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Abstract: The fuzzy rule-based system model is an important and active research line in the fuzzy logic community 

looking for compact and robust systems with a high level of accuracy – interpretability of trade-offs. On the other hand, 

fuzzy rules-based systems provide accurate and interpretable solutions that give the ability to handle Complex data 

and uncertainty. It has also been historically applied in the solution of classification and regression problems. In this 

paper, the authors present a new fuzzy approach for solving problems of regression based on linguistic fuzzy rule 

learning with subtractive clustering and linguistic modifiers. The proposed system includes two phases for getting 

linguistic fuzzy rules: Multi- granularity, fuzzy discretization of the linguistic variables and linguistic approximation 

of fuzzy rules learned. Regarding experiments, researchers used twelve real-world data sets to compare the proposed 

system with three of the most widely used simplified fuzzy genetic systems: FSe
MOGFS+TUNe, A-METSK-HDe and 

FRULER. The results highlight the competitiveness of the model in terms of accuracy and its superiority in 

interpretability. 
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1. Introduction 

The fuzzy Rule-Based System (FRBS) aims to 

represent the knowledge of human experts in a set of 

fuzzy IFTHEN rules. These rules are generated 

through the knowledge of human experts or the use 

of numerical data and machine learning methods. 

Many approaches have been proposed for this 

learning task, such as space partition based methods 

[1, 2], neural-fuzzy techniques [3], clustering 

methods [4, 5], genetic algorithms [6, 7]and gradient 

descent learning methods [8]. The FRBS obtained 

model belongs to one of two different fuzzy 

Modeling areas [9]: Linguistic fuzzy modeling and 

the precise fuzzy modeling. Linguistic fuzzy 

modeling aims primarily at obtaining an interpretable 

fuzzy system using linguistic labels with acceptable 

accuracy. These systems are called Mamdani FRBSs 

[10]. The reasoning of Mamdani FRBS is based on a 

set of fuzzy rules, which use linguistic labels both in 

their antecedents and in their consequents. In the 

other Fuzzy Modeling area - precise fuzzy modeling 

- the objective is to obtain Takagi–Sugeno FRBS [11] 

with good accuracy. This system uses the fuzzy sets 

to represent the antecedents and a weighted 

combination of the input variables to represent the 

consequents. There are two criteria for evaluating 

FRBSs, accuracy and interpretability. In literature, 

the root mean square error (RMSE) is defined to be a 

measure of accuracy. Concerning interpretability, 

there are two main kinds of approaches [12]: The 

complexity based interpretability and the semantics-

based interpretability. The complexity-based 

interpretability aims at reducing complexity, it is, 

usually, measured with number of rules, antecedents 

and linguistic labels. On the other hand, the 

semantics-based interpretability is dedicated to 

maintaining the semantics of membership functions 

(MFs). This is done by imposing a set of restrictions 

on coverage, distinguishability and fuzzy ordering, to 

name a few. Three different criterias for a good 
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interpretability compromise are therefore required: 

Accuracy, complexity and semantic. These criteria 

can be improved respectively, but the difficulty is to 

do that simultaneously. This is because the automatic 

generation approach usually extracts a large number 

of rules, especially when the data set is big, which 

leads to a loss of interpretation in the fuzzy model 

[13]. This problem is overcome during the 

optimization process through pruning ineffective 

rules, by either deleting [14], merging [13], selection 

[15] or pruning rules [16].  In the literature, one of the 

most effective methods for improving accuracy, 

complexity, and semantic is the multiobjective 

evolutionary algorithms (MOEAs) [17-19]. The 

MOEAs algorithms allow obtaining varying degrees 

of accuracy and interpretation in FRBSs. In many 

works, FRBSs are mainly combined with MOEAs in 

order to take into account interpretability issues such 

as PAES in [20]; SPEA2ACC (TSSP2-SI) in [20] and 

NSGA-II in [21]. At present, FRBSs based on MOEA 

to solve problems of regression [22] and 

classification [23] because of the efficiency of this 

system in overcoming the challenges, such as, 

obtained simple and accurate models, fast learning 

and dealing with high number of variables and 

instances. Three of the most accurate genetic fuzzy 

systems for regression in the literature are 

FSe
MOGFS+TUNe [9], FRULER [24] and A-METSK-

HDe [25]. FRULER is a TSK-1 genetic fuzzy system 

for regression problems. It has three main sections: 

