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Abstract: This paper presents a normalized version of least mean square algorithm with an adaptive averaging step-

size approach for spline adaptive filter. The use of an adaptive averaging step-size mechanism is to modify on 

autocorrelation between previous and present estimate error of system for updating step-size parameter. For 

achieving fast convergence, the proposed spline adaptive filter is combined with adaptive averaging step-size scheme 

and normalized version of least mean square approach. The convergence analysis and stability properties are 

accomplished. Simulation results of experiments depict that the trajectories of step-size parameters of the proposed 

algorithm converge to their own equilibria in spite of large variations in initial step-size settings. Proposed algorithm 

demonstrates more robust performance in mean square error and fast convergence compared with the conventional 

spline adaptive filter. 
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1. Introduction 

Linear adaptive filtering is widely used for the 

solution to simply determine with the suitable 

constraint [1]. In opposition, many practical models 

necessitate the use of nonlinear adaptive filter in 

which nonlinear problem has more attention than 

linear operating system [2].  

Spline adaptive filtering (SAF) based on least 

mean square (LMS) algorithm is a class of nonlinear 

adaptive filtering introduced in [2-4] with the low 

computation complexity and modelled in non-linear 

identification systems [5]. SAF is fabricated by 

adaptive linear finite impulse response (FIR) filtering 

followed by an adaptive lookup table (LUT). 

Nonlinearity SAF structure using lookup table 

adjustment with the control points has been proposed 

in [3]. Sandwich SAF model in forms of cascade 

SAF architecture consists of a class of nonlinear 

models as linear-nonlinear-linear and nonlinear-

linear-nonlinear models based on SAF structure, 

which can optimize using gradient-based condition 

in many conventional solutions of application [6, 7]. 

For nonlinear system identification, the authors 

in [8-10] conducted the normalized version of LMS 

(NLMS) scheme using the gradient-based criterion to 

improve performance of adaptive filtering, while the 

authors in [10] induced the potential performance in 

the case of infinite impulse response.  

Against the impulsive noise, a set-membership 

scheme with the normalized version of least M-

estimate algorithm has been developed in [11]. 

Simulation results depict that it can attain the 

achievable convergence rate. In [12], a sign 

normalized Wiener SAF is proposed in order to 

enhance the convergence by minimizing the absolute 

value of a posteriori error.  
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Figure.1 Linear-nonlinear network of AAS-NLMS-SAF structure. 

 

 

To establish the well tracking and fast 

convergence, the adaptive step-size mechanism 

based on LMS algorithm is a well-known approach 

with effective solution for achieving the convergence 

in linear adaptive filtering [13], [14]. In [15], an idea 

of time averaging applied on adaptive step-size 

algorithm for beam forming has been modified with 

the low computation. In [16], a low complexity step-

size method by utilizing an approximate of 

autocorrelation error between present and previous 

estimate error is rearranged adaptively. 

In this paper, we introduce a low complexity 

adaptive step-size approach based on normalized 

LMS algorithm in the SAF structure to achieve the 

fast convergence. In especial, we focus on the 

convergence analysis and mean square error 

performance of proposed algorithm. 

This paper is arranged in this following. Section 

II describes briefly about SAF based on LMS. 

Section III proposes an adaptive averaging step-size 

algorithm for both the weight vectors of adaptive 

linear FIR filtering and interpolating control points 

of adaptive LUT by the minimizing cost function. 

Section IV shows the convergence and stability 

analysis of proposed algorithm. Experiment results 

and conclusion is in Section V and VI, respectively. 
Notations are used through this paper. 

Operator (.)T is the operation of transposition. 

Matrices and vectors are in bold uppercase and 

lowercase, respectively. 

 

 

2. Spline adaptive filtering 

The structure of spline adaptive filter (SAF), 

namely linear-nonlinear network, shows in Fig. 1. 

This network consists of linear and nonlinear part 

which is the linear pa r t  used the a d a p t ive  finite 

impulse response (FIR) filter and nonlinear part is 

an adaptive lookup table (LUT) with the spline 

interpolation network [2]. 
Consider a desired signal 𝑑𝑛  as 
 

𝑑𝑛 =  𝑦𝑛 + ℯ𝑛                                    (1) 
 

where 𝑦𝑛  is the spline adaptive filtering (SAF) 

output and ℯ𝑛 is the system error. 

The output of adaptive FIR filter 𝒔𝑛  can be 

defined as 

 

𝒔𝑛 = 𝒘𝑛
𝑇𝐱𝑛  ,                                (2) 

 
where  𝐰𝑛 is the adaptive tap-weight vector and 𝐱𝑛 
is the input vector as 
 

𝐰𝑛 = [ w0 w1 … w𝑁−1 ]  , 

 𝐱𝑛 = [ 𝑥𝑛 𝑥𝑛−1  … 𝑥𝑛−𝑁+1 ]  , 
 

Following [17], the output of SAF is defined as 

 

𝑦𝑛 = 𝘂𝑛
𝑇𝐂𝐪𝑖,𝑛   ,                                    (3) 

 

𝘂𝑛 = [𝑢𝑛
3 ,  𝑢𝑛

2 , 𝑢𝑛, 1] 𝑇                        (4) 

where 𝐪𝑖,𝑛  is the control points vector as 
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𝐪𝑖,𝑛 = [𝑞𝑖,𝑛 𝑞𝑖+1,𝑛𝑞𝑖+2,𝑛 𝑞𝑖+3,𝑛]𝑇 . 

