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Abstract

The objective of this review article was to highlight the authors’ more than 30 years’ experience in 
the field of model development procedure of ethanol biosynthesis. During all these years a powerful sys-
tem analysis theory and its decomposition principles were applied not only for studying and description 
of microbial kinetics but for the needs of bioprocesses and bioreactors/photobioreactors optimization and 
scale-up. Special attention was given to the description of phenomena and techniques involved in ethanol 
synthesis on single and two substrates utilization processes by wild and genetically modified strains. The 
method of simultaneous saccharification and fermentation of starch to ethanol (SSFSE) by genetically 
modified microbial Saccharomyces cerevisiae YPB-G strain is presented to fully illustrate the strength of 
the applied theory. Another modern method for extractive fermentation and ethanol production is presented 
as well. Diauxic growth phenomena in ethanol synthesis is the example showing a modeling approach by 
connecting knowledge from molecular and population hierarchic levels. This modeling work helped tre-
mendously to find new insights on the control of internal metabolic mechanisms of the cells and how the 
processes can be guided to an optimal trajectory. A parameter identification procedure was performed by 
using the latest achievements in global search methods. The applied strategy of model development was 
extremely successful in obtaining new knowledge about the microbial systems’ behavior as well as for fast 
and robust bioprocesses development. The review article can be very useful for modelers and young scien-
tists working in the fields of biotechnology, bioengineering, metabolic and chemical engineering.
Key words-modeling, system analysis, ethanol, kinetics, parameters identification, genetic algorithm.

Резюме
Целта на тази обзорна статия е да се представи тридесетгодишния научен опит на авторите 

в областта на моделиране на кинетиката на етанолния биосинтез. През всичките тези години се 
е прилагала теорията на системния анализ и нейните принципи на декомпозиция като мощен 
инструмент не само за изучаване и описание на микробната кинетика, но така също и за нуждите на 
оптимизация и мащабиране на биопроцеси и биореактори/фотобиореактори. Специално внимание 
бе отделено на описание на механизмите и техниките при синтеза на етанол на базата на усвояване 
на един или два субстрата от диви и генетично модифицирани щамове. Методът на едновременно 
озахаряване и ферментация на нишесте до етанол от генетично модифициран микробен шам Sac-
charomyces cerevisiae YPB-G е представен за да илюстрира изцяло стабилността на приложената 
теория. Друг съвременен метод за производство на етанол като екстракционна ферментация също е 
представен. Статията за «Diauxic» растеж в синтеза на етанол е пример, показващ моделиране, чрез 
свързване на знанията от молекулно и популационно йерархични нива. Тази работа по моделиране 
помогна изключително много, за да се намерят нови идеи за контрол на вътрешните метаболитни 
механизми на клетките и как тези процеси могат да бъдат оптимално провеждани. Процедурата на 
параметрична идентификация се извършва чрез използване на най-новите достижения в областта на 
методите за търсене на глобален екстремум. Приложената стратегия за разработване на кинетични 
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модели беше изключително успешна за получаване на нови знания за поведението на микробните 
системи, както и за бързо и стабилно разработване на биопроцесите. Статията може да бъде много 
полезна за моделатори и млади учени, работещи в областта на биотехнологиите, биоинженерство, 
метаболитната и инженерната химия.

Introduction
The quantitative description of bioreaction 

processes must first pass through their modeling 
and simulation. By applying mass and energy bal-
ances, the engineer is able to evaluate almost any 
bioreactor system. Having the knowledge about 
microbial kinetics and microbial physiology, the 
process engineer can build a complex model of the 
bioprocess and bioreactor system and to solve op-
timization and scale-up tasks. During the modeling 
procedure scientists and engineers make an attempt 
to study and analyze a real, most often complex, 
situation, where many parallel processes take place 
in the bioreactor vessels. This usually requires sim-
plification of the situation in an understandable 
physical, chemical, and biochemical analog. In or-
der to successfully solve the task, the mathematical 
description must have physical sense, formulated 
in complex mathematical models. The contribution 
made to biotechnology by a biochemical engineer’s 
modeling approach is an undeniable fact. Howev-
er, to build a robust and working model it is not 
enough to use only basic fundamental principles, 
such as material balances.