The preprocessing stage, the evolutionary learning 

process and the rule generation unit. The 

preprocessing stage consists of instance selection and 

multigranularity fuzzy discretization. 

FSe
MOGFS+TUNe is a multi-objective evolutionary 

algorithm that learns Mamdani fuzzy rules. This 

algorithm learns the granularities from uniform 

multi-granularity fuzzy partitions and slight 

displacements of fuzzy-partition. It provides a post-

processing algorithm to adjust MF parameters and to 

select rules. In A-METSK-HDe algorithm, the same 

steps are used to learn accurate Takagi-Sugeno-Kang 

fuzzy rule-based Systems. Despite the good 

interpretability-accuracy trade off in FSe
MOGFS+TUNe 

and A-METSK-HDe, the semantics-based 

interpretability is affected. Indeed, the tuning of the 

MFs affect the transparency of fuzzy partition (the 

distinguishability, the coverage, the fuzzy ordering, 

etc). In this paper, authors present a new method, 

called FRLC-Regress, to learn linguistic fuzzy rule 

based on fuzzy clustering for Regression Problems. It 

is a Mamdani fuzzy system based on fuzzy clustering 

and linguistics modifiers providing a good balance 

between accuracy and interpretability. 

This work is organized as follows: section 2 deals 

with FRBS. The section 3 describes FRLC-Rgress 

model and training algorithms. The experiments are 

presented in section 4, which discusses the obtained 

results. Finally, section 5 contains the conclusion. 

2. Preliminaries 

The FRBS consists of a KB and an inference 

system module. The inference system module 

contains an inference engine, fuzzification and 

defuzzification interfaces.  The fuzzification 

interface transforms crisp data to fuzzy sets, the 

inference engine uses fuzzy sets with KB to infer 

through a reasoning method, and the defuzzification 

interface translates fuzzy rule actions with a 

defuzzification method into real action. The KB 

consists of two parts, a database (DB) and a rule base 

(RB): The RB is a set of fuzzy IF-THEN rules and the 

DB contains fuzzy sets of linguistic labels. In 

particular, the DB defines the number of linguistic 

labels for each linguistic variable and the parameters 

of their membership functions (MF). Fig 1 shows the 

FRBS model. 

The automatic generation of linguistic FRBS 

model from data involves the learning of KB 

components (DB and RB) among other FRBS 

components. In literature, many approaches have 

been proposed for learning the DB and RB separately 

or simultaneously, among possibilities of KB 

learning process proposed in [6], is the embedded 

learning process: it is a DB generation process 

including RB learning. At Each DB has been 

obtained, the RB generation method is used to derive 

the rules, and an evaluation stage is applied to 

validate the obtained KB. The authors use embedded 

DB learning in FRLC-Regress which represented in 

Fig 2. 

 

 
Figure.1 FRBS model 
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Figure.2 Embedded DB learning 

3. FRLC-Rgress model 

The FRLC-Rgress model is proposed in [26]. It’s 

an automatic generation of linguistic FRBS model 

from data in which we integrated an embedded DB 

learning wrapping RB learning.The FRLC-Rgress 

model, showing in Fig 3, contains three components: 

Database learning, Rulebase learning and Evaluation 

module.  The DB learning is based on Multi-

granularity fuzzy discretization algorithm to obtain 

uniform fuzzy partitions with Gaussian MFs. In order 

to respect the complexity and the semantic 

constraints of interpretability in [27, 28], the number 

of MFs in each fuzzy partition must be between 2 and 

9. The algorithm researches iteratively the final DB 

in which each iteration provides an intermediate DB. 

