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Introduction

In today’s increasingly results-driven and performance-oriented world, 
the school system – with the necessary distance, of course, – is trying to (and 
should) follow such requirements. The question of an appropriate distance is 
very much relevant here, as “fast” changes are not always good or successful. 
In recent years (roughly in the period after the year 2000), especially under 
the influence of modern technologies and, in the last decade, under the in-
fluence of the Industry 4.0 guidelines, educational paradigms are changing 
dramatically, or at least, they should be. To name only a few of these changes:

 • from traditional, teacher-centred teaching, to innovative, student-
centred forms of education,

 • from the passive learner (or, at a philosophical (paradigmatic) 
level, the behaviourist learning theory), to the active learner (or, 
the constructivist and cognitive theory),

 • from traditional learning methods, to brain-based learning (BBL), 
which is based on findings from contemporary cognitive and 
neuroscience,

 • from technology-based learning environments that required 
the learners and teachers to adapt to technology, to learner- 
and teacher-centred environments (Žbona, 2016), where the 
technology adapts to the needs of learners and teachers, and, 
last but not least,  

 • from subject-based teaching, to increasingly interdisciplinary ori-
ented forms of teaching, supported, among other, by contempo-
rary learning strategies, such as problem-based, research-based, 
and project-based learning (Aberšek, 2018, Key Competences for 
Lifelong Learning, 2006, Mayer, 2010).

Innovative education places various contemporary and innovative forms 
of organizing and performing teaching at its centre, where an integrative 
principle and a systemic approach to the education process are constantly 
emphasized: 
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 • Pedagogy 1:1 (Aberšek et al., 2017) underlines the significance of individualization and differentiation 
of teaching based on competence frameworks,

 • the 20 Keys philosophy in education, inspired by Kobayashi’s theory of organizing industrial processes 
from the early 1970s (Kobayashi, 2003), highlights the importance of a continuous and even develop-
ment of all areas of a system, from the simplest, such as maintaining order and cleanliness, to the most 
complex. He accentuates the idea that only an equal development of all areas of a system can lead to a 
successful, optimised and thereby maximum effective production, supported by the total productivity 
management (TPM) approach. A similar philosophy is being introduced to the education system via 
the 21 steps system (Aberšek, et al., 2017, Clark & Svanaes, 2012; Microsoft Partners in Learning, 2010).

In focusing specifically on an integrated approach to performing teaching, the basic level of the education 
process itself should integrate at least the learners, as subjects of education, teachers, as managers and operators 
of the teaching process, and learning environments, which consist of learning technologies and methods and 
strategies of learning and teaching.

This research focused only on the latter, i.e., learning environments, their impact on the process of learning 
and teaching, or, in other words, their impact on the basic research question of this research, which is how can 
changes in learning environments lead to improved results in both teaching and learning, and exert a positive effect 
on the efficiency of the learning process as a whole? In order to achieve this, the (existing) learning process needs to 
undergo significant changes, namely: 

 • overcoming the division into individual subject areas and moving beyond the boundaries of individual 
scientific disciplines, and 

 • introducing methods and strategies that place students in an active role, making them co-responsible 
for their success in acquiring knowledge and competences, and thereby increasing their level of interest 
and motivation. Such methods are more or less based on research-based learning (RBL) and problem-
based learning (PBL) (Aberšek, 2018).

Therefore, in order to form a complex, competence-based view on knowledge, and in order to direct learn-
ers towards a comprehensive approach to solving real-life problems, all of the above mentioned methods and 
strategies are connected into an integrated, complex strategy called project-based learning (PrBL). It needs to be 
stressed that projects are a form of team work, a group effort that requires collaborative learning, which means 
that learners involved in the process also develop their social competence and cooperativeness both on the level 
of implementation and organization (distribution of roles in a project, communication between the participants, 
negotiations, etc.). If in the context of RBL or PBL problems may still be “artificially” created, and solutions to the 
problem are proposed within “laboratory and local” frameworks of a particular subject (of a single individual dis-
cipline), then it can be said that project-based learning (PrBL) no longer considers teaching and learning from the 
standpoint of an individual discipline (i.e., monodisciplinary), but rather, it approaches the given problem in an 
interdisciplinary manner. However, since STEM is a kind of interdisciplinary, interconnected discipline in itself, it 
seems more appropriate to apply the term transdisciplinary to refer to the birth of a new discipline, which forms 
its own working and research methods (Flogie & Aberšek, 2015). Thus, a transdisciplinary approach creates a new 
perspective on learning and teaching, giving it a concrete expression and relating it to real-life situations and 
problems, to the real-life social environment and the requirements of modern society (Industry 4.0), for which the 
school should educate, whether creator of the school policy agree with it or not.

