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The aim of the study was to develop a mathematical model to simulate hypoxic states simulation
of an organism infectious lesions. The model is based on the methods of mathematical modeling and
the theory of optimal control of moving objects. The processes of organism damage are simulated
with the mathematical model of immune response developed by G.I. Marchuk and the members of his
scientific school, adapted to current conditions. This model is based on Burnet’s clone selection
theory of the determining role of antigen. Simulation results using the model are presented. The
dependencies of infectious courses on the volumetric velocity of systemic blood flow is analyzed on
the complex mathematical model of immune response, respiratory and blood circulation systems. The
immune system is shown to be rather sensitive to the changes in blood flow via capillaries. Thus, the
organ blood flows can be used as parameters for the model by which the respiratory, immune response,
and blood circulation systems interact and interplay.
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General approaches to the mathematical
modeling of immune processes

Recent results in areas such as molecular
biology, human genetics, clinical and
experimental immunology have helped to
understand the leading role of immune
defense mechanisms in the pathogenesis of
infectious diseases. In particular, fundamental
knowledge has been obtained in clinical
immunology that reflects the patterns of
the immune system response to infectious
diseases [1-3]. An important milestone was
the discovery of the universal nature of the
processes of immune defense, namely the
recognition, learning and memory. And the
development and improvement of computer
technology has contributed to the creation of
appropriate mathematical models [4—-9].

Currently, the immunological research
developed a significantly deeper knowledge

about the structural characteristics of
the immune system, the regulation of the
activity of its individual components, which
function as a holistic distributed system.
Mathematical modeling is an analytical tool
for describing, analyzing and predicting
the dynamics of immune responses under a
reductionist approach. Building mathematical
models of the human immune system that
reflect the obtained understanding of its
structure and describe the processes that
determine it functionally is an urgent task
for modern systemic immunology and its
new interdisciplinary field, mathematical
immunology. Grebennikov et al. [10]
emphasize the need for systematic development
of multiscale mathematical models that
describe the development of immune responses
at different detailization: intracellular
regulation of the components of immune
system activity, population dynamics of cells
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in organs and systemic immunophysiological
processes in the whole organism.

The mathematical modeling of infectious
diseases is one of the important areas of
implementation of mathematical methods
in immunology and medicine. This area of
research emerged about 40 years ago and is
evolving through the efforts of different
groups of researchers from different countries.
Significant progress has been made in research
of the process of anti-infective immunity,
which is still the subject of comprehensive
theoretical studies [11—-13]. The work of Hege
and Cole is considered to be one of the first
works in the field of modeling of immune
processes [14]. The authors proposed an
equation describing the change in the number
of circulating antibodies depending on the
number of plasma cells. Cohen in his works
[15,16] proposed the concept of activation and
suppression signals to describe the switching
and paralysis of the immune process.

Notably, two different approaches to the
mathematical description of the immune
defense process have been formed. One of them
is based on the assumption of the leading role
of antigen and is a mathematical formulation
of Burnet’s clone selection theory. The other is
based on Erne’s hypothesis, i.e. the principle
of network regulation of interactions between
different populations of immune system cells
and viral antigen. Hereafter, we consider an
approach based on Burnet’s clone selection
theory because Erne’s theory exists today only
as a hypothesis, although there are a number
of publications related to the mathematical
modeling of that theory.

Mathematical modeling of Burnet’s clone
selection theory

The first most detailed study of the
mathematical description of clone selection
was made by the American researcher Bell. In
his work, Bell [17] using the main hypotheses
of Burnet’s clone selection theory has built a
mathematical model of the humoral immune
response to a non-reproducing monovalent
antigen. He has further modified the model
for the case of heterogeneous antibodies and
multivalent antigen [18, 19], and in [20]
has proposed the simplest model of immune
response to reproducing antigen, in which the
interaction between antigen and antibody was
described in terms of “predator-prey”.

Pimbley has studied the behavior of Bell’s
model [21-23]. Pimbley has considered not
only the two-dimensional but also the three-

6

dimensional model with the inclusion of plasma
cells and proved the existence of stable periodic
solutions in each of these variants.

