Figure. 2 Comparison of estimated CFR and actual CFR 

 

in one OFDM symbol. Since the dependence from 

optimization parameters ĥl(m) is linear in Eq. (11), 

the solution can be realized by the following Moore-

Penrose generalized matrix inversion. 
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where † is the Moore-Penrose inverse matrix and 

[Z(kp,l)] is given by, 
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From Eqs. (10) to (13), there is a severe problem in 

the accuracy of CIR estimation from the received 

OFDM signal. Fig. 2 shows a comparison of the 

estimated CFR and actual CFR. The CFR can be 

obtained by performing a discrete Fourier transform 

(DFT) to CIR at a certain sampling time during one 

OFDM symbol period. In the Fig. 2, it can be 

observed that the estimated CFR by using pilot 

subcarriers can be estimated CFR precisely within 

OFDM bandwidth. However, the actual CFR in the 

real channel is entirely different from the estimated 

CFR. From this fact, the actual CIR is also 

completely different from the estimated CIR when 

the number of N-points FFT/IFFT is not equal to the 
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number of M data subcarriers, which corresponds to 

non-Nyquist sampling [13]. 

3.2 Proposed CIR estimation method 

Fig. 3 shows the structure of the transmitter for 

the proposed method. At the transmitter side, the 

input data sequence is modulated. Then, added zero 

paddings and converted to the time domain signal 

x(m,n1) as same as the conventional OFDM signal. 

Fig. 4 shows the frame format employed in the 

proposed method. The time-domain TS1 and TS2 

with the length of NTS are added at both ends of every 

data symbol and would be used in the estimation of 

CIR at every data symbol. The TS signal also used as 

the role of GI to avoid the ISI occurred in multipath 

fading channels. The transmitted time-domain signal 

xT(m,n2) including both the TS1 and TS2 can be 

expressed by, 
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where d1(m,n) and d2(m,n) are the time domain TS1 

and TS2 with the length of NTS samples (0 ≤ n ≤ NTS‒

1) of which data patterns are known at the receiver. 

For simplicity, this paper assumes the data patterns 

both for TS1 and TS2 are assumed to be the same as 

d(m,n). The length of NTS should be taken longer than 

the length of delay paths (L) as the same as the role 

of GI to avoid ISI. Here it is assumed that hl(m) is the 

constant during the period of TS1 even in higher 

time-varying fading channels. The actual received TS 

signal passed through the multi-path fading channels 

can be expressed by, 
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where hl(m) is the ideal time-domain CIR for the l-th 

delay path at the m-th symbol. Assuming that the 

estimated CIR ĥl(m) is unknown parameters, the 

expected received time-domain TS can be given by, 
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where ĥl(m) is the estimated time-domain CIR for the 
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Figure. 3 Structure of the proposed TDE method 
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Figure. 4 Proposed frame format in the time domain 

 

l-th delay path at the m-th symbol. The estimated CIR 

ĥl(m) can be estimated by solving the following ML 

equation under constraint with minimizing the 

difference of actual received TS signal rTS(m,n2) in Eq. 

(15) and expected received signal r̂TS(m,n) in Eq. (16). 
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The following equation can simply solve the ML 

equation in Eq. (17), 
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In the result of Eq. (18), by minimizing the difference 

of actual received TS signal and expected received TS 

signal can be expressed by, 
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Finally, Eq. (19) can be solved as the results on the 

following simultaneous equations. 
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where [∙]-1 is matrix inversion operator and d(m,n2‒l) 

given in Eq. (20) satisfies the followings, 
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where d(m,n) is the time domain TS and its data 

pattern is known at the receiver. The inverse matrix 

[d(m,n2‒l)]-1 in Eq. (20) can be calculated in advance 

and leads to the considerable reduction of 

computation complexity in the estimation of CIR at 

every symbol. By using the estimated [ĥl(m)] at every 
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symbol, the estimated CIR at every sampling time 

[ĥl(m,n2)] can be estimated by using the cubic spline 

interpolation method [20] between two consecutive 

estimated CIRs of [ĥl(m)] and [ĥl(m+1)].  