Course Development

General Background 

In the proposed study the traditional approach to teaching physics on the example of renewable energy 
sources and ways of exploiting solar energy was briefly summarized. Unfortunately, such an approach, which is still 
predominant, has produced poor results in terms of enabling creativity and integrating knowledge for solving real-
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life problems (Hussain, Azeem, & Shakoor, 2011, Deslauriers, Schelew, & Wieman, 2011). A project-based approach 
to teaching similar subject-matter was presented in more detail, with a focus on using modern teaching technolo-
gies and contemporary learning approaches. An analysis and comparison of the two approaches was performed.   

Development – A Case Study

The subject Applied Physics consisted of 60 contact hours and 60 hours of individual student work. On the 
topic of Solar Energy, a course of 12 contact hours was organized. Short course description and/or study design is 
presented in Table 1. 

Table 1.  Description of study design and procedures of the teaching/learning process. 

Study Multidisciplinary STEM approach - project-based 
learning (Example 2) Traditional approach (Example 1)

Duration 12 contact hours
12 hours of individual student work (according to curricula)

12 contact hours
?  hours of individual student work

Methods Problem-based learning
Research-based learning
Collaborative learning
Team working

Traditional teaching/learning methods such as lecture, 
frontal teaching, homework, frontal instruction lesson, 
etc.

On a concrete example of designing and optimising a solar chimney, this research compared two learning 
and teaching strategies, pointing out their advantages and disadvantages: 

 • the traditional approach (Example 1), related to the individual discipline, i.e., the monodisciplinary 
approach, and 

 • the multidisciplinary (transdisciplinary – STEM) approach (Example 2), related to solving real-life prob-
lems and founded on the idea of project-based learning.

Example 1: Traditional education in Applied physics (monodisciplinary approach) – Theory  
about energy and solar power

Focusing initially on the lesson about energy: it is common knowledge that two basic types of energy sources 
exist in the world. There are conventional sources of energy, most of which are non-renewable, for example fossil 
fuel, and renewable sources of energy, such as water or wood. Among the renewable ones, solar energy is the 
most prospective. A wide range of existing power technologies can make use of the solar energy reaching earth. 
Ways of harnessing solar energy can be divided into two basic categories: direct (transformed for use elsewhere 
or utilized directly) and indirect (involving more than one transformation to reach a usable form). 

The output power of the plant depends upon various parameters presented simply by the following equation:
   Pout = Qsolar*ηcoll*ηtower*ηturbine = Qsolar*ηplant                                    (1)

If the temperature rise in the collector is (Ti – To) then it can be easily expressed as:

	 	 	 ηcoll*I* Acoll	=	ṁ*	Cp*	(Ti	–	To)                                                (2)

The input energy from the sun, Qsolar, can be expressed as:

   Qsolar = I*Acoll	=	I*(π/4)*D2 c                                                    (3)
 
One of the possibilities to study the use of solar energy is through the sun tower (sun chimney), which converts 

the heat-flow produced by the collector into kinetic energy (convection current) and potential energy (pressure 
drop at the turbine). Thus, the density difference of the air caused by the temperature rise in the collector works as 
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a driving force. The lighter column of air in the tower is connected with the surrounding atmosphere at the base 
(inside the collector) and at the top of the tower, and thus acquires lift. A pressure difference Δptot is produced 
between tower base (collector outlet) and the ambient (White, 1999):

	 	 	 Δptot =	g*	∫0H(ρ0-ρi)	dH                                      (4)

This is simplified to:
            
	 	 	 Δptot	=	g(ρ0-ρi)	Ht                                                                 (5)

The static pressure difference drops at the turbine, the dynamic component describes the kinetic energy of 
the airflow. With the total pressure difference and the volume flow of the air at Δp s = 0 the power Pout contained 
in the flow is now:

               
   Pout = Δptot*vt*Acoll                                                           (6)

The mass flow rate is: 
	 	 	 ṁ	=	ρi*At*vt=ρi*(π/4)*D2 t *vt                                     (7)

Thus, without the turbine installed, the total power available to the turbine can be obtained from equation 
(6). And also, the velocity at the entrance is found by,

   vt=	√{2gHt(Ti	–	To)/To}                                (8)

Nomenclature:

Simbol Meaning and units

Qsolar Solar power input to the plant (W)

Ηcoll Collector efficiency

Ηtower Tower efficiency

ηturbine Turbine efficiency

ηplant Plant efficiency

I Solar Intensity (earth surface) (W/m2)

Δptot Total pressure difference (N/m2)

g Gravitational acceleration (9.8 m/s2)

To Ambient/outside temperature (oC)

Ti Temperature at tower entrance (oC)

ρ0 Outside air density (kg/m3)

ρi Air density at tower entrance (kg/m3)

Ht Height of the tower (m)

vt Air velocity at tower entrance (m/s)

Dc Diameter of the collector (m)

Acoll Area of the collector (m2)

Dt Diameter of the chimney (m)

At Area of the chimney (m2)
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It is only after the students have mastered the theoretical basics of physics, that they can move on to calcu-
lations and optimization of the solar chimney, i.e., to suitable experiments, to the technology and engineering 
part. This process, however, is time-consuming and requires a high degree of abstract thought and good spatial 
awareness skills. 

Example 2: Project-based learning about energy (STEM approach)

The lesson could start by asking questions such as:

 • How have people harnessed solar power through history?
 • What must we know about using solar power?
 • What kinds of elements does a solar power plant contain?
 • Etc., 

and finally:
 • How can we use solar power today?  → Answer could be: By Solar chimney

Research start: A solar chimney – often referred to as a thermal chimney – is a way of improving the natural 
ventilation of buildings by using convection of air heated by passive solar energy. A solar chimney operates on 
the same principles as a fireplace chimney in houses. A simple description of a solar chimney is that of a vertical 
shaft utilizing solar energy to enhance the natural stack ventilation through a building. But is there another way 
in which the solar chimney can be used? It can also be used as a power plant to produce electricity!

What is needed to construct a solar chimney? How to build such a solar power plant? With these questions, the 
lesson could start, students continue their research and try to come up with an optimal solution.

Figure 1.  Simple diagram showing the functional principle of solar chimney plants. 

Figure 2.  Simple diagram showing the parameters for theory. 
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Research: What do we have to know? → The theory is learnt subsequently!

In the following stage, students begin designing the construction with the help of CAD programs. Possible 
solutions are shown in Figures 3 and 4. Students build the construction and then start experimenting using differ-
ent engineering tools (for example ANSYS) for simulation – changing temperature, pressure, etc. and observing 
what happens to the speed and pressure of the air flow (for examples, see Figures 6–11), as they attempt to find an 
optimal solution. Simple physical models can be built by the students, or they can use numerical tools for calculat-
ing physical values. A draft description of the simulation (experimental) procedure is provided below:

1)  the outside temperature T0 was the input data, it was measured by thermometer;
2)  temperature Ti was simulated by a computer program (it could also have been measured at the same 

time (as the outside temperature) by thermometer);
3)  the air velocity at the entrance of the tower vt was calculated/simulated, as shown in Figure 7 (it could 

also have been taken by using the anemometer);
4)  the densities ρi and ρo were simulated automatically by means of numerical simulation (they could also 

have been taken corresponding to the temperatures Ti and T0 respectively);
d)  steps 1 to 4 were repeated in any new simulation (this could have been done experimentally, by repeat-

ing them once every half an hour for the time period of one day);
e)  in this way, data was collected for six (6) simulations (experimental days) and in turn, the necessary 

calculations were made.

Simulation as a Learning Strategy

Presented experimental procedure can be simulated (Žbona, 2016) by means of Finite Element Analysis (FEA), 
the Finite Element Method (FEM), with various computer programs (such as ANSYS), in order to provide an optimal 
solution easily and quickly.