Smirnova and Stepanova [24—26] have also
considered modeling the immune response.
Their models were based on Sekarts-Koons’s
hypothesis. Immunocompetent cells were
thought to transform into lymphoblasts after
first contact with the antigen. Several times
upon repeated contact with the antigen, the
dividing cells are transformed into plasma
cells, which in turn produce antibodies. If
there is no repeated contact, they become
memory cells.

Sekarts-Koons’s hypothesis became
the basis for studies by Jilek [27-29], who
analyzed in detail the interaction of antigen
with lymphocytes. He proposed a number of
probabilistic models for different cell types
that repeatedly contacted with a specific
antigen.

Mohler in his works [30—32] continued
and generalized the ideas that were the basis
of Bell’s model. In [30], he has considered
the case of the production of two classes
of antibodies Ig M and Ig G. “Switching”
antibody synthesis occurs over a period of time
that depends on the antigen’s concentration
in the body. The concentration of these cells
is the initial condition in the simulation of
second response. Mohler investigates T- and
B-systems of immunity and the principles of
their cooperation in the process of antibody
formation. The author also considers a model
that reflects the course of the immune process
in various organs and systems of the body: in
the blood, lymph nodes, spleen. This model
is a combination of bilinear schemes, each of
which reflects the dynamics of the process
components in the corresponding organ.

Italian scientists Bruni, Giovenco, Koch,
and Strom have proposed a model of humoral
response [33, 34] describing the heterogeneity
of the immunocyte population using the
continuous functions of the two arguments of
affinity and time. This model is a system of five
integral-differential equations that describe
the dynamics of B-immunocytes, B-plasma
cells, antibodies, the immune complex, and the
nonproliferating antigen. It is assumed that
B-immunocytes are generated, and the rate
of their generation depends on the affinity
distribution of cellular receptors. The immune
system in these models was considered from the
standpoint of the theory of bilinear systems.
A series of works is devoted to modeling the
immune response to a reproducing antigen,
i.e. the response against bacteria, viruses
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and tumors. The immune response against
bacteria was studied in [35—41]. The case of
cellular immune response against tumors was
considered in [42—44].

The basic principles of mathematical
modeling of the immune response and in-
fectious diseases were formulated by Mar-
chuk in building a basic model of infectious
disease in 1975. The dynamics of populations
of viruses, plasma cells and antibodies, and the
characteristics of the degree of damage to the
target organ were considered in this model,
based on a system of nonlinear differential
equations with delay. The main task of this
model was to describe the disease as a physical
process of interaction of cells and molecules
of the immune system, target organ and
pathogen. By the time the basic model of
infectious disease emerged, mathematical
models of the immune response have already
been developed [4, 14, 17, 20, 27].

However, the model proposed by Marchuk
has a number of features that distinguish
it from others and allow it to be used in
theoretical studies of the immune system.
First, Burnet’s clone selection theory, which
still retains the importance of a fundamental
element of modern immunology, was used as
the basic mechanism of the immune response.
Second, the introduction into the model of a
variable m (a quantity that describes the degree
of damage to the target organ) transforms the
model of the immune response into a model of
infectious disease.

Thirdly, the model uses delayed equations,
allowing a more accurate description of the
dynamics of the immune response. Finally,
a function m was introduced into the model
that reflects a decrease in the intensity of the
immune response due to significant damage to
the target organ. The mathematical model of
Marchuk-Petrov [45] describes the dynamics
of viral damage and immune response by
a more complete system of differential
equations, taking into account in the form of
delays in the duration of cell division of the
immune system. The monograph [46] presents
models of experimental viral infections and
mathematical models of viral hepatitis.

In the works of Asachenkov [47, 48],
Belykh [49, 50], Romanyukha [51-53], and
Bocharov [54—56], the basic model was used to
study the most general laws of the dynamics of
immune defense, as well as to analyze various
variants of viral and bacterial infections,
including mechanisms of infectious diseases
in the chronic state, treatment of chronic
forms of infections, study of the severity of

viral hepatitis to variations in the parameters
of the virus in the body, optimal management
of infections [57—59]. Although the model
equations describe the development of a
humoral immune response in infectious
diseases, the principles of constructing the
basic model equations reflect a universal
approach to modeling infectious diseases. This
allowed us to successfully use both the model
itself and its modifications for the analysis of
various infections (influenza, viral hepatitis,
pneumonia, chronic bronchitis, bronchial
asthma, tuberculosis, mixed infections, etc.).