This DB triggers RB learning, that contains three 

components: Radius module, Subtractive clustering 

and Rules module. Radius module calculates the 

radius ra using the parameters of Gaussian MFs: mean 

and standard deviation. ra is a vector of scalars used 

in subtractive clustering to extract the clusters. The 

Rules module is based on these clusters to learn the 

linguistic fuzzy rules in two steps: The first is the 

linguistic approximation of the fuzzy rules and the 

second is the improvement of accuracy in linguistic 

fuzzy rules with linguistic modifiers. The third 

component is the Evaluation module in which the KB 

is evaluated in a MAMDANI fuzzy inference system 

(FIS) with RMSE, the number of rules and the 

number of conditions. The MAMDANI FIS uses the 

t-norm ∧ (minimum) for the logical connective "and" 

and "Center of Gravity" as defuzzification method. 

The DB learning process stops when the optimal 

knowledge base is obtained. 

3.1 Database learning 

DB learning is based on Multi-granularity fuzzy 

discretization algorithm, in which the authors 

suppose that the fuzzy partitions are uniform and the 

Gaussian MFs define the meanings of each linguistic 

label. In order to select the optimal database, two 

issues to take into account: the error produced when 

applying the model to the training data and its 

complexity. In our case, the error is obtained from 

RMSE and the complexity is determined with the 

number of rules (NBRules). The objective of multi-

granularity fuzzy discretization algorithm is to 

precise the number of the linguistic labels for each 

linguistic variable. Formally, consider a collection of 

N data points {x1,x2,…,xN} in an M-dimensional space 

Let V={v1,v2,..., vM} a set of linguistic variables, 

min(vi) and max(vi) are, respectively, the minimum 

and maximum values of universe of discourse of vi, 

NbMax (equal to 9) and NbMin (equal to 2) are, 

respectively, the maximum and the minimum 

 

 

 
Figure.3 FRLC-Rgress architecture 
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numbers of linguistic labels per linguistic variable, 

and L={(l1,l2,...,lM) /liϵ{2,…, NbMax} and i=1,…,M } 

the set of M–tuples where li is the number of 

linguistic labels of vi (li≤ NbMax). L define the search 

space, it’s in order of (NbMax-1)M. To deals with the 

complexity of L, the researchers determine the initial 

DB by searching in {(n,....,n) / n=NbMin... NbMax} 

the optimal M–tuples (OIDB=( nopt
1,....,nopt

M)). 