 

Local parameter 𝑢𝑛  and index  𝑖 are defined as [18] 

 

𝑢𝑛 =
𝑠𝑛

∆𝑥
− [

𝑠𝑛

∆𝑥
]  ,   𝑖 = [

𝑠𝑛

∆𝑥
] +

𝑄−1

2
   .            (5) 

 

where 𝛥𝑥 is the uniform space between two-

adjacent control points. 𝑄 is the number of control 

point, and  ⌊∙⌋ is floor operator. The parameter 𝑠𝑛 is 

concerned with a nonlinear activation function using 

the span index 𝑖 and the local parameter 𝑢, where 

𝑢 ∈ [0, 1]. Spline basis matrix C is described in [2]. 

By minimizing cost function in the least mean 

square algorithm (LMS), we have [2] 

 

𝐽( 𝐰𝑛, 𝐪𝑖,𝑛) =
1

2
 min
𝑤𝑛

{ |𝑒𝑛
2| },                  (6) 

 

where 𝑒𝑛 is 𝑎 priori estimation error  𝑒𝑛 that arises 

from the model as 

 

𝑒𝑛 =  𝑑𝑛 − 𝑦𝑛 = 𝑑𝑛 − 𝐮𝑛
𝑇𝐂𝐪𝑖,𝑛   .              (7) 

 

Hence, the adaptive tap-weight 𝐰𝑛 and 𝐪𝑖,𝑛 vectors 

take the specific form as 

 

𝐰𝑛+1 = 𝐰𝑛 − 𝜇𝑤
𝜕𝐽(𝐰𝑛,𝐪𝑖,𝑛)

𝜕𝐰𝑛

 ,                (8) 

 

    𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 − μ
𝑞

𝜕𝐽(𝐰𝑛,𝐪𝑖,𝑛)

𝜕𝐪𝑖,𝑛
 ,               (9)    

 

where 𝜇𝑤 and 𝜇𝑞  are the step-size parameters. 

Then, the gradient of the cost function in Eq. (6) is 

necessarily evaluated with respect to (w.r.t) the 

adaptive tap-weight 𝐰𝑛  and 𝐪𝑖,𝑛  vectors using the 

chain rule as 

 

𝜕𝐽(𝐰𝑛 , 𝐪𝑖,𝑛)

𝜕𝐰𝑛
=  −𝑒𝑛

𝜕𝑦𝑛

𝜕𝐮𝑛

𝜕𝐮𝑛

𝜕𝐬𝑛

𝜕𝐬𝑛

𝜕𝐰𝑛
 

                =
−𝑒𝑛

∆𝓍
 𝐮𝑛

′ 𝐂𝐪𝑖,𝑛𝐱𝑛 ,            (10) 

 

where the derivative of 𝐮𝒏 is given as 

 

𝐮𝑛
′ = [3𝑢𝑛

2, 2𝑢𝑛, 1, 0]  ,          (11) 

 

and 

𝜕𝐽(𝐰𝑛, 𝐪𝑖,𝑛)

𝜕𝐪𝑖,𝑛
= −𝑒𝑛

𝜕𝑦𝑛

𝜕𝐮𝑛

𝜕𝐮𝑛

𝜕𝐬𝑛

𝜕𝐬𝑛

𝜕𝐪𝑖,𝑛
 

= −𝑒𝑛𝐂𝑇𝐮𝑛  .                  (12)   

According to Eqs. (10) and (12), the tap-weight 

LMS 𝐰𝑛 and 𝐪𝑖,𝑛 vectors in the recursion form can 

be represented as [2] 

 

𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑤𝐮𝑛
′ 𝑇

𝐂𝐪𝑖,𝑛𝐱𝑛𝑒𝑛  ,        (13) 

 

𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 + μ
𝑞

𝐂𝑇𝐮𝑛𝑒𝑛   ,                (14) 

 

where 𝜇𝑤 and 𝜇𝑞  are the fixed step-size parameters 

for tap-weight 𝐰𝑛  and for the control points 𝐪𝑖,𝑛 , 

which incorporate with the other constant. 

3. Proposed adaptive averaging step-size 

normalized least mean square algorithm 

for spline adaptive filtering 

Following [11], the minimized cost function of 

normalized least mean square algorithm for SAF is 

expressed as 

 

𝐽( 𝐰𝑛, 𝐪𝑖,𝑛) =
1

2
 min
𝑤𝑛

{ (𝐮𝑛
𝑇  𝐮𝑛)−1|𝑒𝑛

2| }     (15) 

 

where 𝑒𝑛 is defined in (7). 