A number of studies describe the
development of HIV in the human body
[60—-64]. The effect of antigenic load on the
aging of the immune system was also studied
[52, 65]. Antigenic load is understood as the
total flow of molecules of biological nature,
which enter the lymphatic tissue and cause
immune response processes. To describe the
dynamics of aging of the immune defense, a
mathematical model of age-related changes
in the properties of peripheral T-lymphocytes
[66], and the models presented in [53] were
used. As a result of modeling the estimation
of severity of a course of pneumonia for
various age categories is received. In [67],
the immune system is presented as a complex
dynamic and multilevel biological system
that protects organisms from pathogen
invasion and tumor development, and plays
an active role in tissue homeostasis and organ
regeneration. In [68], a mathematical model
describing the antiviral immune response
is considered, taking into account the
interacting regulatory effects of the immune
and neuroendocrine systems, and is based
on the description of the manifestations of
these effects [69—-73]. The model takes into
account the spatial organization of immune
and infectious processes in various organs
and tissues, for which the delay time of the
interaction of components is introduced. The
model consists of a system of 18 ordinary
differential equations with a delayed
argument; system parameters characterize
the speed of various processes that affect
the dynamics of infection. Chirkov’s works
are also notable [74, 75], stating that the
correct formulation and solution of the
problem of immune response management
can significantly affect the correct choice
of treatment, as well as the theoretical
studies of the immune response. That is
why Rusakov and Chirkov [76, 77] set the
task of controlling the immune response in
conditions of uncertainty.
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Mai, Wang et al. [78] considered the
prediction of treatment outcomes using
mathematical models of the immune response
to infection. They have revealed a fundamental
limit to the accuracy of predicting results for
a general class of mathematical models of the
immune response to infection. It is noted that
the accuracy of the forecast can be improved in
the case of a slow forecast. Several systems of
ordinary differential equations that simulate
the host’s immune response to pathogen load
have been studied. The observed advantage of
such systems of equations to study the immune
response to infection is the ability to collect
data on a large number of “virtual patients”,
each with a given set of parameters, and
obtain many time points during the course of
infection. It is noted that the combination of
forecasting results with the treatment regimen
is another important approach.

Kuznetsov and Shishkin [79-82] have
summarized the data on the proliferation and
differentiation of Th, Tc and B-lymphocytes
in the form of mathematical models that
give a holistic and detailed description of the
processes of immune response, which allows
to study the patterns of immune system and
simulate the development of complex diseases
to study their pathogenesis and etiology. The
mechanisms of rubella, a complex autoimmune
disease, were studied using the developed
mathematical model and software.

Quiruette et al. [83] have considered the
influence of diffusion and advection on the
kinetics and localization of infection. The
mathematical model in this study presents
human airway as a one-dimensional pathway
where stationary cells interact with the
influenza virus. A platform is proposed to
study the localization and spread of respiratory
viral infections within the human respiratory
tract. However, the paper does not take into
account the complex structure of airways,
which, according to Weibel’s model [84], are
dichotomously divided and divided into 23
generations.

A number of works primarily related to the
names of Bocharov and Grebennikov [85—92]
are also of note on modeling viral infection and
the dynamics of viral response.

Eftimie, Gillard, Cantrell [93] have
reviewed chosen areas of research in the field
of mathematical immunology, which have
developed recently, based on current advances
in genetics, biochemistry and experimental
and clinical immunology. A significant number
of mathematical models have been developed in
recent decades. The review is well structured.

To emphasize the complex, multiscale
dynamics of the immune response, the study
used a step-by-step approach to discuss a
number of models obtained to study the
dynamics of both innate and adaptive immune
responses at the molecular, cellular, and tissue
levels. The mathematical tools used to study
these models were also discussed, as well as
some future trends and prospects for both
experimental and mathematical immunology.
Beauchemin, Handel [94] have presented an
overview of mathematical models of influenza
A in the host organism or cell structure.
There are now developments in the
mathematical modeling of coronavirus
infection [95], which are based on the clinical
characteristics of patients affected by SARS-
CoV-2 [96-99]. The model was tested on
well-studied influenza viruses and then
compared the pathogenesis of two viruses. The
interaction between congenital and adaptive
host immune responses has been found to
be a potential cause of more severe course
and mortality in patients with COVID-19, in
particular the time mismatch between the
two immune responses has a major impact on
disease progression. The authors suggest that
temporarily suppressing the adaptive immune
response and preventing its effects on innate
immunity may allow innate immunity to get
neutrolize of the virus more effectively.