There is more than that. The system analy-
sis theory and its principles provide the strategy 
for building a working model of any chemical or 
biological sophisticated system (Kaffarov, 1985; 
Kafaroff et al., 1979; Kafaroff et al., 1985). The 
authors have used the knowledge of this powerful 
tool for more than 30 years in Russia, Bulgaria, 
Brazil and the USA in order to describe the dynam-
ic behavior of many biotechnological (Kroumova 
and Wagner, 1995; Kroumov et al., 2005c; Wenzel 
et al., 2006a; Wenzel et al., 2006b], wastewater 
treatment processes (Fiorentin et al., 2015; Bor-
ba et al., 2014; Módenes et al., 2015; Kroumov 
et al., 2005b; Trigueros et al., 2010a; Trigueros et 
al., 2010b; Trigueros et al., 2007; Fagundes-Klen 
et al., 2007) containig heavy metals (Borba et al., 
2008), bioreactors (Kroumov et al., 1986; Krou-
mov et al., 1987; Kroumov et al., 1990; Kroumov 
et al., 1991; Kroumov and Gimenes, 2002a; Krou-
mov and Gimenes, 2002b; Kroumov and Gimenes, 
2002c), photobioreactors (Kroumov, 2013a; Kro-
umov, 2013b; Kroumov, 2014; Kroumov, 2015; 
Kroumov et al., 2015a; Kroumov et al., 2015b), and 
algae kinetics (Kroumov et. al., 2013; Kroumov et. 

al., 2015; Crofcheck et al., 2000a; Crofcheck et al., 
2009b; Crofcheck et al., 2010).

The review paper was intended to cast light 
on ethanol production processes and their mathe-
matical descriptions (Kroumov, 1999; Kroumov, 
2002e; Kroumov et al., 2002d; Kroumov et al., 
2006; Tait et al., 2006; Tait et al., 2005a; Tait et 
al., 2005b; Tait et al., Tait et al., 2005c; Tait et al., 
2005d; Tait et al., 2004a; Tait et al., 2004b; Krou-
mov et al., 2005a). The presented examples and all 
cited works of the kinetic models will convince the 
reader that the application of the theory of system 
analysis may save time and money during the over-
all bioprocess development procedure.

Materials and Methods
Model development procedure based on the system 
analysis theory
System analysis theory and its principles

The main stages of the system analysis theory 
(Kaffarov, 1985; Kaffarov et al., 1979; Kaffarov et 
al., 1985) applied to the development of a biopro-
cess kinetic model can be presented as follows: (1) 
Determination of the task of the modeling, choice 
of the criterion of optimality; (2) Analysis of the 
bioprocess – qualitative analysis of the structure of 
the biosystem, decomposition of the biosystem in 
sub-systems; building of the models of the sub-sys-
tems; parametric identification of the models of the 
elements of the sub-systems; (3) Synthesis of the 
system – development of the complex models of 
the sub-systems and their relationships; simplifica-
tion and combination of all the models into a com-
plex bioprocess kinetic model; search for optimal 
working conditions of the bioprocess based on the 
model simulations; experimental verification of the 
developed simple and complex models; (4) Solving 
the modeling task – determination of the optimal 
structure of the kinetic model on the basis of the 
chosen criterion of effectiveness; solving the bio-
process scale-up problems on the basis of the devel-
oped complex kinetic model.

Examples
Simultaneous Saccharification and Fermentation 
of Starch to Ethanol (SSFSE) - applications of the 
principles of system analysis theory to SSFSE sys-
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tem
A non-structural model describing a SSF-

SE process by a recombinant strain of S. cerevisi-
ae YPB-G (Altintas et al., 2002) was developed, 
published (Kroumov et al., 2006; Kroumov et al., 
2004) and presented elsewhere (Maicon et al., 
2005). The scheme of the model development algo-
rithm is shown below. In Figure 1 the mechanisms 
of the SSFSE processes were formalized in two 
hierarchic levels of knowledge. The first one con-
siders processes of enzymatic hydrolysis of starch, 
and the second one combines microbial physiology 

processes. The dynamics of enzyme excretion and 
plasmid stability are not taken into consideration.

First hierarchic level 
The first hierarchic level (see Table1) consid-

ers enzymatic hydrolysis of starch by glucoamylase 
(this enzyme in our case is secreted by the recombi-
nant strain). A mathematical description of the hy-
drolysis process of starch as two substrate fractions 
was developed and published in details by Polak-
ovic & Bryjak (2004). This knowledge was adapted 
and applied to starch hydrolysis by the recombinant 

Fig. 1. A scheme of model development algorithm.