Using one of the various engineering tools for modelling 3D constructions (Computer-Aided Design – CAD), it 
is possible to model any desired form of construction, in the case of this research, a solar chimney. The advantage of 
using CAD tools is in that they allow flexibility and rapid changes in the design, depending on the simulations per-
formed and the calculations obtained. An example of an initial construction of a solar chimney is shown in Figure 3.

Construction of the solar chimney

 Construction                                                Absorber

Figure 3.  Simulation with using C AD possibilities (using SolidWorks). 

Once the basic construction has been modelled with CAD tool, we can use this model as input model in 
FEA, where first, surfaces need to be specified (Figure 4), to which boundary conditions will apply, before further 
simulation using the Finite Element Method (FEM). For surface A (Figure 4), the pressure of 1 bar was prescribed, 
and for surface B the pressure prescribed was lower by   due to a height difference, which was 
2,8 m between the two surfaces. Thus, the pressure difference was  Pa. No value was prescribed to 
other surfaces in this simulation.
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Figure 4.  Defining boundary and initial conditions. 

The next step is creating a volume mesh, see Figure 5. For the purposes of this research, a volume mesh was 
created consisting of poly cells. For the creation of a volume mesh, it is necessary to prescribe the size of cells, the 
same size across the entire mesh. The cell size in this research was defined so that approximately 5 to 10 cells fit 
the thickness of the structure (0.1 m).

Figure 5.  Volume mesh. 

On the basis of such a volume mesh, various causal relationships can now be identified. Thus, the pressure 
field shown in Figure 6 shows the pressure in the selected cross-section of the computational network. Figure 6 
shows areas of elevated pressure at the centre of the chimney, which occur due to the merging of flows in that area.
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Figure 6.  Pressure field in a solar chimney. 

It is also possible to simulate what happens in terms of the velocity field, which shows the speed of the air 
flow. Thus, for example, Figure 6 shows that the maximum speed of the air flow is where the solar roof joins the 
main part of the chimney, which is also the optimal location for placing the turbine(s).  

Figure 7.  Velocity field of the air flow: a) inside a solar chimney and b) in direction y.

The velocity field in Figure 7 also shows that upon merging, part of the air flow is directed downward, which 
is undesired (see Figure 8). 

Figure 8.  Air flow in the direction of the z axis. 
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This undesired issue could be resolved by closing the bottom part of the chimney, while an even better solu-
tion would probably be to alter the way in which the entire construction is closed, which is shown in Figure 9 (see 
square on bottom).  

Figure 9.  Theoretical (anticipated) air flow in a solar chimney. 

Focusing more closely on the area where turbines could be placed for the production of electrical energy, the 
course of the air flow can be demonstrated in various ways, including streamlines, which are shown in Figure 10. 

Figure 10.  The field of air flow inside a solar chimney.  

The streamlines show the turbulence of air inside the solar chimney. This is confirmed by the turbulence field, 
which is undesired in this case. Various simulations are used to determine what kind of form will result in a laminar 
field. Figure 11 shows where the turbulent flow is most likely to occur. 
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Figure 11.  Turbulence field and turbulent flow occurrences.  

From a comparison between the turbulence field in Figure 11 and the streamlines in Figure 10, it can be 
concluded that the turbulent flow occurs mainly in the areas with a higher level of turbulent energy. It can also 
be seen that the turbulent field is largely symmetrical (with regard to the symmetry of the chimney’s main pipe), 
which is the expected result. On base of such analyses and simulation it is possible to find out optimal solution.

Sample

The research was conducted during the subject Applied Physics, which is taught at the Faculty of Natural Sci-
ences and Mathematics of the University of Maribor in the fifth year of the study course. The research included 20 
respondents: 9 male students and 11 female students. The sample size depended on the total number of students 
in this class, and represents nearly 80% of all students enrolled in this class. 

Research Methodology 

General Background

According to the chapter Course Development lecture was presented to the students by means of a tradi-
tional, frontal instruction lesson. This is referred to as Example 1 in the following section. The teacher provided an 
explanation of the topic and relevant formulations, while the students took notes and studied from them. During 
the next lecture, two days later, they filled out a test.

After the period of one month, the test was repeated with the same questions and based on this, the forgetting curve 
was calculated. The standardized Ebbinghaus forgetting curve is shown in Figure 12 (Ebbinghaus, 1908, Schacter, 2001).

