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Abstract. Bayesian Approach to Randomized Response Technique has 

been a technique for estimating the population proportion, especially of re-

spondents possessing stigmatized attributes such as induced abortion, use of 

drugs and tax evasion. In this paper, we propose Bayesian estimators of popu-

lation proportion of a stigmatized attribute assuming Kumaraswamy and the 

generalised beta prior using life data on induced abortion. The newly proposed 

Bayesian estimators were validated numerically for a large interval of the de-

signed values of the population proportion at different sample sizes. It was ob-

served that the newly developed Bayesian estimators were more sensitive in 

capturing stigmatized attribute than the Bayesian estimator developed by 

Hussain & Shabbir (2012) for relatively small, moderate as well as large sample 

sizes.  

Keywords: Bayesian estimators, alternative priors, stigmatized attribute, 

mean square error, absolute bias 
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 Introduction 

 Asking information about a stigmatized attribute such as induced abor-

tion, use of drugs, and tax evasion in a human population is a complicated issue. 

Direct questioning approach generally leads to doctoring of the true responses. 

The reason may be fear of social stigma or counter attacks. But due to socioec-

onomic reasons, information about incidence of such attributes in the population 

becomes essential. Warner (1965) introduced a method of survey to gather in-

formation about stigmatized attributes by ensuring privacy to the respondents. 

Numerous developments and improvements on Warner’s Randomized Re-

sponse Technique have been put forward by many researchers. Greenberg et al. 

(1969), Folsom et al. (1973), Christofides (2003), Mangat (1994), Kim & Warde 

(2004), Adebola & Adepetun (2011), (2012a), (2012b), 2014) are some of the 

many to be mentioned. 

 At times, prior information about the unknown parameter may be avail-

able and can be used along with the sample information for the determination 

of that unknown parameter. This is called the Bayesian approach of estimation. 

The work on Bayesian analysis of randomized response techniques is not very 

much. However, attempts have been made on the Bayesian analysis of random-

ized response techniques. Winkler & Franklin (1979), Spurrier & Padgett 

(1980), O’Hagan (1987), Oh (1994), Migon & Tachibana (1997), Unnikrishnan 

& Kunte (1999), Barabesi & Marcheselli (2006; 2010), Hussain & Shabbir 

(2009a, 2009b; 2012), Hussain et al. 2010), Kim et al. (2006), Adepetun & 

Adewara (2014; 2015; 2016) are the major references on the Bayesian analysis 

of the Randomized Response Techniques.  

 This paper presents Bayesian analysis to Kim and Warde’s Randomized 

Response Technique using alternative beta priors other than the simple beta 

prior used by Hussain & Shabbir (2012) in their published paper. The paper is 

arranged as follows: firstly, we present the methodology, then, the existing as 

well as the proposed alternative Bayesian estimation of population proportion, 
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the next section contains the results and discussions, and finally is the conclu-

sion. 

 

 Methodology 

 In Bayesian Analysis, the prior distribution or information about the un-

known parameter of the population is combined with the sample information for 

the estimation of that unknown parameter. Notable authors like Winkler & 

Franklin (1979), O’Hagan (1987), Kim et al. (2006), Hussain & Shabbir (2009; 

2012), Hussain et al. (2010) have provided Bayesian analysis to some random-

ized response techniques in the literature using simple beta distribution as their 

prior distribution.  

 In this research work, we presented both conventional and alternative 

beta priors for randomized response technique in the work.  Similarly, we as-

sume numerical values for the parameters in the priors.  

 In the case of simple beta prior, we assume 𝑎 > 1, 𝑏 > 1, 𝑎 ≠ 𝑏, 𝑐 = 1. 

For Kumaraswamy prior, we assume 𝑎 = 1, 𝑏 > 1, 𝑐 > 1, 𝑏 ≠ 𝑐. For the gener-

alised beta prior, we assume 𝑎 > 1, 𝑏 > 1, 𝑐 > 1, 𝑎 ≠ 𝑏 ≠ 𝑐 respectively. Con-

sequently, the conventional estimator with simple beta prior along with the pro-

posed estimators assuming Kumaraswamy and the generalised beta priors were 

derived and computed from their respective posterior distributions using R sta-

tistical software respectively. 