strain of S. cerevisiae YPB-G.
Second hierarchic level

The second hierarchic level (Table. 1, see 
Eq.  4-7) involves knowledge about the microbial 
kinetics of the population. Several physiological 
phenomena of the recombinant strain S. cerevisiae 
YPB-G have been described with simple unstruc-
tured mathematical formulas taken from our kinetic 
models catalogue database (Birol et al., 1998). The 
microbial kinetic model is flexible, and equation (4) 
(glucose balance) is a key equation, which unites 
the first and second hierarchic levels of knowledge. 
The enzyme synthesis rate (see eq.7) is represented 
as a function of the specific growth rate and total 
starch concentration. The model of SSFSE is com-
pleted and it describes enzyme hydrolysis of starch 
by glucoamylase secreted by the recombinant strain 
S. cerevisiae YPB-G. It also describes microbi-
al growth, glucose synthesis and utilization, and 

ethanol accumulation in the medium. More details 
about the identification procedure, the applied hy-
brid genetic algorithm (GA) and the new decompo-
sition approach can be found elsewhere (Maicon et 
al, 2005, Kroumov et al., 2006]. The values of ki-
netic and stoichiometric parameters were estimated 
using the experimental data of Altintas et al., 2002. 
Several sets of batch data of recombinant strain cul-
tivation on starch were examined. Here only a set 
called SG30 was used with the above initial con-
ditions. It must be noted that the identification of 
the 14 model parameters is not an easy task. The 
straightforward use of the search method is always 
going to fail. We have developed and applied a new 
decomposition approach of the objective function 
in order robustly to find its global extreme. The de-
tails can be found elsewhere (Maicon et al., 2005, 
Kroumov et al., 2006). Here the experimental data 
of Altintas et al., 2002 are presented.
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Table 1. SSFSE system - two hierarchic levels of the model

The analysis of the results presented in Fig. 
2 evidence the predictive power of the new devel-
oped kinetic model of SSFSE and the new decom-
position method applied for the parameter iden-
tification. As can be seen in Fig 2, the simulated 
dynamic profiles of starch decomposition and uti-
lization (Fig 2a) show how the resistant and sus-
ceptible starch fractions were degraded through the 
SSFSE process. The enzyme profile shown offered 
new knowledge about the overall SSFE process 
when limitation, inhibition and effects take place 
on two hierarchic levels of the system. The experi-
mental data and model simulation of the total starch 
degradation (Fig 2b) and glucose formation and uti-
lization (Fig2c) are almost perfectly predicted by 
the model for the given initial conditions. This very 
well corresponds with the profiles given in Fig. 2a. 
Understandably, the experimental dynamic profiles 
of biomass (Fig. 2d) and ethanol (Fig. 2e) showed 
significant deviations from the simulated ones. In 
biotechnology this is a well-known fact and can be 
explained by the nature of the population growth, 

as well as by the measurement errors of the analyt-
ical procedure used.

Simultaneous fermentation and ethanol extraction 
(SFEE)

This example shows the application of a new 
method of fermentation and ethanol synthesis when 
ethanol is a strong inhibitor of its own production. 
The objective of this work was to model the con-
tinuous mode of simultaneous fermentation and ex-
traction of ethanol (SFEE) in order to obtain max-
imum productivity. The model considers a solvent 
distribution coefficient value into the confidence 
range. Different kinetic models were applied. Two 
kinetic models representing the significant effect of 
the substrate and product inhibition were chosen. 
The response surface analysis (RSA) methodology 
was applied to study the influences of the control 
variables on the SFEE system. The simulation re-
sults have shown that the solvent phase dilution 
rate is influenced mainly by the product inhibition, 
while glucose inhibition limits its own feeding con-
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Fig. 2. Search for minimum of least square objective function by using hybrid GA and a new 
developed decomposition approach: a) Simulation-Dynamic profiles of the state parameters 
of the new developed SSFSE kinetic model (Kroumov et al., 2006); b) Starch; c) Glucose; 
d) Biomass; e) Ethanol.

centration. The main control variable of the sys-
tem was the watery phase dilution rate. A hybrid 
genetic algorithm (GA) with particular codification 
of the crossovers, mutation and elitism technique 
was used for the optimization of ethanol produc-
tivity. The optimized control variable values were 
obtained for watery and solvent phase dilution rates 
and for feeding glucose concentration, respectively. 
The value of the overall productivity of 21.84 kg/
m³ is in accordance with the optimization results 
published in the literature.

Note: In SFEE, the appropriate solvent iden-
tification can be considered to be a crucial step. 
Kollerup and Daugulis (1985, 1986) presented 
studies with excellent final results of solvent iden-
tification. Recently, Pistikopoulos and Stefanis 
(1998) have analyzed identification methods and a 

promising molecular modeling methodology. How-
ever, if satisfactory solvent characteristics cannot 
be reached during the procedure of solvent identifi-
cation, genetic engineering can be used as a tool for 
development of solvent resistant modified strains. 
The mathematical modeling of the batch process 
was considered by Honda et al. (1987) and was suc-
cessfully applied for a mixture of solvents by Shi et 
al. (1990).