Figure 12. Ebbinghaus forgetting curve.  
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After the test, the lesson was repeated as a problem-based learning according to the described STEM model 
(Example 2). Just like with Example 1, the students were asked the same questions two days after the initial lecture. 
The test was repeated again, just like with Example 1, in one month’s time.

In both cases, the answers were assessed and evaluated individually and independently (by two professors, 
two assistants and two students) with grades from 1 to 10, depending on the correctness and completeness of the 
answers. The overall grade was calculated as an average of all individual evaluators’ grades.

Instruments

The differences in the effects of teaching strategies between Example 1 and Example 2 were tested by means 
of a questionnaire in terms of the following indicators:

 • knowledge of the subject matter dealt with,
 • understanding, which is demonstrated by relationships / attitudes in the group, the students’ personal 

development, and the systemic characteristics of individuals,
 • the ability to analyse and synthesize (the ability to reach higher cognitive levels) and
 • digital competence (digital skills of providing an analysis and evaluation using modern engineering 

tools).

The effect of the applied method of work after the end of the lectures was evaluated according to four individual 
phases of solving the problem (idea, design, production, evaluation), resulting in a common assessment. The 
evaluation was performed under conditions of statistical control using a t-test, a Cohen’s d effect size calculation, 
and a graphic representation. Each of the dimensions contained a specific number of statistically and graphically 
validated propositions in the form of questions and task.  

With the questionnaire the effect of the method of work after the lectures was measured. The questionnaire 
consisted of 12 descriptive questions:

 • idea (3 questions),
 • design (3 questions),
 • modelling (3 questions),
 • evaluation and optimisation (3 questions).

that were performed as part of lectures on the theme of Design, construction and analysis of a solar chimney. The 
effect of the method of work used by students was analysed after the lectures had ended: 

 • the students’ interest in methods of learning and teaching, expressed as the overall result of all dimen-
sions of interest, shown in Figure 13 and

 • the students’ interest in methods of learning and teaching, expressed as the individual result of each 
dimension of interest (idea, design, production, planning) separately, shown in Table 2.

Research Results

A graphic representation of distribution of arithmetic means is at Figure 13, and t-test, Cohen’s d effect of the 
following dimensions of interest is presented in Table 2. 
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Figure 13.  Arithmetic means of evaluations of students’ interest according to the method of teaching (Example 
1 (EX_1) or Example 2 (EX_2)) for individual dimensions. 

Table 2.  t-test results for independent samples of testing differences between the overall and individual 
results for representability according to the group EX_1 and EX_2 after the experiment.  

Group

Arithmetic 
mean

Standard 
deviation

Test of variance 
homogeneity*

Arithmetic mean 
differences test Cohen’s

   x̄   SD     F     p         t    p     d

Idea
EX_2 7.935 1.181

27.589 .0001 5.063
approximation .0001 1.099

EX_1 6.109 2.142

Design
EX_2 12.065 1.665

16.342 .0001 6.809
approximation .0001 1.460

EX_1 8.870 2.713

Production
EX_2 12.848 1.429

10.776 .001 5.548
approximation .0001 1.178

EX_1 10.717 2.177

Evaluation
EX_2 12.674 1.431

12.679 .001 5.973
approximation .0001 1.296

EX_1 10.065 2.594

Method effect
EX_2 45.522 3.863

21.743 .0001 7.456
approximation .0001 1.646

EX_1 35.761 7.995
* In all cases, the assumption of homogeneity of variance is not justified (p < .05), hence results of the approximation method are 
reported. 

The degree of forgetting in both learning situations was measured as well, and the results were compared 
to known results from traditional teaching settings (Ebbenhard, 1908) and superlearning (Ostrander & Schroeder, 
2012). The results are shown in the Figure 14. 
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Figure 14.  Diagram of the three forgetting curves.  

For the presented case, an additional test was conducted only three months later. Example 1 produced similar 
results to those obtained by Ebbenhard in his research, while for Example 2, the results were slightly lower than 
in the case of superlearning.

Discussion

The graphic representation in Figure 13 shows that the line of Example 2 is above the line of Example 1 for all 
dimensions (idea, design, production, evaluation), whereby the differences are significant, which was confirmed by 
the results of statistical difference testing. The most marked differences between the two Examples are observed 
in the case of design (it is here that most innovative tools and approaches were used, from CAD to FEA), and the 
smallest differences in the dimension of ideas. 