Fig. 5 shows a schematic diagram for the cubic 

spline interpolation method to estimate the CIR at 

every sampling time. The estimation accuracy of CIR 

at every sampling time for the proposed method will 

be evaluated in section 5 as compared with the 

conventional pilot base CIR estimation when the 

sampling rate of the OFDM signal is a non-Nyquist 

sampling. 

4. Time domain equalization methods 

4.1 TDE with OLA method 

The proposed equalization methods in [9] and 

[13] show almost the same BER performance when 

using the ideal CIR hl(m,n2) at every sampling time 

for data demodulation. However, [9] considers the 

estimated CIR ĥl(m,n2) at every sampling time of 

using the pilot subcarriers based CIR estimation 

method. The estimation accuracy of CIR at every 

sampling time is no more satisfied as described in 

section 3. On the other hand, in [13] using the time 

domain TS for estimation of CIR at every sampling 

time, which can be estimated CIR very precisely even 

when the sampling rate of OFDM signal is the non-

Nyquist sampling and also even in higher time-

varying fading channels [13]. 

Fig. 6 shows the structure of the receiver for the 

TDE with the OLA method. By assuming the ideal 

CIR hl(m,n2) at every sampling time, the received 

data signal rD(m,n2) at every sampling time during the 

observation period for data demodulation from NTS to 

N+2NTS‒1 can be expressed by, 
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where xT(m,n2‒l) given in (14) satisfies the 

followings, 

 

2 2 2
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

−  + − = − − −

(23) 

 

The actual received data signal in Eq. (22) includes 

the interferences of TS, which are added at the start 

and the end of data symbol from the TS1 and TS2, 

respectively. By using the estimated CIR ĥl(m,n2) at 

every sampling time and the data pattern of d(m,n2) 

both for TS1 and TS2 which is known at the receiver, 

 

Data Symbol TS2TS1 Data Symbol TS2TS1 TS1

Estimated CIR at every symbol Estimated CIR at every sampling time
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ˆ ( 1)lh m +

ˆ ( 2)lh m+

 
Figure. 5 Estimation of CIR at every sampling time by 

using a cubic spline interpolation method 

 

the interference of TS added at both ends of the time-

domain data signal can be removed by the following 

equation. 
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(24) 

 

where rF(m,n2) is the received time-domain signal 

after removing the interference of TS from the 

actually received signal rD(m,n2) in Eq. (22). When 

the transmitted time-domain data x(m,n1) given in Eq. 

(2) is assumed as the unknown parameters, the 

expected time domain received data r̂E(m,n2) without 

the interference of TS which corresponds to Eq. (24) 

can be given by, 
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  (25) 

 

The maximum likelihood (ML) can estimate the 

unknown parameter of time-domain data x̂(m,n1), that 

ML equation solve under the constraint with 

minimizing the difference between the actually 

received data rF(m,n2) in Eq. (24) and the expected 

received data r̂E(m,n2) in Eq. (25). 

 

1 2

2 2
2
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       (26) 

 

The following equations can solve the ML equation 

in Eq. (26). 



Received:  November 24, 2019.     Revised:  February 24, 2020.                                                                                        27 

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020           DOI: 10.22266/ijies2020.0831.03 

 

 

2 2 2ˆ( , ) ( , ) 0, 1F E TS TSr m n r m n N n N N− =   + −   (27) 

 

By using the condition in Eq. (27) and substituting Eq. 

(25) into Eq. (27), Eq. (27) can be expressed by the 

following simultaneous equations. 
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(28) 

 

where x̂(m,n2‒NTS‒l) in Eq. (28) correspond to 

x̂(m,n1‒l) with condition (0 ≤ n1 ≤ N‒1). Finally, Eq. 

(28) is resulted in the following matrix operation. 

