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Nowadays the application of nanotechnology in different biomedical fields such 
as drug delivery is increasing due to its unique advantages. With this in mind, it 
is widely believed that  nanogels as the nanometer-sized networked polymeric 
particles have  a considerable impact on drug delivery systems as biocompatible 
nanocarriers resulted to their versatile characteristics like desirable absorption 
ability and sustainability. The nanogels have the three-dimensional constructions 
containing the hydrophilic or hydrophilic polymeric chains that they can physically 
or chemically trap the appropriate percentage of water and they never dissolve in 
water so that polymer structure is reversible as well as the capability of swelling. 
These nanomaterials are made using polymeric precursors and heterogeneous 
polymerization monomers, and recently some researchers have reported the 
networked nanogels based on optical processes. In this review, we will try to 
address methods to synthesize them also investigate their usages as nanocarriers 
systems with examples of pharmaceutical systems.
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INTRODUCTION
Nanotechnology is nowadays currently applied 

in various research tendencies as drug nanocarrier 
systems (DNS) [1], medical imaging [2], cancer 
therapy [3], diagnostic tests [4] and so on for the 
remedy of diversity cancers to improve medical 
diagnosis methods. Nanocarriers can control the 
drug release into the cell compared with the bulk 
drug delivery systems [5]. In addition, they can 
circulate within the blood circulation system after 
the injection as well as the ability to deliver the 
drug to target [6]. This aspect of nanomaterials 
is particularly useful in the cancertherapy so that 
accurate design of nanocarrier systems is a special 
factor in the targeted treatment of this disease 
according to the increased permeability and 
inhibition [7-8]. In the drug delivery systems (DDS), 
the patient’s cells are attacked by the attachment of 

ligands or antibodies [9]. With this in mind, nano-
gel particles which are polymer-based material 
with adjusting properties are applied for various 
applications in the drug delivery [10]. Nanogels 
are the networked polymeric particles with a 
dimension less than 100 nm which they create the 
hydrophilic polymer similar to hydrogels [11]. The 
nanogels have been introduced as biocompatible 
nanocarriers in the biomedicine and biotechnology 
sciences to date [12]. On the other hand, nano-
gels are used in the various fields such as sensors 
[13], biomedicine [14], in vivo imaging detectors 
[15], water purification [16], catalyst [17], and 
bioactive scaffolds production [18], but they have 
the most effect on DNS because of their capability 
to carry drug and significant sustainability [19].  In 
the nanogels, the bioactive molecules can absorb 
a lot of water based on properties of their fluid 
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transfer which nanogel size is significantly less 
than the pore size of the bioactive molecules [20-
22].  The hydrogel nanoparticles are chemically 
(covalently bonded) or physically bonded together 
[23] (without covalent bonding) and also they 
have a high capability to convert to the initial 
structure through the hydrogen, electrostatic, 
and hydrophobic interactions [24]. Chaco et.al 
synthesized the nano-gels from the chemical 
network of polyethylene glycol (PEG) so that they 
applied the polyethylene imine (PEI) ligand to 
release the oligo-nucleotide anesthetic drug [25]. 
In a conducted study by Akiyoshi et al [26] focus 
on the self- organized amphiphilic polymers, the 
physical networked nanogels were prepared by 
using polysaccharides containing the cholesterol 
in water as a nanocarrier for the DDS [26]. 
Undoubtedly, cancer is one of the challenging issues 
to study of nanogels. Although for a long time, 
these systems have been used to synthesis methods 
not only for DDS, but also for other systems such 
as quantum dots [27], MRI (Magnetic Resonance 
Imaging) contrast agents [28], and other diagnostic 
cases. The designing the different polymeric 
systems has been led to formulate nano-gels with 
unique physical and chemical characteristics (Fig. 
1) [29]. Also in the Table 1, kinds of nanogels, 
properties and their applications are presented 
[78]. As a result, nowadays the researchers have 
focused on the design the nanogels as the effective 

nanoplatforms to encapsulate the bioactive 
substances with specific chemical properties such 
as cytokines [30], nucleic acids [31] and so on for 
cancer treatments and autoimmune diseases [32].

SYNTHESIS METHODS OF NANO-GELS
In this section, preparation methods of nano-

gels are divided into three procedures: 1) self-
assembly of active amphiphilic polymers; [33] 2) 
emulsion; [34] and 3) Nano-template [35].

Self-assembly of active amphiphilic polymers
In this method, amphiphilic polymers are made so 