And the update tap-weight estimated vector 𝐰𝑛 

at symbol n can be expressed by  

 

𝐰𝑛+1 = 𝐰𝑛 − 𝜇𝑤𝑛

𝜕𝐽(𝐰𝑛,𝐪𝑖,𝑛)

𝜕𝐰𝑛

 .                (16) 

 

By differentiating the cost function in Eq. (15) w.r.t 

𝒘𝑛 with the chain rule, that is 

 

𝜕𝐽(𝐰𝑛 , 𝐪1,𝑛)

𝜕𝐰𝑛
= (𝐮𝑛

𝑇𝐮𝑛)−1 {−𝑒𝑛

𝜕𝑦𝑛

𝜕𝐮𝑛

𝜕𝐮𝑛

𝜕𝐬𝑛

𝜕𝐬𝑛

𝜕𝐰𝑛
} 

                = (𝐮𝑛
𝑇𝐮𝑛)−1 {

−𝑒𝑛

∆𝓍
 𝐮𝑛

′ 𝐂𝐪𝑖,𝑛𝐱𝑛}    .        (17) 

 

Finally, we introduce the proposed tap-weight 

estimated vector 𝒘𝒏 of adaptive FIR filter based on 

normalized least mean square algorithm obtained by 

                    

∴ 𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑤𝑛

𝐮𝑛
′ 𝐂𝐪𝑖,𝑛𝐱𝑛𝑒𝑛

∆𝓍 𝐮𝑛
𝑇𝐮𝑛

   ,              (18) 

 

where 𝜇𝑤𝑛
 is the adaptive step-size parameter for 

learning rate of linear part of SAF structure. 

Similarly, the update estimated control points 

vector 𝐪𝒊,𝒏 at symbol n can be obtained by  

 

    𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 − μ
𝑞𝑖,𝑛

𝜕𝐽(𝐰𝑛,𝐪𝑖,𝑛)

𝜕𝐪𝑖,𝑛
  .           (19)    
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Hence, the gradient of the cost function in Eq. (15) 

w.r.t 𝐪𝒊,𝒏  using the chain rule is defined by 

 

𝜕𝐽(𝐰𝑛, 𝐪𝑖,𝑛)

𝜕𝐪𝑖,𝑛
= (𝐮𝑛

𝑇  𝐮𝑛)−1 {−𝑒𝑛

𝜕𝑦𝑛

𝜕𝐮𝑛

𝜕𝐮𝑛

𝜕𝐬𝑛

𝜕𝐬𝑛

𝜕𝐪𝑖,𝑛
} 

 

= (𝐮𝑛
𝑇𝐮𝑛)−1{−𝑒𝑛𝐂𝑇𝐮𝑛}  .            (20)    

 

Therefore, we present the control points vector 𝐪𝑖,𝑛 

based on normalized least mean square algorithm of 

nonlinear network in the adaptive lookup table as 

 

∴ 𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 + μ
𝑞𝑛

𝐂𝑇𝐮𝑛𝑒𝑛

𝐮𝑛
𝑇𝐮𝑛

   .               (21) 

 

where 𝜇𝑞𝑛
 is the adaptive step-size parameter for  

nonlinear part of SAF structure. 

3.1 Adaptive averaging step-size algorithm for 

spline adaptive filtering 

The main objective of adaptive averaging step-

size mechanism is to improve as follows. Following 

[17], if the estimate error is far off the optimal value, 

the step-size parameter will be increased. 

Meanwhile, the estimate error is near the optimum, 

the step-size parameter will be decreased 

automatically. 

The proposed idea is to average step-size 

parameter with autocorrelation of previous and 

present estimate error of network system for update 

𝜇𝑤𝑛
and 𝜇𝑞𝑛

 adaptively. 

Therefore, we modify the adaptive averaging 

step-size  𝜇𝑤𝑛
 of tap-weight 𝐰𝑛 vector concerning 

with the estimation of an averaging of 

autocorrelation  {𝑒𝑛−1
∗  𝑒𝑛}  as 

 

𝜇𝑤𝑛
=  𝛼𝑤  ∙  𝜇𝑤𝑛−1

+ 𝛽𝑤 ∙  |𝜉𝑛|2  ,               (22) 

 

𝜉𝑛 =  𝛾 ∙ 𝜉𝑛−1 + (1 − 𝛾){𝑒𝑛−1
∗ 𝑒𝑛}  ,           (23) 

 

where 𝛽𝑤 is a scaled variable for prediction error, 𝛾 

is close to 1 and 0 <  𝛼𝑤  < 1. 
We note that there are two reasons related with 

𝜉𝑛 are as follows. First, the autocorrelation of error 

is generally measured for optimal performance. 

Second, the uncorrelated noise sequence is rejected 

on the update step-size mechanism.  

3.2 Modified adaptive step-size algorithm 

Following [19], the learning rate of step-size is 

controlled by squared estimate error. If an error is 

large, the step-size parameter will increase. While a 

small error will yield misadjustment with the 

decreased step-size value. Therefore, the step-size 

parameter 𝜇𝑞𝑛
of control points vector 𝐪𝑖,𝑛 is 

 

𝜇𝑞𝑛
=  𝛼𝑞 ∙  𝜇𝑞,𝑛−1

+ 𝛽𝑞 ∙ |𝑒𝑛|2 ,                  (24) 

 

where 0 <  𝛼𝑞  < 1 , 𝛽𝑞  > 0 and a priori estimate 

error 𝑒𝑛 is given in Eq. (7). 

Summary of proposed adaptive averaging step-

size mechanism based on the normalized version of 

least mean square algorithm for spline adaptive filter 

(AAS-NLMS-SAF) is shown in Table 1. 

4. Convergence and stability analysis 

In order to achieve optimal performance, we 

determine an adaptive leaning rate that minimizes 

the instantaneous output error of filter by 

performing Taylor series expansion of error 𝑒𝑛. The 

approach intends to the optimal learning rate to 

ensure the convergence at the steady-state. 