 

   2 2 1

( 1) 1 1( 1)

ˆ ˆ( , ) ( , ) ( , )

Ts
Ts

F l

N N NN N N

r m n h m n x m n

+ −  + − 

 = 
 

           (29) 

 

where [rF(m,n2)] received a time-domain signal with 

a length of (N+NTs‒1)×1 matrix. [ĥl(m,n2)] is time-

domain CIR with a length of (N+NTs‒1)×N matrix. 

Here [rF(m,n2)] in Eq. (29) can be spilled into its 

upper N×1 part and it is lower (NTs‒1)×1 part. 

Similarly, [ĥl(m,n2)] can be split into its upper N×N 

part and its lower (NTs‒1)×N part. By adding the 

lower elements to upper elements, [rF(m,n2)] and 

[ĥl(m,n2)] can be given by the following matrixes 

with the size of N×1 and N×N, respectively. 
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(31) 

 

where Φ denotes an overlap-and-add (OLA) operator 

which makes circular convolution feasible. From Eqs. 

(30) and (31), Eq. (29) becomes the following matrix 

operations with the size of the N×N matrix. 

 

   2 2 1

1 1

ˆ( , ) ( , ) ( , )F l

N NN N

r m n h m n x m n

 
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           (32) 

 

From Eq. (32), it can be observed that the CIR matrix 

becomes the circular matrix, which is the same as the 

OFDM signal with GI when assuming the quasi-static 

multipath fading channels [13]. The expected time-

domain signal can be estimated by using the direct 

calculation of the inverse matrix which is given by, 

 
1

1 2 2

1 1

ˆ[ ( , )] [ ( , )] [ ( , )]l F

N N N N

x m n h m n r m n
−

  

=           (33) 

 

where [h̅l(m,n2)]-1 is the inverse of the channel matrix 

and [x̂(m,n1)] is the estimated time-domain data 

information matrix. Since the TDE with the OLA 

method can track the time-varying CIR at every 

sampling time as given in Eq. (28), it is possible to 

mitigate the ICI and expected to achieve better BER 

performance than the conventional FDE method in 

higher time-varying fading channels. In Eq. (33), the 

estimated time-domain x̂(m,n1) can be solved simply 

by using the inverse matrix calculation with the size 

of N×N. The computational complexity of the TDE 

with the OLA method can be considered as matrix 

inversion is O(N3), and matrix multiplication is O(N2). 

Here, the total computational complexity for the TDE 

with the OLA method is to order N3+N2 at every data 

symbol. 

4.2 Proposed TDE with partial differential 

method 

In the TDE with the OLA method, the BER 

performance would be degraded from OLA operator 

in (30) and (31) due to the summation of unexpected 

phase noise from AWGN and multipath channel due 

to its upper N×1 and lower (NTs‒1)×1 parts. Fig. 7 

shows the structure of the receiver for the proposed 

TDE with the partial differential method. The 
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Figure. 6 Receiver structure for TDE with the OLA method 
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maximum likelihood (ML) can estimate the unknown 

parameter of time-domain data x̂(m,n1) in Eq. (2), that 

ML equation solve under the constraint with 

minimizing the difference between the actually 

received data rF(m,n2) in Eq. (24) and the expected 

received data r̂E(m,n2) in Eq. (25). 
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The ML equation (34) can be solved by taking the 

partial differentiation for all unknown parameters of 

x̂*(m,s) which can be expressed by, 
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where * represents the conjugate complex number. 