Afterwards, the algorithm searches iteratively the 

final DB using OIDB: For example, in dimension j, 

the algorithm searches iteratively the optimum 

number (OPTJ) of linguistic labels (from NbMin to 

NbMax) by fixing the other dimensions and replaces 

nopt
j with OPTJ. The algorithm deals with the other 

dimensions in the same manner. The obtained DBs 

are an intermediate DBs (IDBs). This process is 

repeated for each IDB until the final DB has been 

obtained. The following algorithm provides the main 

steps for Database learning. From line 1 to 8, the DB 

learning algorithm implements a loop from the lowest 

number NBMin of linguistic labels to the highest 

number NBMax. The goal of the loop is to determine 

the optimalM-tuple to find the final DB. Line 2 

discretize linguistic variables according to the value 

of variable I, for example if I = (3; ...; 3), the universe 

of discourse of each linguistic variable has been 

divided into two interval for defining three Gaussian 

membership functions. Line 3 calls the RB learning 

algorithm to extract the linguistic rules IRB. Line 4 

evaluates the obtained Database IDB and Rulebase 

IRB by calculating the RMSE and the number of 

rules extracted. Lines 5 and 6 are used to specify nopt 

the optimum number of linguistic labels. The 

algorithm makes sure that the RMSE is decreasing 

and the number of rules does not exceed the threshold 

limit in line 5 (in this study, the threshold value is less 

than 100, that is explained in section4). If both 

conditions are met, the value of nopt is changed to the 

current value of variable I. From line 9 to the end, the 

algorithm searches for the final DB using three nested 

loops: the first loop begins at line 11; its role is to 

continue searching for the final DB as long as there is 

a difference between the two variables tupleLeval and 

tupleOpt. The second loop begins at line 13, where it 

aims to change the values of tupleLeval. The third 

loop begins at line 14, where it re-executes lines 2, 3, 

4 and 5 using the tupleLeval variable. If the previous 

two conditions are met, at line 19, the algorithm 

changes the Jth value of tupleLeval to i the optimal 

number of linguistic labels. The search ends when the 

tupleLeval and tupleOpt are identical. 

 

1)  For each I in {(n... n) / n=NbMin... NbMax} 

2)  IDBDescritize (DB, I) 

3)  IRBRB_Lerning (IDB) 

4)  [RMSE, NBRules] Evalute (IDB, IRB)  

5)  if (RMSE is decrising and NBRules < threshold) then   

6)   noptICurrent_value 

7)  end if 

8) end for 

9) tuple_leval( nopt,…, nopt) 

10) tupleOptNull 

11)  while tupleLeval ≠ tupleOpt 

12)  tupleOpt tupleLeval  

13)  For each dimension j 

14)   For each i in {NBMin …NBMax} 

15)    IDBDescritize (DB, tupleLeval) 

16)    IRBRB_Lerning (IDB) 

17)    [RMSE, NBRules] Evalute (IDB, IRB)  

18)    if (RMSE is decrising and NBRules < threshold) then  

19)     tupleLeval(j)i 

20)    end if 

21)   End for 

22)  End for 

23) End while 
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3.2  Rulebase learning 

The RB learning is based on subtractive clustering 

and linguistic modifiers. The subtractive clustering 

belongs to the fuzzy clustering which based on the 

density of data point [29, 30]. Eq. (1) calculates the 

potential of each data point xi. 

 

𝑃𝑖 = ∑ 𝑒−α‖𝑥𝑖−𝑥𝑗‖2𝑁
𝑗=1  (1) 

 

Where α=4/ra
2 and ra is the cluster radius, it is an M-

dimensional vector of positive scalars which 

specifies the value of the radius in each dimension. 

The subtractive clustering algorithm uses a set of 

initial parameters: The cluster radius ra, the accept 

ratio (έ= 0.5), the reject ratio (ε= 0.15) and the 

neighborhood of cluster (rb= 1.25*ra.). As showing in 

Fig 3, the radius module uses the DB parameters to 

calculate the radius ra [26]. In order to illustrate task 

radius module in jth dimension, let {MFunj
k / k=1... lj} 

the set of Gaussian membership functions Obtained 

by uniform discretization of vj, the MFunj
k parameters 

are: Its mean Cj
k and the standard deviation σj

k. The 

module calculates the jth value ra
j
 of ra.with Eq. (2). 

 

𝑟𝑎
𝑗

=
σ

𝑗𝑘√8

(𝑚𝑎𝑥(𝑣𝑗)−𝑚𝑖𝑛(𝑣𝑗))
 (2) 

 

In order to obtain a set linguistic fuzzy rules, the Rule 

module projects the extracted cluster in all 

dimensions. Afterwards, the module linguistically 

approximates the fuzzy rule with Euclidean distance 

and improves the accuracy with linguistic modifiers 

(particularly, powered modifiers: Very, Plus, Minus, 

More or less, slightly, and A little) using Hamming 

distance [26]. Eq. (3) illustrates the linguistic 

approximation of the cluster xi
C: 

 

𝑇 𝑖
𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛 (|𝑥𝑖𝑗

𝐶 − 𝐶𝑗
𝑘|)

𝑘 = 1, … ,  𝑙𝑗
 (3) 

 

With xij
C is the jth value of xi

C and Cj
k the mean of 

MFunj
k.  