4.1 Convergence analysis of proposed algorithm 

Convergence properties of adaptive tap-weight 

𝐰𝑛vector can be determined by using Taylor series 

expansion of estimate error 𝑒𝑛 as [2] 

 

𝑒𝑛+1 ≃  𝑒𝑛 +
𝜕𝑒𝑛

𝜕 𝐰𝑛
∙ ∆𝐰𝑛     ,              (25) 

 

where an estimate error 𝑒𝑛  is given as 

 

𝑒𝑛 = 𝑑𝑛 − 𝐮𝑛
𝑇 ∙ 𝐂 ∙ 𝐪𝑖,𝑛  .              (26)  

 

Differentiating 𝑒𝑛  in Eq. (26) w.r.t 𝐰𝑛  with the 

chain rule, we get   

 
𝜕𝑒𝑛

𝜕𝐰𝒏
=

−𝐮𝑛
′ ∙𝐂∙𝐪𝒊,𝒏∙𝐱𝒏

∆𝑥∙(𝐮𝑛
𝑇∙𝐮𝑛)

   .                       (27) 

 

where 𝐮𝑛
′  is given in Eq. (11).  

From Eq. (18), we have the change of 𝐰𝑛 as 

 

∆𝑤𝑛 = 𝐰𝑛+1 − 𝐰𝑛 =
𝜇𝑤𝑛 ∙𝐮𝑛

′ ∙𝐂∙𝐪𝒊,𝒏∙𝐱𝒏∙𝒆𝒏

∆𝑥∙(𝐮𝑛
𝑇∙𝐮𝑛)

  .      (28) 

 

By substituting (27) and (28) into (25), we arrive at  

 

𝑒𝑛+1 = 𝑒𝑛 −
𝜇𝑤𝑛

∆𝑥
(

∅𝑛∙ 𝐱𝑛

𝐮𝑛
𝑇∙𝐮𝑛

) (
∅𝑛∙𝐱𝑛∙𝑒𝑛

∆𝑥∙𝐮𝑛
𝑇∙𝐮𝑛

) .          (29) 

 

where ∅𝑛 is given by 

 

∅𝑛 = 𝐮𝑛
′ ∙ 𝐂 ∙ 𝐪𝑖,𝑛  .                         (30) 
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Table 1. Proposed spline adaptive filtering based on the 

adaptive averaging step-size normalized least mean 

square algorithm (AAS-NLMS-SAF) 

 

Initialize : 𝐰(0) =  𝜑𝑤. [1 0 … 0]𝑇 , 𝐪(0) =  [1 0 … 0]𝑇 , 

𝐂 =
1

2
[

−1
   2
−1
   0

 

   3
−5
   0
   2

 

−3
  4
  1
  0

 

   1
−1
   0
   0

]     

                  
for 𝑛 = 0, 1, 2, … , 𝑁 − 1. 

1) Calculate the output of adaptive FIR filter 𝑠𝑛 

 

𝒔𝑛 = 𝒘𝑛
𝑇𝐱𝑛  , 

2)  Compute the local parameter 𝑢𝑛 and index 𝑖 as 

𝑢𝑛 =
𝑠𝑛

∆𝑥
− [

𝑠𝑛

∆𝑥
]     

𝑖 = [
𝑠𝑛

∆𝑥
] +

𝑄−1

2
   . 

 

3)  Calculate the error 𝑒𝑛  as 

𝑒𝑛 = 𝑑𝑛 − 𝐮𝑛
𝑇𝐂𝐪𝑖,𝑛 

4)  Compute the adaptive averaging step-size 𝜇𝑤𝑛  
of 𝐰𝑛 

𝜇𝑤𝑛
=  𝛼𝑤  ∙  𝜇𝑤𝑛−1

+ 𝛽𝑤 ∙  |𝜉𝑛|2  , 

              𝜉𝑛 =  𝛾 ∙ 𝜉𝑛−1 + (1 − 𝛾){𝑒𝑛−1
∗ 𝑒𝑛}  , 

5)  Calculate the modified step-size 𝜇𝑞𝑖,𝑛
 of 𝑞𝑖,𝑛 

   𝜇𝑞𝑛
=  𝛼𝑞 ∙  𝜇𝑞𝑛−1

+ 𝛽𝑞 ∙ |𝑒𝑛|2 ,  

 

6)  Determine the tap-weight vector 𝐰𝑛  and the control 
points vector  𝐪𝑖,𝑛 as  

𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑤𝑛

𝐮𝑛
′ 𝐂𝐪𝑖,𝑛𝐱𝑛𝑒𝑛

∆𝓍 𝐮𝑛
𝑇𝐮𝑛

  ,             

𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 + μ
𝑞𝑛

𝐂𝑇𝐮𝑛𝑒𝑛

𝐮𝑛
𝑇𝐮𝑛

 .                                                        

end 

 

 

Therefore, the estimate error can be rewritten as 

 

∴ 𝑒𝑛+1 = [1 −
𝜇𝑤𝑛

(∆𝑥)2 (
∅𝑛

2 ∙‖𝐱𝑛‖2

(𝐮𝑛
𝑇∙𝐮𝑛)

2)] 𝑒𝑛 .            (31) 

 

Taking the norm of both sides in (31), we have  

 

|𝑒𝑛+1| =  |1 −
𝜇𝑤𝑛

(∆𝑥)2 (
∅𝑛

2 ∙‖𝐱𝑛‖2

𝐮𝑛
𝑇∙𝐮𝑛

)| ∙ |𝑒𝑛| .     (32) 