By using Eq. (35), the ML equation (34) can be 

expressed by the following simultaneous equations 

with N unknown parameters of x̂(m,n1). 
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where b(m,s) and Am(s,n1) can be expressed by, 
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where, 

 
* *

2 2ˆ ˆin ( , ) / ( , )TS Es n N l r m n x m s= − −          (39) 

1 2 2ˆin ( , )TS En n N l r m n= − −                           (40) 

 

From Eq. (36), the unknown parameters x̂(m,n1) can 

be solved by using the inverse matrix of [Am(s,n1)] 

which is given by, 

 

1

1 1

11

ˆ[ ( , )] [ ( , )] [ ( , )]m

NN N N

x m n A s n b m s
−

 
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Similar to the TDE with OLA method, the estimated 

time-domain signal x̂(m,n1) in Eq. (41), the M 

encoded data information X̂D(m,k) can be 

demodulated by processing N-points FFT, remove 

zero paddings and demodulation which are all the 

opposite processing at the transmitter side. Here, the 

total computational complexity for proposed TDE 

with the partial differential method is order N3+N2 at 

every OFDM symbol. From Eqs. (33) and (41), The 

computational complexity for both proposed TDE 

with OLA and proposed TDE with partial differential 

methods is significantly high and is not suitable for 

practical implementation because it is required to 

calculate the inverse matrix at every data symbol. 

4.3 Proposed TDE with iterative method 

The coefficients matrix [Am(s,n1)] after taking the 

partial differentiation in Eq. (36) which is the square 

matrix with a size of N×N. This means that matrix 

[Am(s,n1)] can be solved by using an iterative 

calculation. The conjugate gradient squared (CGS) 

algorithm [21] is well known as one of the iterative 

methods which can solve a system of N linear 

equations with N unknown parameters. Let us 

consider the system Ax̂=b, where A corresponds to 

Am(s,n1) in Eq. (36) and it is the Hermitian and 

positive definite matrix with the size of N×N. The 

exact CGS solution can be obtained after at most N 

steps. Hence, stopping the iteration after Niter (<N) 

steps would yield an approximate solution. In the 

demodulation of every data symbol, the CGS 

algorithm minimizes iteratively calculates the cost 

function in a reduced-rank Krylov subspace. When 

the spectral condition number of the matrix A is too 

high, a preconditioned matrix D is employed which 

is called the precondition CGS (PCGS) algorithm. 

The PCGS algorithm solves the system by, 

 
1 1ˆD Ax D b− −=                               (42) 
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Figure. 7 Receiver structure for proposed TDE with the partial differential method 
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Table 1. Preconditioned conjugate gradient squared 

(PCGS) algorithm 

PCGS Algorithm Complexity 

Initialization : 

x̂0 is an initial guess; 

r0 = b ‒Ax̂0; 

r͂0 = r0;  ρ0 = (r0, r͂0); 

β-1 = ρ0;  p-1 = q0= 0; 

 

 

O(N2) 

O(N) 

O(N) 

1.     for   i = 0,1,2,…,Nmax  do 

2.           ui = ri + βi-1 qi; 

3.           pi = ui + βi-1 (qi + βi-1 pi-1); 

4.           p̂ = D -1pi; 

5.           v̂ = Ap̂0; 

6.           αi = ρi / (r͂0, v̂); 

7.           q0 = ui ‒ αiv̂; 

8.           û = D -1(ui + qi+1); 

9.           x̂i+1 = x̂i + αiû; 

10.        if NMSE in (44) > Threshold 

level (TOL) 

11.        return;  else 

12.         ri+1 = ri ‒ αi Aû; 

13.         ρi+1 = (r0, r͂i+1); 

14.         αi = ρi+1 / ρi; 

15.     end for 

 

O(N) 

O(N) 

O(N) 

O(N2) 

O(N) 

O(N) 

O(N) 

O(N) 

O(N) 

 

 

O(N2) 

O(N) 

O(N) 

 

 

where the inversion of matrix D should be a 

computationally efficient operation. For the rest of our 

analysis, we assume for simplicity that matrix D(m) is 

the diagonal matrix of Am(s, n1) at m-th symbol. The 

initial solution of x̂(m,n1) is given by, 
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=             (43) 

 

The reduced-rank PCGS method is described 

analytically in Table 1. The repetition of the PCGS 

algorithm is stopped when the following normalized 

mean square error (NMSE) between the i-th and (i+1)-

th solutions of [x̂(m,n1)] is smaller than the 

predetermined threshold level (TOL). 
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           (44) 

 

In the proposed iterative based TDE with the 

PCGS algorithm, the following procedures are 

repeated up to either the number of iterations reaches 

to the predetermined maximum number (Nmax) or 

NMSE values less than the predetermined threshold 

level (TOL). 