Integrated mathematical model
of the functional system of respiration,
blood circulation, thermoregulation
and immune protection

A simulation model [100] considered an
infectious disease, the course of which is
controlled by the immune system, as one of
the types of disturbances in the circulatory
system. To study the dynamics of infectious
disease and the impact of the circulatory
system on this process we used a mathematical
model of the functional respiratory system
(FRS) of the body [101-104] in combination
with the immune response model [11], which
allowed to investigate the role of systemic
circulation when simulating the course of an
infectious disease [105, 106]. This approach is
justified also because the reliability of the body
depends on the reliability of its respiratory
and circulatory systems [107—-110]. This
approach was further developed into an
integrated mathematical model simulating the
course of infectious disease and compensation
of obtained hypoxic conditions through
pharmacological correction [111-113].
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The aim of this work was to study the
dependence of the course of an infectious
disease on the volume velocity of the systemic
circulation on a complex mathematical model
of immune protection.

The mathematical model of immunity in
general can be written as follows.

Let V be the number of antigens, m — the
relative characteristic of the damaged organ,
F — the concentration of antigens, C — the
concentrations of plasma cells. Then the
dynamics of the immunodeficiency process,
according to [105] can be formulated as:
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where f,(m(§), V(§)) is the function that
characterizes the degree of virus damage to
the target organ of k-tissue reservoir, p, is
the coefficient grading the influence of the

type of disease being simulated on the level
of gas homeostasis, where G, 0,(§), G, CO4(E),
G, Nz(é) are flows of oxygen, carbon d10x1de
and nitrogen through the capillary tissue
membranes of i tissue at § time, ¢,0,(%),
qy CO,(E) are rates of oxygen utilization and
removal of carbon dioxide from i tissue, A
coefficients characterize the vital importance
of the body, and p coefficients characterize
the sensitivity of the body to hypoxia,
hypercapnia and excess nitrogen [101, 102,
114-116]. Fig. 1 presents a general view
of a complex mathematical model of the
relationship and interaction of functional
systems of the body to simulate the course of
an infectious disease.

Analysis of the results of computational
experiments to study the role
of blood circulation
in infectious diseases of the body

The mathematical model of immunity was
studied to determine the response of the main
parameters of the immune system depending
on changes in a, B parameters of the model,
etc. It was assumed that at the initial moment
of time ¢, : V(¢,) = 0.001, m(¢,) = 0, F(ty)) =1,
N(to) = 1. It was also found that the behavior
of the model is quite stable with respect to
its main parameters. A series of experiments
was performed to study the effect of blood
circulation through the capillaries of the
target organ tissues on the course of infectious
disease in the body. Fig. 2—5 present the results
of computational experiments reflecting the
behavior of the basic parameters of the immune
system m, V, C, F, obtained by simulating the
processes under different conditions of blood
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Fig 1. Complex mathematical model of functional systems of an organism
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Fig. 2. Dynamics of m(t) (relative characteristics
of the affected organ) under different
conditions of blood circulation in the capillaries
of the target organ:
1—n,=0.52—n,=09;3—n,=1;4—n,=1.5
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Fig. 4. Dynamics of (concentration of antibodies)
under different conditions of blood circulation in
the capillaries of the target organ:
1—n,=0.52—n,=09;3—n,=1;4—n,=1.5

supply to the target organ. This was ensured
by setting the value n,, the degree of change in
tissue circulation relative to the “norm” (n, =
Q. /Q°)-

"It was determined that the transients in
the parameters of the model of the immune
system are faster, and the maximum levels
of these parameters decrease with increasing

10

Fig. 3. Dynamics of (concentration of pathogenic
antigens) under different circulatory conditions in
the capillaries of the target organ:
1—n,=0.52—n,=09;3—n,=1;4—n,=1.5