 

Therefore, the proposed step-size  𝜇𝑤𝑛
 of tap-weight 

vector 𝐰𝑛  in the adaptive FIR filter reaches 

 

∴ 𝜇𝑤𝑛
≃

2 (𝐮𝑛
𝑇∙𝐮𝑛)

2
∙(∆𝑥)2

∅𝑛
2 ∙‖𝐱𝑛‖2    ,                   (33) 

 

where we assume that |𝑒𝑛+1| <  |𝑒𝑛| . 
Similarly, we determine a bound on 𝜇𝑞𝑛

with the 

Taylor series expansion of estimate error 𝑒𝑛 as 

 

𝑒𝑛+1 = 𝑒𝑛 +
𝜕𝑒𝑛

𝜕𝐪𝑖,𝑛
∙ ∆𝐪𝑖,𝑛  ,            (34) 

 

where the derivative of 𝑒𝑛 w.r.t 𝐪𝑖,𝑛 is given by 

 

  
𝜕𝑒𝑛

𝜕𝐪𝑖,𝑛
=  

−𝐜𝑇∙𝐮𝑛

𝐮𝑛
𝑇∙𝐮𝑛

 ,                            (35) 

 

And From (21), we have the change of 𝐪𝑖,𝑛 as 

 

∆𝐪𝑖,𝑛 = 𝜇𝑞𝑛
∙

𝐂𝑇𝑢𝑛𝑒𝑛

𝑢𝑛
𝑇𝑢𝑛

 .                    (36) 

 

Hence, we substitute Eqs. (35) and (36) into Eq. (34), 

we have 

 

∴ 𝑒𝑛+1 = [1 − (𝜇𝑞𝑛
∙

𝐂𝑇∙𝐮𝑛

𝐮𝑛
𝑇𝐮𝑛

) ∙ (
𝐂𝑇𝐮𝑛

𝐮𝑛
𝑇𝐮𝑛

)] 𝑒𝑛.     (37) 

 

Taking the norm of both sides in Eq. (37), we get  

 

|𝑒𝑛+1| = |1 − (𝜇𝑞𝑛
∙

𝐂𝑇∙𝐮𝑛

𝐮𝑛
𝑇𝐮𝑛

) ∙ (
𝐂𝑇𝐮𝑛

𝐮𝑛
𝑇𝐮𝑛

)| ∙ |𝑒𝑛|.     (38) 

 

Therefore, the adaptive learning rate 𝜇𝑞𝑛
 becomes  

 

∴  𝜇𝑞𝑛
≅  2

 𝐮𝑛
𝑇∙𝐮𝑛

𝐂𝑇𝐂
 .                               (39)  

4.2 Mean square error performance of proposed 

algorithm 

In this section, we consider the mean square 

error performance at steady-state in the derivation of 

excess mean square error (EMSE) of nonlinear 

adaptive FIR filter and the control points vector in 

the adaptive LUT. 

Following [6], we determine the 𝜀𝑛  is a priori 

error of system, 𝜀𝑤𝑛
 is a priori error concerned the 

tap-weight vector 𝐰𝑛  and 𝜀𝑞𝑛
 is a priori error 

involved the control points vector 𝐪𝑖,𝑛 . 

To encourage the analysis, the proposed 

adaptive averaging step – size normalized least 
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mean square (AAS - NLMS) algorithm is under a 

few assumptions. 

 

Assumption 1: We consider that the noise sequence 

of system 𝜼𝑛  is independent and identically 

distributed with variance of noise 𝛿2 and zero mean. 

 

Assumption 2: We consider that the noise sequence 

of system 𝜼𝑛  is independent of 𝐱𝑛,  𝐬𝑛, 𝜀𝑛,  𝜀𝑤𝑛
, 

and  𝜀𝑞𝑛
 . 

 

Let us assume the estimate weight noise vector 

𝜼𝑤𝑛
 concerned with the tap – weight vector 𝐰𝑛 as  

 

𝜼𝑤𝑛
=  𝐰0 −  𝐰𝑛 .                  (40) 

 

where 𝜼𝑤𝑛
= [ 𝜂𝑤0

  𝜂𝑤1
… 𝜂𝑤𝑁−1

 ]. 

From Eq. (18), we can write the update weight 

noise vector 𝜼𝑤𝑛+1
 as   

 

𝜼𝑤𝑛+1
=  𝜼𝑤𝑛

− (𝐰𝑛+1 −  𝐰𝑛) 

𝜼𝑤𝑛+1
=  𝜼𝑤𝑛

−
𝜇𝑤𝑛∙ ∅𝑛∙𝐱𝑛∙𝑒𝑛

∆𝓍(𝐮𝑛
𝑇∙𝐮𝑛)

  .            (41) 

 

where  ∅𝑛 is given in Eq. (30). 

To evaluate the square of update weight noise 

vector ‖𝜼𝑤𝑛
‖

2
 of Eq. (41), we obtain  

 

‖𝜼𝑤𝑛+1
‖

2
= ‖𝜼𝑤𝑛

‖
2

− 𝜼𝑤𝑛
∙

𝜇𝑤𝑛

∆𝓍
∙

∅𝑛∙𝐱𝑛∙𝑒𝑛

(𝐮𝑛
𝑇𝐮𝑛)

  

+ ∙
𝜇𝑤𝑛

2

(∆𝓍)2 ∙
∅𝑛

2 ∙‖𝐱𝑛‖2∙𝑒𝑛
2

(𝐮𝑛
𝑇𝐮𝑛)2   .         (42) 

 

Assumption 3: We consider the condition necessary 

for the convergence of mean, that is  

 

𝐄 {‖𝜼𝑤𝑛+1
‖

𝟐
} =  𝐄 {‖𝜼𝑤𝑛

‖
𝟐

} , as   𝑛 → ∞ . 