Fig 4 showns an example of linguistic approximation 

of the fuzzy rules with three Linguistic labels and 

three clusters. The centers of linguistic Labels L1, L2 

and L3 are closet, respectively, to center of clusters 

Cl2, Cl3 and Cl1. Thus, Label1 repalces Cluster2 (in 

rule 2), Label2 repalces Cluster3 (in rule 3) and 

Label3 repalces Cluster1 (in rule 1). The generated 

fuzzy rules require an improvement of accuracy due 

to the uniform fuzzy partition. The following 

subsection presents the accuracy improvement of the 

fuzzy rules with linguistic modifiers.

 

 
Figure.4 Linguistic approximation with centers 

 

 
Figure.5 Improving the Accuracy in Linguistic Fuzzy rules 
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Eq. (4) calculates the Hamming distance between 

AFuni
j
 and all (MFunij

C)P: 

 

𝐷ℎ = ∫ |𝐴𝐹𝑢𝑛𝑖
𝑗
(𝑥) − (𝑀𝐹𝑢𝑛𝑖𝑗

𝐶 )𝑃(𝑥)|
𝑚𝑎𝑥(𝑣𝑗)

𝑚𝑖𝑛(𝑣𝑗)
𝑑𝑥  (4) 

 

Where P is the parameter of powered modifier and 

AFuni
j is the MF of cluster xi

C in jth dimension. Fig 5 

represents the improvement of accuracy in the 

previous example. Minus Label1 repalces Label1 (in 

rule 2), a little Label2 repalces Label2 (in rule 3) and 

more or less Label3 repalces Label3 (in rule 1). 

In the obtained RB, each linguistic fuzzy rule 

includes M conditions.To simplify the RB and take 

into account the improvement of accuracy 

simultaneously, we have reduced the number of 

conditions with don’t care condition [24]. The 

following algorithm provides the main steps for 

rulebase learning, which uses a set of training data 

(InputData and OutputData) and contains two main 

stages to extract linguistic fuzzy rules based on 

database parameters. The first stage starts from line 2 

and ends at line 4, this stage contains the first loop in 

which the vector ra is calculated. Line 3 calculates the 

jth value of the vector ra by the function 

Influence_Range and the parameters of the jth 

linguistic variable vj, according to Eq. (2). In the 

second stage, the algorithm uses the vector ra to 

extract the linguistic fuzzy rules through three nested 

loops. The second stage begins at line 5, the 

subtractive clustering function Sub_Clr uses the 

vector ra to extract clusters and saved them in the 

variable Cset. The first loop begins at line 6, where 

the objective is to deal with all extracted clusters. On 

line 7, the second loop begins with a linguistic 

approximation of the current cluster xi
C, where line 8 

approximates the membership functions of the cluster 

xi
C to those of vj. Now, it is possible to use the term 

“linguistic fuzzy rules” after projecting clusters on all 

dimensions and applying the linguistic 

approximation. The stage for improving accuracy in 

linguistic fuzzy rules starts from line 9. This stage 

includes the third loop, from line 10 to line 15, the 

linguistic modifiers m are applied to the membership 

functions of the current rules, this is for calculating 

the Hamming distance. After that, the linguistic 

modifiers that achieves the smallest value of the 

Hamming distance is chosen. Finally, line 16 adds the 

linguistic fuzzy rule to the rulebase.  