The SFEE model
A general mathematical model for SFEE 

based on the system analysis approach (see Fig.3) 
was developed.

The model considers continuous operation in 
a well-mixed reactor. The balance equations of the 
model are presented in Table.2.
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Fig.3. Scheme of the algorithm of SFEE model development.

Table.2 SFEE system -Two hierarchic levels of the model
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The factor η  is defined as the ratio between 
the solvent and water phase volumes. The partition 
(distribution) coefficient (m) is defined as the ra-
tio between the ethanol concentration in the broth 
phase and the ethanol in the solvent phase. For 
convenience, some scientists fixed the value of (m) 
(Honda et al., 1987).

Different kinetic hypotheses can be applied 
for the model development of SFEE process. In this 
work, Ghose and Thyagi’s model was analyzed and 
applied (see Table.2, Eq. 14-16). The model was 
verified on the basis of experimental data presented 
by Dourado et al., 1987.

Optimization procedure
An analysis of sensitivity of the optimization 

variables can be performed initially using the RSA 
method. The method shows the objective function 
(productivity) in relation to the control variables of 
optimization. When analyzing the results, some of 
the variables during the optimization process can 
be discarded. The RSA analysis (Silva et al., 1999) 
also assists in the identification of the superior and 
inferior limits of the search space of each control 
variable, minimizing the computational work with 
genetic algorithm (GA).

The three control variables of optimization 
are as follows: water phase dilution rate, solvent 
phase dilution rate and glucose concentration in 
the feeding flow. For analysis purposes, a three-di-
mensional representation of the relation between 
productivity and two control variables was chosen. 
The third variable was fixed in quasi-optimal value. 
The system response as a function of the control 
variables is shown in Figures 4-6. The overall etha-
nol productivity was considered zero near the criti-
cal conditions of wash-out point and can be written 
as follows:

The range of control variables was determined 

on the bases of their microbiological and physical 
meaning. To perform the optimization search, a hy-
brid genetic algorithm (GA) was used as a global 
optimizer. The search for a global solution by GA 
was carried out applying a selection method of par-
ents (tournament method). We have used the perfor-
mance of hybrid GA with the following parameter 
values: crossover=0.6 and mutations=0.2. As a rule 
of thumb, the crossover probability is generally in 
the range of 0.5-0.85. The best solution from every 

generation is preserved in the next one. This is in 
case the GA does not find a better solution during 
the search. A higher value of this elitism operator 
typically leads to premature convergence identified 
by the GA (Katare et al., 2004). Re-initialization of 
chromosomes corresponds to 20% of a new genera-
tion. More detail about the hybrid GA can be found 
in Singh et al., 2005; Katare et al., 2004). If during 
the search GA reaches the ith lower or upper param-
eter bound, a penalty on objective function is ap-
plied. A population size of 40 has been determined 
and the GA was run for 300 generations.

Results and Discussion
The Ghose and Thyagi’s model considers 

a hypothesis that specific utilization and ethanol 
formation rate can be modeled as a function of a 
specific growth rate. This assumption has the con-
venience and advantage to show that in microbial 
physiology the specific growth rate of microbial 
population has key importance. Taking into account 
this fact, the system can be formalized by building 
it from three dependent sub-systems, and the bio-
mass balance can be considered a key factor, where 
the specific growth rate controls the other cell func-
tions. Substrate limitation and inhibition effects are 
presented in the Andrews type model and ethanol 
inhibition is considered a function of the critical 
inhibitory concentration. The system can be provi-
sionally divided into two hierarchic levels. The first 
one includes the knowledge about microbial phys-
iology and overproduction of ethanol by fermenta-
tion. On this level, the system behavior is studied 
for the two chosen kinetic models. The second hier-
archic level contains knowledge about the physical 
process of ethanol extraction by organic solvent. 
The thermodynamics of liquid-liquid extraction 
can be represented in the simplest possible way by 
two coefficients. It is assumed that the solvent does 
not inhibit microbial growth and ethanol produc-
tion, i.e. the solvent is biocompatible.

For preliminary studies, the relation between 
the volumes of the solvent and broth phases was 
fixed η=0.25, and the distribution coefficient has 
a value of m=2. The value of these control vari-
ables depends on the balance between the phases 
and limits of solubility of the solvent in the water 
phase. The RSA of the Ghose and Thyagi’s kinetic 
model has shown the following system responses 
(see Figures 4-6).

(17)
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Fig. 4. RSA of Dw versus Glu0 using Ghose and 
Thiagy’s kinetic model–Ds=3(h-1).

Fig. 5. Surface analysis of Dw versus Ds for Ghose 
and Thiagy’s model–Glu0=200 kg/m³.