 

From Assumption (3), the update 𝜼𝑤𝑛
 in (42) can be 

rewritten as 

 

 2𝜼𝑤𝑛 
∙

𝜇𝑤𝑛

∆𝔁
∙

∅𝒏∙𝐱𝒏∙𝑒𝑛

(𝐮𝒏
𝑻∙𝐮𝒏)

=
𝜇𝑤𝑛

2

(∆𝔁)𝟐  ∙
∅𝒏

𝟐 ∙‖𝐱𝒏‖𝟐𝑒𝑛
2

(𝐮𝒏
𝑻∙𝐮𝒏)𝟐    

2𝜀𝑤𝑛
∙ 𝑒𝑛 =

𝜇𝑤𝑛

∆𝔁
∙  

∅𝒏∙‖𝐱𝒏‖𝟐∙𝑒𝑛
2

(𝐮𝒏
𝑻∙𝐮𝒏)

   ,      (43) 

 

where ℰ𝑤𝑛
 is given by  

 

 ℰ𝑤𝑛
= 𝜼𝑤𝑛

𝐱𝑛 .                        (44) 

 

To redefine the a priori error of system 𝑒𝑛 as 

 

𝑒𝑛 =  ℰ𝑤𝑛
+ 𝜂𝑤𝑛

  .                   (45) 

Taking the expectation onto the noise in Eqs. (44) 

and (45) with the condition at steady-state for 

𝑛 closes to infinity, we get  

 

𝐸{ℰ𝑤𝑛
∙ 𝑒𝑛} = 𝐸{ℰ𝑤𝑛

(ℰ𝑤𝑛
+ 𝜂𝑤𝑛

)} ≃ 𝐸{ℰ𝑤𝑛
2 }  (46) 

 

and 

 

      𝐸{𝑒𝑛
2} = 𝐸{(ℰ𝑤𝑛

+ 𝜂𝑤𝑛
)2}  

                   = 𝐸{ℰ𝑤𝑛
2 + 2ℰ𝑤𝑛

𝜂𝑤𝑛
+ 𝜂𝑤

2 }    

  ≃ 𝐸{ℰ𝑤𝑛
2 + 𝜉𝑤𝑛

2 } .                                (47) 

 

where 𝜉𝑤𝑛
2  is the minimum MSE involved with 𝐰𝑛. 

Substituting Eqs. (46) and (47) into Eq. (43), we 

have  

 

       2𝐸{ℰ𝑤𝑛
2 } =

𝜇𝑤𝑛

∆𝓍
∙

∅𝑛∙‖𝐱𝒏‖2

(𝐮𝑛
𝑇∙𝐮𝑛)

∙ E{ℰ𝑤𝑛
2 +  𝜉𝑤𝑛

2 }  

 

 [2 −
𝜇𝑤𝑛

∆𝓍
∙

∅𝑛∙‖𝑥𝑛‖2

𝐮𝑛
𝑇∙𝐮𝑛

] {𝐸𝑤𝑛
2} =

𝜇𝑤𝑛

∆𝓍
∙

∅𝑛∙‖𝐱𝒏‖2

(𝐮𝑛
𝑇∙𝐮𝑛)

∙ E{ 𝜉𝑤𝑛
2 }   

 

𝐸{ℰ𝑤𝑛
2 } =

𝜇𝑤𝑛∅𝑛‖𝐱𝑛‖2𝐸{𝜉𝑤𝑛
2 }

2∆𝓍(𝐮𝑛
𝑇∙𝐮𝑛)− 𝜇𝑤𝑛∙∅𝑛∙‖𝐱𝑛‖2             (48) 

 

If 𝜇𝑤𝑛
 is very small, we have 

 

∴  𝜁𝑤 = E{ℰ𝑤𝑛
2 } ≅

𝜇𝑤𝑛 ∅𝑛‖𝐱𝒏‖𝟐∙𝐸{𝜉𝑤𝑛
2 }

2∆𝓍(𝐮𝒏
𝑻∙𝐮𝒏)

  ,          (49) 

 

where  𝜁𝑤 is the excess MSE concerned with 𝐰𝑛. 

In a similar manner, we assume that the noise 

sequence of estimated weight noise vector 𝜼𝑞𝑛
 

involved with the control points vector  𝐪𝑖,𝑛 as   

 

𝜼𝑞𝑛
= 𝐪0 − 𝐪𝑖,𝑛 .                          (50) 

 

where 𝜼𝑞𝑛
= [ 𝜂𝑞0

  𝜂𝑞1
… 𝜂𝑞𝑁−1

 ]. 