 The tables showing absolute bias and mean square errors were displayed 

for comparison using selected sample sizes 25,100, and 250 respectively.   

 Life data obtained from administered survey questionnaires on induced 

abortion among 300 women in Akure, Ondo State were also used to establish 

the efficiency of the proposed estimators in capturing responses from respond-

ents with respect to stigmatized attribute. 
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 Presentation of existing technique 

 Hussain & Shabbir (2012) in their referred paper presented a Bayesian 

analysis to the Randomized Response Technique proposed by Kim & Warde 

(2004) using a simple beta prior distribution to estimate the population propor-

tion of respondents possessing stigmatized attribute. 

Let the simple beta prior be defined as follows  

 

𝑓(𝜋) =
1

𝛽(𝑎, 𝑏)
𝜋𝑎−1(1 − 𝜋)𝑏−1  ;   0 < 𝜋 < 1 

(1) 

 

where (𝑎, 𝑏) are the shape parameters of the distribution and 𝜋 is the population 

proportion of respondents possessing the stigmatized attribute. Let 𝑋 = ∑ 𝑥𝑖 de-

notes the total number of women who have committed abortion in a sample of 

size n drawn from the population. The conditional distribution of 𝑋 given 𝜋 was 

presented as  

 

𝑓(𝑋|𝜋) = (
𝑛

𝑥
) 𝜙𝑥(1 − 𝜙)𝑛−𝑥 (2) 

 

where  𝜙 = 𝑇𝜋 + 1 − 𝑇 is the probability of “yes response” in a sample of size 

n.  𝑇 and 1 − 𝑇 are the predetermined probabilities respectively. 

 Then 

 

𝑓(𝑋|𝜋) = (
𝑛

𝑥
) 𝑇𝑛 ∑ (

𝑥

𝑗
) 𝜋𝑗𝑑𝑥−𝑗(1 − 𝜋)𝑛−𝑥

𝑥

𝑗=0

 
(3) 

 

where    𝑑 =
1−𝑇

𝑇
 

The joint probability density function of 𝜋 and X was derived as follows 
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𝑓(𝑋, 𝜋) =
(𝑛

𝑥
)𝑇𝑛

𝛽(𝑎, 𝑏)
∑ (

𝑥

𝑗
) 𝑑𝑥−𝑗

𝑥

𝑗=0

𝜋𝑎−1+𝑗(1 − 𝜋)𝑛−𝑥+𝑏−1 
(4) 

 

The marginal probability density function was derived as  

 

𝑓(𝑋) = (
𝑛

𝑥
)

𝑇𝑛

𝛽(𝑎, 𝑏)
∑ (

𝑥

𝑗
)

𝑥

𝑗=0

𝑑𝑥−𝑗𝛽(𝑎 + 𝑗, 𝑛 − 𝑥 + 𝑏) 
(5) 

 

Thus, the posterior distribution of 𝜋 given X was given as 

 

𝑓(𝑋|𝜋) =
∑ (𝑥

𝑗
) 𝑑𝑥−𝑗𝑥

𝑗=0 𝜋𝑎−1+𝑗(1 − 𝜋)𝑛−𝑥+𝑏−1

∑ (𝑥
𝑗
)𝑥

𝑗=0 𝑑𝑥−𝑗𝛽(𝑎 + 𝑗, 𝑛 − 𝑥 + 𝑏)
 

(6) 

 

Under the Square error loss, the Bayes estimator i.e the posterior mean 

was given as 

 

�̂�𝐻 =
∑ (𝑥

𝑗
) 𝑑𝑥−𝑗𝑥

𝑗=0 𝛽(𝑎 + 𝑗 + 1, 𝑛 − 𝑥 + 𝑏)

∑ (𝑥
𝑗
)𝑥

𝑗=0 𝑑𝑥−𝑗𝛽(𝑎 + 𝑗, 𝑛 − 𝑥 + 𝑏)
 

(7) 

 

The bias as well as the mean square error of �̂�𝐻 corresponding to the 

sample of size n was given as 

 

𝐵𝑖𝑎𝑠(�̂�𝐻) = 𝐸(�̂�𝐻) − 𝜋 (8) 

 

𝑀𝑆𝐸(�̂�𝐻) = ∑(�̂�𝐻 − 𝜋)2 (
𝑛

𝑥
)

𝑛

𝑥=0

𝜙𝑥(1 − 𝜙)𝑛−𝑥 
(9) 
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Presentation of the proposed Bayesian techniques 

In this section, we present a Bayesian analysis to Kim & Warde (2004) 

Randomized Response Technique assuming both Kumaraswamy and the gener-

alised beta prior in addition to the simple beta prior used by Hussain & Shabbir 

(2012). 