Fig. 6. RSA of Ds versus Glu0 using Ghose and 
Thiagy’s model–Dw=0.2 (h-1).

Analyzing the graphs of Figures 4, a „wash-
out“ phenomenon can be observed, which supposes 
a penalty on the objective function when the search 
procedure reaches the region near this point. On the 
other hand, the productivity is zero on the right-
hand side of the ”wash-out” point and its maximum 
is near the left-hand side of this point. The Dw var-
iable has exerted bigger influence on the system in 
terms of “wash-out” phenomenon. Figure 4 shows 
that the Dw-Glu gives crucial information about the 
maximum ethanol productivity. Based on this in-
formation, different operational conditions can be 
selected to perform an optimal ethanol production 
process. Figure 5 indicates that the search for an 
optimal Dw value is a crucial step of ethanol pro-
ductivity maximization. For the chosen kinetic 
models, the Ds-Dw correlation is insignificant. The 
Ds influence on the system can be neglected since 
the ethanol inhibition effect on cells is very low. 
In Figure 6, the analyzed „wash-out“ phenome-
non shown in Figure 4 is not observed. The max-
imum productivity is reached with the increase of 
both control variables, Ds and Glu0 (Dw is fixed). 
The system behavior was analyzed in detail by us-
ing Ghose and Thyagi’s kinetics. Response surface 
analysis (RSA) showed the key role of Dw control 
during the optimization procedure. The Dw values 
near 0.37 should be taken with caution. The applied 
hybrid GA performed excellently for the chosen 
system and optimal solutions were found within a 
short computational time. The main difficulty of the 
optimization procedure was to find the optimal val-
ue of GA parameters. The RSA can be very helpful 
for localization of space search for system optimal 
solutions, minimizing the computational time. The 
optimal control variables and productivity values 
for Ghose and Thyagi’s model are presented in Ta-
ble 3.

The productivity presented in Table 3 cor-
responds to the optimal values of Glu0, Dw and 
Ds. The results obtained during the search by GA 
have shown process productivity of 23 kg/(m³.h). 
The productivity simulated with the chosen kinetic 
models and solvent extraction is about three times 
higher than the productivity obtained by the con-
ventional ethanol production process.

Conclusions
The process of extractive fermentation for 

ethanol production was modeled applying two dif-
ferent kinetics hypotheses. The model considers the 
thermodynamics of liquid–liquid extraction as sim-
ply as possible, utilizing the distribution coefficient 
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as a constant. The microbial kinetics of the Ghose 
and Thyagi’s model can be considered practically 
useful. The RSA of the system showed that the cho-
sen control variables Glu0, Dw and Ds had a signif-
icant effect on the SFEE process. The correlation 
between the control variables was analyzed in ac-
cordance with the microbial physiology theory and 
liquid-liquid extraction thermodynamics. The RSA 
methodology is a very helpful tool for localization 
of the space of optimal solutions. The adapted hy-
brid GA for the optimization of the SFEE process 
performed excellently. An optimal productivity val-
ue of 21.84 kg/m³ was obtained and compared to 
the results of others. The SFEE process optimiza-
tion results showed a three times higher productiv-
ity than that obtained by the conventional ethanol 
production process. Finally, the SFEE process is 
very challenging for industrial applications because 
of the high reductions of the production cost.

Modeling of Ruminucoccus albus bacterial growth 
on cellobiose–xylose mixture

A model was developed for mixed substrates 
(cellobiose and xylose) utilization by Ruminococ-
cus albus B199.

Provisionally, the system was divided into 
two sub-systems (see Fig. 7), where phenomena 
taking place on molecular and population levels 
were analyzed and modeled. On molecular lev-
el, the model describes regulatory mechanisms of 
induction – repression processes, taking into con-
sideration the available knowledge of catabolic 
pathways and changes of the key enzyme activity, 
which is considered to be a rate-controlling step 
for the utilization of the non-preferable substrate 
(xylose). On population level, the specific growth 
rate on mixed substrates was established as an ad-
ditive function of growth rates on single substrates. 
The product formation rate of Ruminococcus albus 
B199 could be described as partially linked with the 
specific growth rate or, more precisely, linked with 
the substrate utilization rate. By using material bal-
ances, the kinetics of mixed substrates utilization, 

growth and product formation in batch processes 
were investigated. The developed model was a use-
ful tool for microbial kinetic experimental design 
and biochemical study of key enzymes involved in 
the metabolic regulation of Ruminucoccus albus 
B199. An understanding of the internal regulato-
ry processes is important for the ruminant animal 
sciences (Russell et al., 1979; Strobel, 1993; Thurs-
ton et al., 1993, 1994), fermentation using cellulose 
and hemicellulose hydrolysates.