Fig. 5. Dynamics of C(t) (concentrations of plasma
cells) under the different blood circulatory
conditions in capillaries of the target organ:

1—n,=0.52—n,=09;3—n,=1;4—n,=1.5

blood circulation through the capillaries
of the tissues of the target organ (Fig. 6,
7). Graphical dependences for m, V, C, F
(Fig. 6—-9) were obtained analyzing the
results of computational experiments under
given initial conditions for the model of the
immune system and different levels of blood
circulation through the capillaries of the target
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Fig. 6. The nature of the change in V'
(concentration of pathogenic antigens) depending
on the blood circulation through the capillaries of
the target organ under given initial conditions for

the development of infectious disease
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Fig. 8. The nature of the change in F (antibody
concentration) depending on blood circulation
through the capillaries of the target organ under
given initial conditions for the development of
infectious disease

organ tissues. The experiments assumed that
the multiplication factor of antigen (p), the
coefficient determining the probability of
neutralization of antigen by antibody (y), the
stimulation factor of the immune system (a),
the rate of antibody production by plasma
cells (p), the values p,, u; are time of inverse
lifespan of plasma cells and antibodies, the rate
of damage to the target organ (c) and the rate
of recovery of the mass of the affected organ
(n,,) clearly depend on the degree of change in
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Fig. 7. The nature of the change in m (relative
characteristics of the affected organ) depending
on the blood circulation through the capillaries of
the target organ under given initial conditions for
the development of infectious disease
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Fig. 9. The nature of the change in C
(concentration of plasma cells) depending on
blood circulation through the capillaries of the
target organ under given initial conditions for the
development of infectious disease

blood circulation through the capillaries of the
tissues of the target organ. Based on studies
of the biochemistry of processes occurring in
the infected body, Pogozhev has proposed the
following relations for the parameters of the
body’s immune status model [117]:

c=on, 1, =W,m,
B=2,vy=08,0=10"p=0.17,
He =051, =0.17,6=10,p, =0.12.

11
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The number of antibodies required to
neutralize one virus was assumed to be 10.
It was assumed that n does not depend on n,,.
Time ¢, of the formation of the cascade of
plasma cells was determined by the formula:
where t,=0.5day.

) 2
t- =tcn,

Continuous non-increasing function
E(m), 0 < E(m) < 1, which characterizes
the degree of disruption of the normal
functioning of the immune system due to
significant damage to the target organ, was
given following [118]:

Lm<m’,
m =01,  &m)=41-m .
-, m=>m
1-m

where m” is the the level of damage to the
target organ, at which the activity of the
immune system begins to decline.

Thus the approaches to mathematical
modeling of immune processes are analyzed.
A complex mathematical model of the human
body is presented, which in particular includes
a mathematical model of immune defense based
on a mathematical description of Burnet’s
clone selection theory in the form of a system
of nonlinear differential equations with delay,
in which the population dynamics of viruses,
plasma cells, antibodies and target organ’s
damage characteristics are considered.

The main task of this model was to
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MOJeJIb OJIA OOCJHiMKeHHsS IIOKCUUYHUX CTaHiB
3a imirTarii iHeKIiiHOTO ypasKeHHs Oprauiamy.
Mogens 3acHOBaHO Ha METOAAX MATEMATUUHOTO
MOJIeJIIOBaHHA 1 Teopil ONTUMAJIBHOTO YIIPaBJIiH-
HA pyxomuMu o6’ekramu. g imitarii npoiecy
ypasKeHHs oprauiamy 0yJio 3aCTOCOBAHO MaTeMa-
TUYHY MOJEeJNb iMyHHOTO BiAATYKY, PO3p00JIeHY
T'. I. MapuykoMm i yYHIMU OT0 HAYKOBOI IIIKOJIN,
aZanToBaHy OO cyyacHuUX yMoB. g momesns 6a3y-
eThCA Ha Teopil Bigbopy KIoHIB BapHeTa npo Bu-
3HAYAJbHY POJb aHTUTeHY. HaBemeHO pesyJibra-
TU MOJEeJIIOBAaHHA 3 BUKOPUCTAHHAM TaKoi Moje-
Jgi. anexuicTs mepebiry indexii Big 06’emuo0l
IMIBUKOCTi CUCTEMHOTO KPOBOTOKY aHAJI3yETHCA
Ha KOMILJIEKCHill MaTeMaTUYHiN MOesIi iMyHHOTO
BIATYKY, cucTeMu AUXaHHA i KpoBooOiry. IToka-
3aHO, 110 iIMyHHA CUCTEMA IyiKe UyTJINBA IO 3MiH
KPOBOTOKY B Kamijgapax. TaKuM 4ynmHOM, IOTOKH
KPOBi B oOpranax MOKHa BUKOPHCTOBYBATHU AK IIa-
pamMeTpu MO/JeJIi, 3a JOIIOMOT0I0 AKOI OIIMCYETHCA
B3a€EMOJifA CUCTEeMU AUXAHHS, iMyHHOTO BiATYKY
i KpoBOOOIrY.