Step1: The maximum iteration number is set to Nmax 

(Nmax=5), the threshold level is set to TOL, and the 

initial solution of [x̂(m,n1)](0) is given by Eq. (43). 

Step2: Calculate the i-th solution of [x̂(m,n1)](i) by the 

PCGS algorithm and calculate the NMSE by Eq. 

(44). 

Step3: Compare the NMSE obtained at the i-th 

iteration with the predetermined threshold level of 

TOL. If the NMSE is less than TOL, the [x̂(m,n1)](i) 

is output as the estimated data information. If not, 

repeat the same procedures. If the number of 

iterations reaches to predetermined Nmax, 

[x̂(m,n1)](Nmax) is output as the estimated data 

information. 

From Table 1, it is clear that the computational 

complexity is determined by the initialization of line 

5 and line 12. Specifically, the total computational 

complexity order for the demodulation of each 

OFDM symbol can be expressed by 

Niter(2N2+10N)+N2+2N. The following equation 

defines the ratio of computation complexity between 

TDE with the inverse matrix and TDE with an 

iterative method for the whole OFDM frame. 

 

 
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3 2

2 2
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N N N N N N
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=
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    (45) 

 

where NS is the number of data symbols in one 

OFDM frame, and NAver is the average number of 

iterations in one OFDM frame. 

5. Performance evaluation 

This section presents various simulation results 

to verify the effectiveness of proposed TDE with the 

iterative method as compared with the conventional 

FDE method [14] and the TDE with the OLA method 

[13]. Table 2 shows the list of simulation parameters, 

which use the following evaluations. The 

conventional FDE method employs pilot subcarriers 

with an interval of pilot subcarriers in the frequency 

axis is FIP=4, and the pilot symbol includes the data 

subcarriers, which added at every time axis (TIP=1). 

The proposed CIR estimation method is 

employed both of the proposed TDE with iterative 

and TDE with OLA methods. The communication 

channel is modeled by the Rician multipath fading, 

which usually experienced by the user on the higher 

moving vehicle [18]. We assume the normalized 

Doppler frequency RD = fdmax /Δf (%), which is 

defined by the ratio of maximum Doppler frequency 

fdmax to the subcarrier spacing Δf is employed as the 

measure of mobile condition. 

Fig. 8 shows the time domain CIR estimation 

accuracy at every sampling time, which evaluated by 

the normalized mean square error (NMSE) for the 
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pilot subcarriers and the proposed TS methods when 

changing the number of zero paddings both sides of 

data subcarriers (NZ). From the simulation results in 

Fig. 8, it shows that the proposed TS method can keep 

the higher estimation accuracy regardless of the 

number of NZ. While the estimation accuracy for the 

pilot subcarriers method is getting worse when 

increasing the number of NZ and RD, respectively. 

Fig. 9 shows BER performance for proposed 

TDE with iterative method when changing the 

threshold level (TOL). In the simulation, normalized 

Doppler frequency RD is 15%, which corresponds to 

the vehicle speed of 286 km/hrs. In Fig. 9, it can be 

observed that the BER performance of proposed TDE 

with the iterative method is very close to that for the 

inverse matrix calculation method when the threshold 

level TOL is less than 0.01 with regardless of 

operation C/N. From the results in Fig. 9, the 

threshold level TOL for the NMSE is taken by 

TOL=0.01 in the next following evaluations. 
 