Many theoretical models have been developed 
to describe microbial growth on multiple substrates. 
The simple unstructured models developed by Lee 
et al. (1974), Tsao & Hanson (1975) and Yoon et 
al. (1977) are inadequate to explain the complex 
cellular regulatory process. Further contributions 
in the modeling of this system are the structural 
models of Domach et al. (1984), Joshi & Palsson 
(1988), Nikolajsen et al. (1991) and Palsson and 
Joshi, (1987). Such models incorporate too many 
parameters to be used for experimental design and 
optimization of fermentation processes. The most 
widely accepted models of Bajpai & Ghose (1978), 
Imanaka & Aiba (1977) and Van Dedem & Moo-
Young (1977) were based on the lac operon theory 
of Jacob and Monod (1961) and included detailed 
mechanisms of repression and induction.

Optimal parameter values estimated by GA for Ghose and Thyagi’s model

Variable Glu0 Dw Ds
Productivity

kg/(m³.h)

Model 337 0.169 1.11 21.84

Table 3. Optimal parameter values estimated by GA for Ghose and Thyagi’s model

Fig. 7. A scheme of the system of mixed substrate 
utilization.
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Recently, a cybernetic approach (Baloo & 
Ramkrishna, 1991a; Baloo & Ramkrishna, 1991b; 
Kompala, 1982; Kompala et al., 1984; Kompala et 
al., 1986; Ramkrishna, 1982; Ramkrishna & Ram-
krishna, 1996; Straight & Ramkrishna, 1994; Yoon 
et al., 1977) was applied for modeling microbial 
growth on multiple substrates. On the other hand, 
to explain complex regulatory processes, modeling 
should be based on the knowledge of the biochem-
ical pathways of a particular microorganism. The 
lac operon theory of Jacob and Monod (1961) was 
adapted in order to develop the induction-repres-
sion model of cellobiose-xylose utilization by Ru-
minococcus albus B199. Briefly about the theory, 
the “xylose” operon is assumed to consist of four 
major regions. The “R” gene codes for an inactive 
repressor molecule. This molecule in the absence of 
an inducer, such as xylose, is able to bind to the op-
erator region “O” of the operon. This binding of the 
active repressor to the operator blocks the transcrip-
tion process by mRNA polymerase, which begins at 
the promoter region “P” of the operon. In this re-
pressed situation, the “S” gene (DNA encoding the 
xylose key enzyme) is not transcribed and the re-
quired key enzyme is not formed. When there is an 
inducer present to bind with the inactive repressor, 
then operator region is free and mRNA polymer-
ase travels from the promoter region throughout 
the operator and transcribes the “S” gene to form  
therequired key enzyme. The mathematical descrip-
tion of this phenomenon is based on the assumption 
that a chemical equilibrium exists between the re-

pressor molecule, inducer and the operator region. 
An induction-repression mechanism was success-
fully used for description of yeast growth on glu-
cose-cellobiose mixture by Bajpai & Ghose (1978). 
Applying this to cellobiose-xylose utilization by R. 

albus B199, the relationship between the inactive 
repressor molecule (R), xylose and the operator can 
be written as follows:

where R- is the cytoplasmic repressor; O- is 
the operator; Xyl- is inducer; n-is the number of li-
gand binding sites for inducer on the repressor mol-
ecule R.

The equilibrium constants K1 and K2 are de-
fined by:

The material balances for the operator and to-
tal repressor concentrations are:

by assuming [R] >> [ O ] then

where R.n.Xyl- is the repressor-inducer com-
plex, which prevents R from binding to an operator 
gene where it would block the transcription of the 
structural gene;

O.R- is the operator-repressor complex whose 
formation blocks mRNA polymerase formation.

Using the low of mass action the fraction of 
free operator genes can be written:

The fraction of the gene promoter occupied 
by the catabolic repressor is expressed Imanaka & 
Aiba (1977).

The rate of enzyme synthesis can be assumed 
to be proportional to the mRNA polymerase con-
centration in the cell, which itself is proportional to 
the fraction of free operator genes. Hence,

where E- is the induced key enzyme (xylose isomer-
ase) concentration in repressed state; E0- is the key 
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enzyme concentration under completely de-re-
pressed state; E/E0- depends upon the fraction of 
free operons made available by the inductive action 
of xylose and upon the extent of catabolic repres-
sion of cellobiose; α- is the key enzyme synthesis 
rate constant; β- is the enzyme decay rate constant

Thus, the induction-repression model on the 
molecular level is completed and is based on the 
following assumption: -the interaction between the 
inducer and the cytoplasmic repressor can be treat-
ed as a chemical equilibrium; -the equilibrium is 
established instantaneously; -the number of cyto-
plasmic repressor molecules is large compared to 
the amount of operators and it is small compared to 
the inducer molecules.