Knwuoei cnosa: maTeMaTUYHA MOJEJIb iIMyHHOTO
BiATYKY, (YHKIIiOHa/JIbHA CcHUCTEMa AUXaHHI,
imiTaiis mepebiry iHQeKITifiHOTo 3aXBOPIOBAHHA,
iHTerpoBaHa MaTreMaTH4YHa MOJEJb, B3a€EMOIisd
(PYHKIIIOHAJIBHUX CUCTEM OpraHiamy.
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ITenwnio paboTwl Obla pa3dpaboTKa mMaTeMa-
TUYECKOU MOJEJIN JIs UCCJIeJOBAHUSA TUIOKCH-
YECKUX COCTOSAHUMN IMPU UMUTAIIUYA NH(PEKI[MOH-
HOT'O MopaskeHus opranuama. Mojeab OCHOBaHa
Ha MeToJax MaTeMaTUYeCKOTO MOIeJIUPOBaAHUS
¥ TEOPUHU ONTHUMAJbHOTO YIPABJIECHUSA LBUMKY-
muMuca oobeKkTamMu. [ uMuTaIuu mporecca
IIOpa’KeHMA OpPraHW3Ma KCIOJIb30BaJIaCh MarTe-
MaTHUYecKas MOJeJb UMMYHHOI'O OTKJINKA, Pas-
paboranuasa I'. 1. MapuyKoM u yYeHHKaAMU e€ro
HAyYHOI IITKOJbI, afallTUPOBAHHAsI K COBPEMEH-
HBIM YCJIOBUAM. OTa MOJEJb 0a3upyeTcs Ha Teo-
puu orb6opa KIoHOB BapHeTa 00 ompezensaomiei
posau anTurena. IlpuBeneHbl pe3yIbTaThl MOE-
JIMPOBAHUSA C MCIIOJb30BAHNEM TAKOHM MOJEJIU.
3aBUCHUMOCTD TeUeHUs NH(PEKINNI OT 00'beMHOMI
CKOPOCTH CHCTEMHOT'0 KPOBOTOKA aHATIU3UPYETCS
Ha KOMILJIEKCHOM MaTeMaTHuUYeCKON MOJEJIU M-
MYHHOTO OTKJIUKA, CUCTEeMbI IbIXaHUA 1 KPOBO-
obpamenuda. ITokasaHo, YTo UMMYyHHadA cucTeMa
BeChMa YYBCTBUTEJbHA K M3MEHEHUAM KPOBO-
TOKa Mo KanuasgpaM. TakuMm oOpas3oM, IIOTOKH
KPOBU B OpraHax MOJKHO HCIIOJIb30BaTh B Kaue-
CTBe IIapaMeTpPOB MOJENU, C IIOMOIIIBI0 KOTOPOI
OINMCBIBAETCS B3aMMOJEHCTBUE CUCTEMBI IbIXa-
HUS, MMMYHHOTO OTKJINKA M KPOBOOOpAIlleHU .

Knwuesvie cnosea: mareMaTuueckass MOJeb
HUMMYHHOT'O OTKJINKA, PYHKIIMOHAJIbHAS CHUCTEMA
OBIXaHUSA, UMHUTAIIUA TeueHUs WHQEKIIMOHHOTO
3abojieBaHUsI, WHTETPUPOBAHHASA MaTeMaTuue-
cKas MOJeJb, B3aumMojelcTBue (PYHKIIMOHAJb-
HBIX CHCTEM OpraHu3Ma.