 

Rulebase learning algorithm  

1)  Data= {InputData, OutputData} 

2 ) FOR EACH Vj in V 

3 )  ra
j
Influence_Range(Vj) 

4 ) END FOR 

5 ) CsetSub_Clr (InputData, OutputData , ra) 

6 ) FOR each Cluster xi
C in Cset  

7 )  FOR EACH Vj in V  

8 )   
T i

j ← argmin (|xij
C − Cj

k|)

k = 1, … ,  lj

 

9)   min_area  ∫ 𝑀𝐹𝑢𝑛𝑖𝑗
𝐶 (𝑥)

𝑚𝑎𝑥(𝑣𝑗)

𝑚𝑖𝑛(𝑣𝑗)
 

10)   FOR each linguistic_modifier m 

11)     Hamming_distance ∫ |𝐴𝐹𝑢𝑛𝑖
𝑗
(𝑥) − (𝑀𝐹𝑢𝑛𝑖𝑗

𝐶 )𝑃(𝑥)|
𝑚𝑎𝑥(𝑣𝑗)

𝑚𝑖𝑛(𝑣𝑗)
𝑑𝑥 

12)     IF Hamming_distance < min_distance THEN 

13)      mC
m 

14)      min_area  Hamming_distance 

15)     END FOR 

16)   ADD Linguistic_Term With (mC and Ti
j) 

17)  END FOR 
18)  END FOR 

4. Experiments development and obtained 

results 

In order to analyse the performance of FRLC-

Rgress, authors have used the KEEL project 

repository's twelve real-world regression problems 

[9]. Table 1 displays the dataset properties, with 337 

to 20640 examples of instances and 2 to 16 input 

variables. The FRLC-Rgress results are compared 

with three fuzzy rule-based systems for regression 

problems: FSe
MOGFS+TUNe [9], A-METSK-HDe [25] 

and FRULER [24]. Researchers have adopted a cross 
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validation model in all experiments, which involves 

a random division of the dataset into 5 folds, each of 

which contains 20% of the dataset patterns and four 

folds used to train and one to test. In order to reduce 

search space, FRLC-Rgress do not comply with 

situations in which there are obviously more than 100 

clusters. In the other hand to handle the scalability 

problem in datasets, authors consider small 

percentage (SP) of the training data to estimate the 

RMSE. Experimentally, SP equal to 2000 is a good 

choice. The selection of the training data is based on 

the potential of each data point. The potentials are 

calculated using the optimal M –tuples OIDB 

presented in the previous section, then sorting the 

data based on the potentials and selecting those 

separated with N/SP (N=length of training data). This 

selection reduces data density and ensures an optimal 

representation. The Final KB is presented in Table 2, 

in DB, the values shown in input and output columns 

represent the number of Gaussian MFs in each 

dimension. In RB, the columns R and C shown the 

numbers of rules and conditions per rule respectively. 

 
Table 1. Data sets considered in experiments 

Problem Abbr Variables Cases 

Electrical Length ELE1 2 495 

Quake  QUA 3 2178 

Friedman FRIE 5 1200 

AutoMPG6 MPG6 5 398 

Daily electricity energy DEE 6 365 

Delta elevators DELELV 6 9517 

AutoMPG8 MPG8 7 398 

Stock STP 9 950 

Weather Ankara WAN 9 1609 

Forest Fires FOR 12 517 

Baseball BAS 16 337 

California Housing CAL 8 20,640 

Table 2. KB of FRLC-Rgress 

Problems 
Database Rulebase 

Inputs O R C 

ELE1 6 7 8 7.8 1.9 

QUA 4 8 2 8 11 2.3 

FRIE 6 5 2 5 4 8 33.8 4.0 

MPG6 7 8 8 4 5 9 9.6 3.3 

DEE 4 5 5 4 3 3 8 13.2 4.0 

DELELV 7 6 5 3 9 5 8 5.4 4.7 

MPG8 4 4 3 9 2 4 2 8 11.6 4.2 

STP 8 8 7 7 9 7 6 3 2 8 27.6 5.4 

WAN 8 5 7 7 2 2 2 3 2  9 25.6 4.9 

FOR 2 2 3 2 2 3 2 2 7 2 2 2 9 1.6 1.00 

BAS 5 6 7 6 3 3 2 9 7 4 2 2 9 6 9 3 9 12.2 10.3 

CAL 8 8 3 7 5 6 7 7 7 15.4 4.5 

 