The E/E0 ratio represents the degree of cata-
bolic repression occurring in the cell on the basis 
of O/Ot, R/Rt interaction. When E/E0 is equal to 1, 
the key enzyme is in fully de-repressed state. For 
values of E/E0 less than 1, the system is proportion-
ally repressed. It is assumed that there is only one 
enzyme that is induced, or if there is more than one, 
only one is produced at a slow rate (limiting step) 
as a result of induction and synthesis of the same 
enzyme is catabolically repressed. Hence, the E/E0 
ratio can be considered to be a function of two con-
trol parameters (xylose and cellobiose concentra-
tions). For development of a growth kinetics mod-
el, it is assumed that the rate of xylose utilization is 
directly proportional to the key enzyme concentra-
tion (xylose isomerase).

It is important to note that measurements of 
absolute key enzyme activity (concentration) is 
not required, which is very important for practical 
applications. The model requires only the initial 
values of the relative enzyme level (relative to the 
maximum one during balanced exponential growth 
on xylose). Such initial value can be used to char-
acterize the state of the inoculum and can be de-
termined from a single substrate batch experiment. 
The specific growth rate of R. albus B199 on xylose 
can be written as follows:

Therefore, E/E0 could be rewritten as the ra-
tio of (µxylm/µo

xylm), where µxylm is the maximum 
growth rate on xylose in the presence of cellobiose 
and µo

xylm is the maximum growth rate on pure xy-
lose.

Microbial growth on multiple substrates can 
be represented by the following equation:

The utilization of the ith substrate (Si) by the 
biomass (B) is assumed to be catalyzed by a key 
enzyme (Ei) representing the whole set of enzymes 
catalyzing the metabolic pathways of growth on 
(Si). The key enzyme required for utilization of a 
given substrate (cellobiose or xylose) must be syn-
thesized before growth can occur on the substrate. 
Hence, growth of R. albus B199 on cellobiose-xy-
lose can be considered to be made up of contribu-
tions from growth on cellobiose and xylose involv-
ing catabolic repression mechanism. Therefore,

Modeling of batch growth
Using the above kinetic models and the mass 

balances, mathematical expressions describing 
batch process of biomass accumulation and sub-
strate utilization can be written as follows:

Biomass

Cellobiose

Xylose

VFA - volatile fatty acids

Ethanol

The process of mixed substrate utilization is 
fully described by equations 26, 30-36. The most 
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important information of this study is the informa-
tion about bacterial diauxic growth as a result of 
two substrate utilization processes controlled by a 
catabolic repression mechanism. For this reason, 
the information from equations 35 and 36, describ-
ing product formation, is not under consideration in 
the present work.

Materials and methods are published else-
where. More details about biochemical pathways 
and assays may be found elsewhere (Russell et al., 
1979; Thurston et al., 1993; Thurston et al., 1994).

Results and Discussion
Series of batch experiments with different 

cellobiose-xylose ratio were performed to evalu-
ate the catabolic repression hypothesis describing 
Ruminococcus albus B199 growth. Experimental 
design details can be found elsewhere (Kroumov, 
1999).

Experiments in tubes with different cello-
biose-xylose ratio were performed. In all cases, 
the total substrate concentration of 1 kg/m3 and 
xylose inoculum was chosen. Figure 8 shows the 
growth curves of 9 tubes processes and substrate 
ratio changing from pure xylose via 15:1, 10:1, 5:1, 
1:1, 1:5, 1:10, 1:15 to pure cellobiose. Each curve 
represents the average value of three parallel tests. 
R. albus B199 utilized cellobiose first and when its 
concentration fell to the low level, the utilization of 
xylose took place. A maximum of the growth rate 
was observed on pure cellobiose. Diauxic growth 
appeared in ratios “D” and “E” where the concen-
tration of cellobiose was lower than that of xylose. 
In “B” and “C” ratios there was co-utilization of 
xylose. By changing the ratio the diauxic lag be-
came progressively suppressed. These observations 
were in agreement with the results of others (Bajpai 
& Ghose, 1978; Kompala et al., 1986) on multiple 
substrates.

Fig. 8. Growth of R. albus B199 on cellobiose-
xylose mixture.

Fig. 9. Batch growth of Ruminuccocus albus B199 
on CB: Xylose ratio (1:1).