The t-test proved (Table 1) that the difference between Example 1 and Example 2 after the lectures ended 
is statistically significant (p < .05) for all dimensions of the effect, i.e., for the individual dimensions (idea, design, 
production, evaluation), as well as for the overall effect (interest):

 • idea (p = .0001, d = 1.099),
 • design (p = .0001, d = 1.460),
 • production (p = .0001, d = 1.178),
 • evaluation (p = 0001, d = 1.296),
 • summary effect size of the method of teaching (p = .0001, d = 1.646).

As demonstrated by measuring the effect size of Cohen’s d (d > 0.80), the effect size of the method is different 
for both examples. The greatest effect was observed in designing the product (d = 1.460), followed by evaluation 
(d = 1.296), production (d = 1.178), and searching for ideas (d = 1.099), where the effect size was the smallest. The 
obtained average values of the evaluations (x̄) of interest in Table 1 show that the students evaluated all dimen-
sions of efficiency higher for Example 2 in comparison to Example 1, which consequently affects also the overall 
efficiency of the method of teaching. With regard to Example 2, the students did better in coming up with ideas, 
designing the product (chimney), producing, and evaluating the product. This means that the students, as regards 
Example 2, made more progress in the phase of designing, than in the phase of evaluating the product. Indeed, 
more time was spent on designing the product, especially on CAD modelling and engineering calculations and 
analyses (FEA) with the help of the Finite Element Method (FEM), which was a novelty to the students.

Great efficiency was achieved also in the sense of memory retention: if traditional teaching led to a degree of 
forgetting almost as high as 75%, after one month then the proposed approach has reduced the level of forget-
ting to 25%, which is very close to the standard curve of superlearning (Ostrander & Schroeder, 2012). It needs 
to be taken into account, however, that these were not two different groups of students; the group in the case of 
Example 2 was left with only some (25% at best) of the previous knowledge, but the progress was nonetheless 
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evident. What is especially important, higher and in-depth cognitive levels of knowledge were stimulated in the 
students, as well as critical thinking and competences for solving real-life problems, which is the essential pur-
pose of both, problem-based approaches to teaching, as well as the proposed STEM model. Similar results were 
reported by various other authors, including (Hussain, Azeem, & Shakoor, 2011, Deslauriers, Schelew, & Wieman, 
2011) and many others. 

Conclusions

It should be emphasized that the findings derived from this research are preliminary, the research was carried 
out on a small sample (mostly due to a small number of students in the class) and the research would certainly need 
to be continued including a larger sample (also international), which would allow the formation of two separate 
groups, the experimental one, where the proposed STEM model would be applied, and the control group, where 
lectures would be delivered under the existing approach. It would also be reasonable to track the course of forget-
ting over a longer period of time, which is rather difficult within the academic environment, as lectures only last 
one semester. Therefore, it would be a good idea to organize the survey as a project in a way that would allow the 
monitoring of (larger groups of ) students over a longer period of time.

The obtained results, however, clearly show that the proposed approach resulted in a number of positive 
shifts. To name only the most important ones:

 • the students’ interest was increased; 
 • the students’ acquired knowledge and understanding were enhanced and finally
 • the students’ digital literacy was increased, and, it was proven that problems can be addressed and 

solved in different ways. At the same time, the students were encouraged to form a comprehensive 
approach to problem-solving.

Nevertheless, some possible disadvantages need to be mentioned as well. A one-dimensional use of con-
temporary engineering tools in STEM education could lead to a superficial understanding of the problem dealt 
with. This method requires not only focusing on the results, but especially on the procedure itself and the level of 
understanding, to avoid arriving to incorrect conclusions. 

STEM learning and teaching is a reality that enables the acquisition of competences, which are important 
for successful problem-solving in the 21st century society. Of course, STEM teaching and learning requires a mind 
shift with regard to methods of imparting knowledge and conceptual changes in education from the primary to 
the tertiary level. The presented example represents a concept of teaching for the society of the fourth industrial 
revolution. The sooner the needs for conceptual changes in education are realized, the less painful these necessary 
adaptations are going to be.       
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