Table 3. Average number of rules (R) and RMSE (Tst.). Results in this table (Tst.) should be multiplied by 10-6 and 105 

for DELELV and BAS respectively 

Datasets 

FRULER A-METSK-HDe FSe
MOGFS+TUNe FRLC-Rgress 

R (Tst.) R (Tst.) R (Tst.) R (Tst.) 

ELE1 4.1 2.012 11.4 2.022 8.1 1.954 7.8 1.911 

QUA 7.8 0.0181 18.3 0.0181 3.2 0.0178 11 0.0177 

FRIE 8 0.731 66 1.888 22 3.138 33.8 3.132 

MPG6 13.7 3.727 53.6 4.478 20 4.562 9.6 4.452 

DEE 7.9 0.080 50.6 0.103 18.3 0.093 13.2 0.077 

DELELV 5.8 1.045 39.1 1.031 7.9 1.086 5.4 1.300 

MPG8 12.7 4.084 64.2 5.391 23 4.747 11.6 4.675 

STP 42.4 0.353 66.4 0.387 23 0.912 27.6 0.720 

WAN 5.6 0.888 48 1.189 8 1.635 25.6 1.564 

FOR 5.6 2214 40.6 5587 10 2628 1.6 2467 

BAS 6.2 3.0577 59.8 3.6882 17 2.6132 12.2 2.557 

CAL 15.4 2.11 55.8 1.71 8.4 2.95 15.4 2.72 
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Table 3 shows the average results of FRLC-

Rgress, FSe
MOGFS+TUNe, A-METSK-HDe and 

FRULER. For each algorithm and dataset, two 

different results are shown: The columns (Tst.) and 

(R).  Tst present the average RMSE in testing data and 

R present the average number of rules. The values 

with the best results are marked in bold. It can be seen 

that the number of rules of FRLC-Rgress and 

FRULER is the lowest in all datasets (equal to 5) 

followed by FSe
MOGFS+TUNe. In the case of accuracy, 

FRULER achieves the best results in six problems 

followed by FRLC-Rgress in four problems. In order 

to analyze the statistical significance of these results, 

authors have used KEEL software tool [31] to apply 

the statistical tests: Friedman test [32] was used for 

the test error and the number of rules in order to get a 

ranking of the algorithms and to see whether the 

difference between them was statistically significant. 

As showing in Table 4, FRULER algorithm gets the 

top ranking, i.e., it has the best results in accuracy 

among all the algorithms. In order to compare 

whether the difference between FRULER and other 

ranked algorithms was significant, we performed a 

Holm’s test [33]. As depicted in Table 5, Holm’s test 

indicates that FRULER is not statistically superior to 

either A-METSK-HD e or FRLC-Rgress. To 

compare directly FRLC-Rgress with other algorithms, 

authors have used the Wilcoxon signed-rank test [34]. 

Table 6 indicates that FRLC-Rgress is statistically 

better than FSe
MOGFS+TUNe while it is statistically 

equivalent to A-METSK-HDe. 

To analyze the complexity of each algorithm, the 

same Friedman test was performed to the number of 

rules in Table 3 (Table 7). FRULER has the lowest 

ranking. The next algorithms in the ranking are 

FRLC-Rgress and FSe
MOGFS+TUNe, followed by the 

A-METSK-HDe approaches with a big difference in 

the ranking. Researchers have used a Holm test 

(Table 8) in order to assess whether the difference in 

complexity among the most accurate proposals was 

significant. The hypothesis of equality with 

FSe
MOGFS+TUNe and FRLC-Rgress is accepted with 

p-value> 0.05. To compare directly FRLC-Rgress 

with the other competing algorithms, the Wilcoxon 

test is given in Table 9. the test indicates that FRLC-

Rgress is statistically better than A-METSK-HDe; it 

is also statistically equivalent to FSe
MOGFS+TUNe. 