Parametrical identification and simulations
Experimental results show that the maxi-

mum specific growth rate of R. albus on cellobiose 
is greater than on xylose substrate. In mixed sub-
strates experiments, the decrease in µxyl depends on 
the decrease in E/E0. On the other hand, the relative 
enzyme activity of the key enzyme (E/E0) is a func-
tion of the repressor-inducer ratio, and for the R. 
albus B199 strain the most dramatic repression ef-
fect is observed in the cellobiose-xylose ratio (1:5; 
1:10) Fig. 10 and Fig. 11. The detailed description 
of the identification procedure can be found else-
where (Kroumov, 1999). The final values of con-
stants used in the simulations: Kinetic parame-
ters-µxylm=0.358 1/h; µCBm=0.18 1/h; KCB=0.07 kg/
m3; Kxyl=0.2 kg/m3; YCB=0.28 kg/kg; Yxyl=0.386 kg/
kg; Induction repression parameters- K1=438 [-]; 
K2=14723 [-]; m=1; n=2.3; k1Rt1=1.5 [-]; k2Rt2= 2.3 
[-]; α=1 [-]; β=1 [-].

The initial conditions for the experiments and 
integration of the model equations were determined 
as follows: X0=0.05 kg/m3; E/E0=1. The initial con-
centrations of cellobiose and xylose were deter-
mined by the substrate ratio for the total amount of 
carbohydrates equal to 1 kg/m3.

Figure 9 shows the simulation and experi-
mental results of diauxic consumption of cellobiose 
and xylose for the substrate ratio 1:1 (or concen-
tration of 0.5 kg/m3 for each sugar). Cellobiose is 
consumed first and because of the strong catabolic 
repression, the relative enzyme activity reaches the 
minimum. It starts increasing when cellobiose in 
the reactor is exhausted and then reaches the max-
imum, which is about 90% of its initial value. Xy-
lose consumption rate increases as the key enzyme 
concentration builds up. The enzyme activity falls 
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again as xylose concentration drops, which results 
in a reduced consumption rate. In the growth curve, 
there is a clear indication of a second lag phase for 
about 3 hours, where the overall specific growth 
rate is close to zero. For R. albus B199, the duration 
of this lag phase is determined from the time taken 
for complete de-repression of operators by xylose, 
i. e. from the values of the constants in equation 26.

Figure 10 presents the results from batch ex-
periments for the substrate ratio of 1:5 (cellobiose 
concentration – 0.167 kg/m3; xylose concentration 
–0.833 kg/m3). In the growth curve, the duration of 
the second lag phase is about 3 – 4 hours. The mini-
mum of the relative enzyme activity (E/E0) is slight-
ly higher than in the substrate ratio 1:1. After the 
cellobiose consumption, the relative enzyme activ-
ity reaches the maximum of about 98% of the fully 
de-repressed state. This fact is obvious because xy-
lose concentration is higher compared to that in the 
substrate ratio 1:1. The appearance of a second lag 
phase in all three chosen ratios is a manifestation of 
repression of xylose-consuming key enzyme syn-
thesis. The evidence that the key enzyme is induced 
by the presence of xylose is indicated by very long 
lag periods (5-7 hours, even more!) observed when 
actively growing cells of inoculum are cultivated 
on the cellobiose medium.

Figure 11 presents data about R. albus B199 
growth based on the cellobiose-xylose substrate ra-
tio 1:10 (cellobiose concentration–0.09 kg/m3, and 
xylose concentration- 0.9 kg/m3). In this experi-
ment, the catabolic repression effect is similar to the 
one observed at 1:5 ratio. The growth curve shows 
a very long second lag phase. The recovery of the 
relative enzyme activity is about 98.6% of the ful-
ly de-repressed state of the key enzyme. The sim-

ulation results (dash lines) and experimental data ( 
dotted line) for the three substrate ratios presented 
in Fig. 9, 10, and 11, respectively, are a very good 
manifestation of the chosen parametrical identifi-
cation procedure. The error between the model and 
experimental data was in the range of 3% - 12%.

Finally, all biochemical and molecular level 
studies were performed on the basis of simulation 
results of the developed model. The analysis of sen-
sitivity applied to equation 26 showed that the pow-
er prediction of the model was high for the different 
operational conditions.

Fig. 11. Batch growth of R. albus B199 on 
CB:Xylose ratio (1:10).

Conclusions
In this work, it was shown that anaerobic 

growth of ruminal bacterium Ruminococcus albus 
B199 on cellobiose-xylose mixture can be described 
successfully by an induction-repression model. The 
developed model performs well with different cel-
lobiose-xylose ratios and it is a powerful tool for 
different practical applications. Based on the model 
simulations, the experimental design for biochem-
ical and strain modification studies was performed 
with unexpected great success.
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