that the recognized active groups located on the base 
polymer structure. These polymers have the potency 
to surfactant self-assembly (micelle) in an aqueous 
medium so that the nanogels will be prepared after 
the process of networking as well as fixing of micelles. 
Generally, networking of micelles is done based on 
the chemical mechanism, which is related to the 
synthetic copolymer structure completely [36-38]. 
The construction of nano-gels in this pathway and also 
some examples related to the synthesis of nanogels 
according to the chemical method are presented 
following. For instance, in the polymerization 
process by adding a primer, the gelation process 
can be done with disulfide (S-S) bonds [39]. The 
synthesis of nanogels based on the replacement of 
the thiol with the lipoic acid-dextran structure is an 
example related to the mentioned method (Fig. 2) 
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[40]. In this process, lipoic acid is attached to dextran, 
which process of attaching occurs by self-assembly 
in the aqueous medium. Then, the drug is loaded 
within nanoparticles and the drug-loaded nanogels 
are formed by the user of the dithiothreitol (DTT) 
subsequently [40]. It is important to mention that in 
the current process, the degrading enzymes leads to 
break the S-S bond and resulting in the drug release 
occurs instantaneously (Fig. 3) [40]. Woolley et al 
have reported a variety of methods for the creation of 
nanogels using amine groups [41-43], activated esters 
[44], carboxylic acids [45], and isocyanates [46] related 
to the main structure of the copolymer. The formed 
zwitterion shell on networked polymers (nanogel) 

via the copolymer precursor of 2-(dimethylamino) 
ethyl meta acrylate-2-tetrahydro pyranine meta 
acrylate (DMAEMA-THPMA) through 1,2-bis-(2-
iodo ethoxy) ethane (BIEE) and tetra hydropyranile 
(THP) of hydrolysis has been reported by Armes et 
al [47]. Hawker et al, carried out the synthesis of 
gel nanostructures by creating cross-links based on 
click chemistry. In this method, the alkylated and 
azide groups there are in the principal structure 
so that they are fabricated using spontaneous 
assembly of copolymers and also the enhancing 
of networking agent [48]. They in their study also 
referred to cross-link based on an optic agent of 
coumarone and the formation of a nanogel [49].     

Table 1. A summary of the types of nanogels, their characteristics and their applications. 
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Emulsion
In this synthesis process, the polymerization 

reaction of the monomers occurs in a heterogeneous 
phase and the nanogels creates. Generally, this 
method involves normal and reversible emulsions 
[50-51]. Few types of research have reported a 
method on the preparation of nano-gels by the 
process of water-oil (W/O) emulsion. in the other 
words, polymerization accomplishes between 
solvent monomers in water and monomers 
containing several functional groups to synthesis 
the networked nano-gels [50]. In a study, Peppas 
et.al produced a suspension of polyethylene 
glycol (PEG) nanoparticles of conjugated to 
the polymethacrylic acid (PMA) molecules by 

employing UV for preparation of nanogels based 
on the reverse phase emulsion [52]. Recently, atom 
transfer radical polymerization (ATRP) reported 
by Matyjaszewski et.al. In this syudy, the nanogels 
produce through the network of polymerization. 
This procedure carried out by selecting sulfide 
bridges of dual-function monomers [53].

 
Nano template

The basis of this manner is the use of 
nanoparticles as a template that the most well-
known of them are liposomes [54]. A liposome is 
microscopy of a vesicular structure consisting of 
two layers of phospholipid that has been enclosed 
a water space around it [55]. This method has 
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Fig. 2. Pre-polymer structure of lipoic acid-dextran
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been generally applied to synthesize the nano-
gels due to its advantages such as non-toxicity 
[56] and biodegradability [56]. The aqueous core 
of these nanomaterials is a good location for the 
polymerization reaction, which eventually by 
removing the template, the nanogels are produced 
[57-58]. In a study by Sudhakar et.al by using 
the in situ polymerization process to synthesize 
the nano-gels, at the first, the designed liposome 
modified with poly (N-isopropylacrylamide-co-
acrylamide) (P (NIPAM-co-AAM)) and resulting 
they were utilized in oeder to DNS applications 
[59]. Zoratto was carried out the hybrid cholesterol 
derivatives of nano-gel utilizing liposome template 
[60]. One of the unique advantages of this method 
is the synthesis of hollow nanogels. For example, 
by selecting nanoparticles of gold as the template, 
the polymer at their surface is turned to the 
hydrogel, and by removing the template by KCN, 
a product of the hollow nanogels has resulted that 
is illustrated in Fig. 4 [61]. In other research by 
Teng et.al, in an general process were developed 
the synthesis method of nanogels using precursors 
of glycol chitosan (GC) and poly (ethylene oxide) 
(PEO) [62]. Generally, this synthetic approach in 
the future will exhibit a clear vision for composing 
drug carrier nanogels.

	
NANOGELS IN DRUG DELIVERY

The novel biomedical nano-gels systems are 
considered as a DDS based on their important 
properties such as high capacity to encapsulate 

drugs [63], capability to  encapsulate the different 
drugs [64], uniformity [65], adjustable size [66], 
easy preparation [67], minimum toxicity [68], 
stability in blood serum [69], and external response 
capabilities [70]. Natural derived nano- gels for 
drug delivery purposes can be synthesized from 
natural polymers like collagen, albumin and etc. 
[25]. On the other hand, polymers like polylactic 
acid, poly-lactic-poly glycolic glycoproteins, 
polyacrylates (PC), poly-methacrylates (PMA) 
and poly (ε-caprolactone) are certain examples for 
preparation of polymers to the synthesis of nano-
gels [25]. Although nano-gels are often spherical 
particles but recent advances related to synthesis of 
nanogels has been led to synthesize nanogels with 
different shapes such as the core-shell structures 
with at least one polymeric network layer with 
uniform structure [25]. Due to the highly 
hydrophilic and highly biocompatible properties 
of nano gels, they are suitable for placement 
of inorganic nanostructures, medications and 
biological molecules but without having direct 
effectiveness on their gel-like performance. The 
ability to encapsulate more than one biologically 
active materials with different physical properties 
is a particular advantage of these nanoparticles 
compared to some nanocarriers like mesoporous, 
metal organic framework (MOF), noisome, and 
quantum dot [26].