Researchers note that the complexity of rule-based 

systems has other parameters, such as the number of 

features and linguistic labels used per rule, but only 

the number of rules is used here. Concerning 

interpretability based semantic, only FRLC-Rgress 

provides a uniform Database for a large variety of 

problems. while all obtained DBs by FSe
MOGFS+TUNe 

violates distinguishability and complementarity 

constraints. This is illustrated in Fig 6: That shows 

the obtained fuzzy patition of BAS output with 

FSe
MOGFS+TUNe and FRLC-Rgress. It is clear that 

obtained fuzzy partition with FSe
MOGFS+TUNe 

violates complementarity constraint. This study 

showed the effectiveness of FRLC-Rgress in the 

resolution of regression problems, and at the level of 

accuracy, FRLC-Rgress was able to bypass mamdani 

systems and rivalry TSK systems of the first degree 

and outperform them at the level of interpretability. 

FRLC-Rgress has also provided distinguished 

solutions in interpretability based semantic. 
 

Table 4. Friedman test ranking results for the test error in 

Table 3 

Algorithm Ranking 

FRULER  1.84 

FRLC-Rgress 2.17 

A-METSK-HDe 2.84 

FSe
MOGFS+TUNe  3.17 

 

Table 5. Posthoc test with α = 0.05 for accuracy 

Control Algorithm: FRULER 

i Algorithm z-value P-value α/i Hypothesis 

3 FSe
MOGFS+TUNe 2.5298 0.0114 0.0166 Rejected 

2 A-METSK-HDe 1.8973 0.0577 0.025 Accepted 

1 FRLC-Rgress 0.6324 0.5270 0.05 Accepted 

 

Table 6. Wilcoxon test between FRLC-Rgress and the 

other competing algorithms for the accuracy results 

Comparison P-value 

FRLC-Rgress vs FSe
MOGFS+TUNe 0.0116 

FRLC-Rgress vs A-METSK-HDe 0.34827 

 

Table 7. Friedman test ranking results for the number of 

rules in Table 3 

Algorithm Ranking 

FRULER  1.70 

FRLC-Rgress 1.95 

FSe
MOGFS+TUNe 2.33 

A-METSK-HDe  4 

 

Table 8. Posthoc test with α = 0.05 for complexity 

Control Algorithm: FRULER 

i 
Algorithm z-value P-value α/i Hypothesis 

3 A-METSK-HDe 4.3481 1.4E-5 0.0166 Rejected 

2 FSe
MOGFS+TUNe 1.1858 0.23568 0.025 Accepted 

1 FRLC-Rgress 0.4743 0.63525 0.05 Accepted 

 

Table 9. Wilcoxon test between FRLC-Rgress and the 

other competing algorithms for the complexity results 

Comparison P-value 

FRLC-Rgress vs A-METSK-HDe 0.0011 

FRLC-Rgress vs FSe
MOGFS+TUNe 0.5000 
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(a) 

 
(b) 

Figure.6 Fuzzy partition of BAS output with: (a) 

FSe
MOGFS+TUNe and (b) FRLC-Rgress 

5. Conclusion 

In this paper, a new fuzzy rule based system 

called FRLC-Rgress is presented. It learns 

MAMDANI fuzzy rule for regression problems 

based on subtractive clustering and linguistic 

modifiers. FRLC-Rgress has been compared to the 

most accurate Genetic Fuzzy Systems for twelve 

datasets. The results have shown the potentialities of 

the proposed approach with respect to the state of the 

art in the Fuzzy Rules Based Systems area. 

Future works look forward to optimizing the 

knowledge base of FRLC-Rgress and dealing with 

high-dimensional regression problems. 
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