From Eq. (21), the update weight noise vector  

𝜼𝑞𝑛
 can be expressed as  

 

𝜼𝑞𝑛+1
= 𝜼𝑞𝑛

− 𝜇𝑞𝑛

𝐮𝑛
𝑇∙𝐂∙𝒆𝒏

(𝐮𝑛
𝑇𝐮𝑛)

 .                (51) 

 

Then, we evaluate the square of noise vector ‖𝜼𝑞𝑛
‖

2
 

using Eq. (51), that is 

 

‖𝜼𝑞𝑛+1
2 ‖ =  ‖𝜼𝑞𝑛

2 ‖ − 2𝜼𝑞𝑛
𝜇𝑞𝑛

𝐮𝑛
𝑇∙𝐂∙𝑒𝑛

(𝐮𝑛
𝑇 .𝐮𝑛)

+
𝜇𝑞𝑛

2 ‖𝐮𝑛
𝑇∙𝐂‖

2
𝑒𝑛

2

(𝐮𝑛
𝑇∙𝐮𝒏)2            

(52) 

 

Assumption 4: We regard that  

            𝐸 {‖𝜼𝑞𝑛+1
‖

2
} = 𝐸 {‖𝜼𝑞𝑛

‖
2

}    ;   as 𝑛 → ∞ 



 Received:  November 28, 2019                                                                                                                                          273 

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020           DOI: 10.22266/ijies2020.0430.26 

  

From Assumption (4), the update 𝜼𝑞𝑛
 in Eq. (52) 

can be calculated as  

 

       2𝜼𝑞𝑛
∙ 𝜇𝑞𝑛

∙
𝛍𝑛

𝑇∙𝐶𝑛∙𝑒𝑛

(𝐮𝑛
𝑇∙𝐮𝑛)

=
𝜇𝑞𝑛

2 ∙‖𝐮𝑇∙𝐂‖
2

∙𝑒2𝑛

(𝐮𝑛
𝑇∙𝐮𝑛)

2  

2ℰ𝑞𝑛
∙ 𝑒𝑛 = 𝜇𝑞𝑛

∙
‖𝐮𝑇∙𝐂‖

2
∙𝑒𝑛

2

(𝐮𝑛
𝑇∙𝐮𝑛)

 ,               (53) 

 

where ℰ𝑞𝑛
 is given as  

 

 ℰ𝑞𝑛
= 𝜼𝑞𝑛

∙ 𝐮𝑛
𝑇 ∙ 𝐂  .                     (54) 

 

So, we determine that the a priori error 𝑒𝑛  is 

involved with 𝐪𝑖,𝑛 as 

 

𝑒𝑛 = ℰ𝑞𝑛
+ 𝜂𝑞𝑛

 .                    (55) 

 

Taking the expectation into the noise in Eq. (53) and 

(55) at steady-state for  𝑛 → ∞ , we have  

 

E{ℰ𝑞𝑛
∙ 𝑒𝑛} = E{ℰ𝑞𝑛

∙ (ℰ𝑞𝑛
+ 𝜂𝑞𝑛

)} ≃ E{ℰ𝑞𝑛
2 }    (56) 

 

E{ℰ𝑛
2} = {(ℰ𝑞𝑛

+ 𝜂𝑞𝑛
)2} ≃ E{ℰ𝑞𝑛

2 + 𝜉𝑞𝑛
2 }          (57) 

 

where 𝜉𝑞𝑛
2  is the minimum MSE involved with 𝐪𝑖,𝑛. 

Replacing Eqs. (56) and (57) into Eq. (53), we get  

 

2E{ℰ𝑞𝑛
2 } = 𝜇𝒒𝒏

∙
‖𝐮𝑻 ∙ 𝐂‖𝟐

(𝐮𝑛
𝑇 ∙ 𝐮𝑛)

∙ E {ℰ𝑞𝑛
2 + 𝜉𝑞𝑛

2
} 

 

E{ℰ𝑞𝑛
2 } [2 −

𝜇𝑞𝑛 ∙‖𝐮𝑻∙𝐂‖
𝟐

(𝐮𝑛
𝑇∙𝐮𝑛)

] =
𝜇𝑞𝑛 ∙‖𝐮𝑻∙𝐂‖

𝟐
∙𝐄{𝜉𝑞𝑛

2
}

(𝐮𝑛
𝑇∙𝐮𝑛)

  .     (58) 

 

If 𝜇𝑞𝑛
is very small, we get 

 

∴  𝜁𝑞 ≃ E{ℰ𝑞𝑛
2 } =

𝜇𝑞𝑛∙‖𝐮𝑻∙𝐂‖
𝟐

∙𝐄{𝜉𝑞𝑛
2 }

2(𝐮𝑛
𝑇∙𝐮𝑛)

  ,             (59) 

 

where  𝜁𝑞 is the excess MSE concerned with 𝐪𝑖,𝑛. 

5. Experimental results 

In this section, we provide the experimental tests 

in system identification by simulating the random 

process. The input coloured signal for all 

experiments comprises 5,000 samples of the signal 

generated in the system identification over 100 

Monte Carlo trials by following [20]. 

 

𝑥𝑛 = 𝛼 ∙ 𝑥𝑛−1 + √1 − 𝛼2 ∙ 𝜓𝑛 ,        (60) 

 

where 𝜓𝑛  denotes as a zero mean white Gaussian 

noise with unitary variance and 0.1 ≤  𝛼 < 0.99.  