The nano-gel network prevents the in-vivo 
destruction and removal of encapsulated biological 
molecules and distributes them well in the target 
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position during the release process for fabrication 
a controlled response as a result their features of 
hydrogels such as swelling [71-72], compatibility 
into their stimulus [70], and their flexibility [73]. 
However, the conducted studies confirm the 
multiplicity of the nanogel applications and the 
diversity of their release systems. Du et al. a special 
nanogel were synthesized with different charges 
to absorb tumor cells and release doxorubicin. 
These nano-gels were generated through poly 
(2-aminoethyl methacrylate hydrochloride) 
(PAMAH) (Fig. 5). 

The zeta potential related to this system was 
ranges from -17 mV to 0 mV within 35 minutes 
confirming with pH<7 media. Also, the release rate 
related to the loaded-doxorubicin PAMA-DMMA 
system indicated an increase as pH decreased [74]. 
In other words, the release of therapeutic molecules 
has been studied in order to the treatment of 
inflammatory disorders. In the treatment, this type 
of disorder based on the dynamic light, macrophage 
cells of the immune system are attacked. Schmit et 
al developed the hyaluronate (HL)-loaded nanogels 
based on chitosan to disport macrophages. Then, 
the nanogels were loaded with one of the different 
sensitizing light sources such as tetraphenyl 
porphyrin-tetrasulfonate (TPPS4), tetra-phenyl 
chloride-tetracarboxylate (TPCC4), and chlorin 
e6. They in their study found that nano-gels of 
TPPS4 and TPCC4 were safe when combinated 
to macrophages of RAW 264.7 for mice and the 
human THP-1 in the dark situation while nano-
gels of Ce6 were toxic. As a result, further studies 
showed that they were uptaken by the target cells in 
less than 4 hours and accumulated in the cytoplasm 
and their organelles [75]. 

In recent years, study the anesthetic drugs 

release has developed by using nanogels. In a 
conducted study by Yin et al, they reported the 
encapsulated- lidocaine biodegradable nano-gels 
with polymer precursor of poly (ε-caprolactone) – 
poly (ethylene glycol) - poly (ε-caprolactone) (PCL-
PEG-PCL) nanoparticles. The results indicated that 
these nanocarriers drastically influenced the blood 
for long-term effects of these materials and are 
convenient for surgical therapy [76].

The synthesis of nano-gels with an useful drug 
absorption potential and controlled distribution 
has been introduced via Soni et.al by controlling 
different networking densities of polymers [77]. In 
addition, synthesis of anticancer nano-carrier as 
the nucleoside 5-triphosphate (NTP) were reported 
by Vinogradov et al.. The NTP forms the capsule 
made of polyethylene-imine (PEI) molecules and 
polyethylene glycol-polaronic within a polymer 
nanoparticle. This model can prevent DNA 
polymerase activity (RNA) in the proliferation of 
cancer cells [78]. However, like other nanoscale 
delivery systems, nanogels have limitations in 
terms of biodegradation optimization, degradation 
mechanism and toxicity of components. On the 
first problem, by increasing the component ratio 
can be overcome. The rapid disappearance of nano-
gels from the bloodstream can be prevented by the 
absorption of macrophages. In this case, factors 
there are in the mechanism related to destroying 
nano-gel compounds that they can affect the 
toxicity of the drug that it is necessary to consider 
these factors. Hence, the choice of the precursor of 
the nano -gel should be done properly. In contrast, 
smoothness specifications of nano-gels have an 
impact effect on bioavailability and duability. In 
other words, the smaller adjustable size of nano-
gel provides conditions to increase the circulation 
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time after applying nano-gels so that it can active or 
non-active the target [76-77]. Therefore, it is hoped 
that synthesis of nanogels with new structures and 
strong potential applications can help to design 
the DNS with high drug material absorption and 
high loading. Due to, the controlled encapsulation, 
distribution and release at a specified time period 
and resulting treatment of different diseases in the 
future.

CONCLUSION
In the current review, one try was made to 

introduce the nano-gels as the carrier nanoplatform 
for DNS. In the targeted DNS, the stability of the 
nanocarriers as well as the adjusted release of the 
drugs materials is a critical problem. Nano-gels 
are considered as a nanocarrier for targeted drug 
delivery due to their good stability. With proper 
design, they can be susceptible to pH, temperature, 
and release the drug instantaneously. Nanogels 
are synthesized in a variety of routes so that the 
synthesized method can affect the specifications 
of the nanogel product. The amount of the drug 
release is varied by changing the cross-links, which 
is not possible in nanoparticles such as micelle. This 
issue has led to develop the polymer nanoparticles 
with  good capability in drug delivery system.
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