Table 2. Simulation parameters 

Parameter Value 

Number of FFT points (N) 128 

Number of subcarriers (M) 96 

Number of zero paddings (NZ) 32 

Convolutional 

FEC 

Rate 1/2 

Constraint length 7 

Conventional 

FDE [14] 

Modulation for pilot QPSK 

Pilot interval 

(FIP,TIP) 
(4,1) 

Length of the guard 

interval (GI) 
16 

Symbol duration (TS) 108µs 

Proposed 

TDE 

Modulation for TS 16QAM 

Length of training 

sequence (TS) 
16 

Symbol duration (TS) 120µs 

Modulation for data subcarrier 16QAM 

Number of symbols per one frame (NS) 33 

Allocated bandwidth 1MHz 

Radio frequency 5.9GHz 

Rician multipath fading channel model 

Rician factor (K) 6dB 

Delay profile Exponential 

Decay constant -1dB 

Number of delay paths (L) 14 

Number of scattered rays 20 

 
Table 3. Comparison of complexity ratios 

C/N 

Proposed iterative based TDE method (N=128, 

TOL=0.01) 

fdmax/Δf =10% fdmax/Δf =15% fdmax/Δf =20% 

NAver R NAver R NAver R 

14dB 4.25 0.076 4.29 0.076 4.37 0.078 

17dB 3.95 0.071 4.01 0.072 4.08 0.073 

20dB 3.81 0.069 3.86 0.070 3.94 0.071 
 

 
Figure. 8 CIR estimation accuracy (NMSE) for the 

proposed method at C/N=20dB 

 

 
Figure. 9 BER performance for the proposed method 

when changing TOL at RD =15% 

 

 

Fig. 10 shows the average number of iterations 

for the proposed TDE with iterative method when 

changing RD. In Fig. 10, it can be observed that the 

average number of iterations NAver becomes larger 

when increasing RD and decreasing the operation C/N. 

By using the average number of iterations obtained in 

Fig. 10 and Eq. (45). Table 3 shows the ratio of 

computation complexity (R) between the proposed 

TDE with the iterative method and the inverse matrix 

method. In the Table 3, it can be concluded that the 

proposed TDE with the iterative method can reduce 

the computation complexity to 0.078 (Approximately 

7.8%) at C/N is 14dB and RD is 20% which 

corresponds to the vehicle speed 381 km/hrs. 
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Figure. 10 An average number of required iterations for 

the proposed method when changing RD at TOL= 0.01 

 

 
Figure. 11 BER performance for the proposed method 

when changing C/N at RD=15% 

 

Fig. 11 shows the BER performances for the 

proposed TDE method both of the iterative and 

inverse matrix calculation methods when changing 

C/N at RD=15% (Vehicle speed 286 km/hrs). In Fig. 

11, it can be observed that the proposed TDE method 

can achieve much better BER performance than the 

conventional FDE method and the TDE with OLA 

method [13] From the results in Fig. 11 and Table 3, 

it can be concluded that the proposed TDE with 

iterative method can achieve almost the same BER 

performance as the inverse matrix calculation method 

with much smaller computation complexity. 

6. Conclusions 

This paper proposes a low-complexity TDE 

method in conjunction with the time domain CIR 

estimation method. The salient features of the 

proposed method are to employ the time-domain 

training sequence (TS) in the CIR estimation and to 

employ the partial differentiation in solving the ML 

equation. By using partial differentiation, the 

coefficients matrix of simultaneous equations 

becomes the square matrix which can be solved 

iteratively without the inverse matrix calculation. 

From the verified computer simulation results, it can 

be concluded that the proposed TDE with the iterative 

method can achieve much better BER performance 

than the conventional FDE and TDE with OLA 

methods under higher time-varying fading 

channels(vehicle speed ≈ 381 km/hrs). The computation 

complexity for the proposed TDE with iterative 

method shows much lower than the inverse matrix 

method up to 90% with the same BER performance 

of inverse matrix calculation.  

In future work, the proposed channel estimation 

and equalization methods could be applied to multi-

input multiple-input multiple-output (MIMO) 

channels to increase the capacity by a factor of the 

minimum number of transmitting and receiving 

antennas. 
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