 

 
Figure.2 Learning curves of 𝜇𝑤(𝑛) of tap-weight w𝑛vector of proposed AAS-NLMS-SAF algorithm with  the different 

𝛼 = 0.1, 0.25, 0.75 and SNR = 40dB 
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Figure.3 Learning curves of 𝜇𝑞(𝑛) of control points q𝑖,𝑛 vector of proposed AAS-NLMS-SAF algorithm the different 

𝛼 = 0.1, 0.25, 0.75 and SNR = 40dB 

 

 

 
Figure.4 Mean square error (MSE) of proposed ASS-NLMS-SAF algorithm compare with LMS-SAF [20] with the 

different of initial step-size parameter using SNR = 40dB and 𝛼 = 0.10 
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Figure.5 Mean square error (MSE) in dB of proposed ASS-NLMS-SAF algorithm compare with LMS-SAF [20] with the 

different of initial step-size parameter using SNR = 40dB and 𝛼 = 0.95 
 

We consider the mean square error (MSE) 

computed in dB as 

 

MSE𝑛 = 10 log (𝐸 {(𝑑𝑛 − 𝐮𝑛
T𝐂𝐪𝑖,𝑛)

2
}) .  (61) 

 

A 23-point LUT 𝒒0 is implemented for a nonlinear 

memoryless target function that is interpolated with 

a uniform third degree spline and SAF model is used 

as  △ 𝑥 = 0.2 [4] and C is a Catmul-Rom spline as 

described in [2]. 

Initial parameters of all SAF model are as 

follows: 𝐰 (0)  = 𝜑𝑤 ∙ [1, 0, … , 0]T,  where  𝜑𝑤 =
1 × 10−3,   𝐪(0) = [1, 0, … , 0]T , SNR = 40dB, 

length of filter is 5. For initial parameters for spline 

adaptive filtering based on least mean square (LMS-

SAF) algorithm [20] are as: 𝜇𝑤 = 𝜇𝑞 =  0.025, 

0.035, 0.050. Summary of LMS-SAF is shown in 

Table 2. 

Other parameters for proposed AAS-NLMS-

SAF algorithm are as: 𝜇𝑤(0) = 𝜇𝑞(0) = 1.5 × 10−4,

1.5 × 10−2, 2.5 × 10−2, 3.5 × 10−2, 5.5 × 10−2 . The 

fixed parameters are as follows: 𝛼𝑤 = 𝛼𝑞 = 0.975 , 

𝛽𝑤 = 2.95 × 10−3, 𝛽𝑞 = 1.95 × 10−3, 𝛾 = 0.97.  

Learning rates of step-size parameters 𝜇𝑤𝑛
 of 

tap-weight vector and 𝜇𝑞𝑛
of control points vector of 

proposed AAS-NLMS-SAF algorithm are shown in 

Figs. 2 and 3 with the different initial parameter of 
 

Table 2. Spline adaptive filter based on the least mean 

square algorithm (LMS-SAF) [20] 

 

Initialize : 𝐰(0) = 𝐪(0) =  𝜑𝑤. [1 0 … 0]𝑇 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. 

1) To determine the tap-weight vector 𝐰𝑛   

𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑤𝐮𝑛
′ 𝐂𝐪𝑖,𝑛𝐱𝑛𝑒𝑛  .   

 

2) To determine the tap-weight vector 𝐰𝑛  and the 

control point vector  𝐪𝑖,𝑛 as  

𝐪𝑖,𝑛+1 = 𝐪𝑖,𝑛 + μ
𝑞

𝐂𝑇𝐮𝑛𝑒𝑛   . 

end 

 
𝜇𝑤(0), 𝜇𝑞(0) at SNR = 40dB with the different 𝛼 in 

(60) generated the input coloured signal. It is seen 

that both learning curves of 𝜇𝑤𝑛
 and 𝜇𝑞𝑛

 converge 

to their equilibria despite 100-fold of initial step-size 

situations at steady-state. 
In terms of MSE performance, simulation results 

shown for the proposed experiments with the two 

choices of parameter 𝛼  = 0.10, 0.95 which are 

presented in Fig. 4 and Fig. 5, respectively. At 

steady-state, the performance of proposed AAS-

NLMS-SAF algorithm closes to the noise power. In 
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addition, we notice that the performance of proposed 

AAS-NLMS-SAF algorithm outperforms to 

converge faster and robust mechanism when 

compared with the LMS-SAF algorithm using the 

variants of fixed step-size parameter. 

6. Conclusion 

In this paper, we propose a step-size approach in 

term of averaging of square error for spline adaptive 

filtering (AAS-NLMS-SAF). We describe how to 

derive the proposed adaptive averaging step-size 

algorithm with the method of normalised version of 

LMS algorithm on spline adaptive filtering. By 

using an estimation of autocorrelation between 

present estimated error and a priori estimated error, 

the adaptive averaging step-size scheme is proposed 

on SAF. The convergence and stability analysis of 

proposed AAS-NLMS-SAF algorithm examine in 

terms of mean square error and excess mean square 

error concerned with adaptive tap-weight FIR vector 

and control points vector in the adaptive LUT.  

Both the trajectories of adaptive step-size 

parameters can converge into each equilibrium in 

spite of 100-fold initial variations. Learning curves 

of MSE performance are illustrated to converge 

dramatically to steady-state in comparison with the 

existing LMS-SAF algorithm using the fixed step-

size parameters. 

Especially, SAF can perform well with low-cost 

complexity beside the existing FIR structures. 

Because of the recursion form, SAF can be modified 

in many practical cases such as nonlinear channel 

equalization, biomedical data analysis and control 

applications. 
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