The Kumaraswamy prior distribution of  𝜋  is given as 

 

𝑓(𝜋) = 𝑏𝑐𝜋𝑐−1(1 − 𝜋𝑐)𝑏−1  ; 𝑏, 𝑐 > 0 (10) 

 

The joint density function of 𝜋  and X with Kumaraswamy prior is as 

follows 

 

𝑓(𝑋, 𝜋) = 𝑏𝑐 (
𝑛

𝑥
) 𝑇𝑛 ∑ (

𝑥

𝑗
) 𝜋𝑗𝑑𝑥−𝑗(1 − 𝜋)𝑛−𝑥

𝑥

𝑗=0

𝜋𝑐−1(1 − 𝜋𝑐)𝑏−1 
(11) 

 

The marginal probability density function is found by integrating (11) 

with respect to 𝜋 as follows 

 

𝑓(𝑋) = (
𝑛

𝑥
) 𝑇𝑛𝑏𝑐 ∑ ∑(−1)𝑘 (

𝑥

𝑗
) (

𝑏 − 1

𝑘
) 𝑑𝑥−𝑗𝛽(𝑐𝑘 + 𝑐 + 𝑗, 𝑛 − 𝑥 + 1) 

𝑏−1

𝑘=0

𝑥

𝑗=0

 

 

 

(12) 

 

The posterior distribution is  

𝑓(𝜋|𝑋) =
∑ ∑ (𝑥

𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝑏−1

𝑘=0
𝑥
𝑗=0 𝜋𝑐𝑘+𝑐+𝑗−1(1 − 𝜋)𝑛−𝑥

∑ ∑ (𝑥
𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝛽(𝑐𝑘 + 𝑐 + 𝑗, 𝑛 − 𝑥 + 1) 𝑏−1

𝑘=0
𝑥
𝑗=0

 

 

 

(13) 

 

Thus, the posterior mean is  
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�̂�𝑝𝑟𝑜𝑝1 =
∑ ∑ (𝑥

𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝑏−1

𝑘=0
𝑥
𝑗=0 𝛽(𝑐𝑘 + 𝑐 + 𝑗 + 1, 𝑛 − 𝑥 + 1)

∑ ∑ (𝑥
𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝛽(𝑐𝑘 + 𝑐 + 𝑗, 𝑛 − 𝑥 + 1)𝑏−1

𝑘=0
𝑥
𝑗=0

 
 

(14) 

 

 The bias as well as mean square error of �̂�𝑝𝑟𝑜𝑝1  is computed as  

 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑟𝑜𝑝1) = 𝐸(�̂�𝑝𝑟𝑜𝑝1) − 𝜋  (15) 

  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝1) = ∑(�̂�𝑝𝑟𝑜𝑝1 − 𝜋)
2 

(
𝑛

𝑥
)

𝑛

𝑥=0

𝜙𝑥(1 − 𝜙)𝑛−𝑥 
(16) 

 

The generalised beta prior is defined as  

 

 

(𝜋) =
𝑐

𝛽(𝑎, 𝑏)
𝜋𝑎𝑐−1(1 − 𝜋𝑐)𝑏−1;    𝑎, 𝑏, 𝑐 > 0 (17) 

 

where  𝑎, 𝑏, and 𝑐 are the shape parameters of the prior distribution as given in 

Eq. (17). 

The joint density function of 𝜋 and X with the generalised beta prior is  

 

𝑓(𝑋, 𝜋) = 𝐴 ∑ ∑(−1)𝑘 (
𝑥

𝑗
)

𝑏−1

𝑘=0

𝑥

𝑗=0

(
𝑏 − 1

𝑘
) 𝑑𝑥−𝑗𝜋𝑎𝑐+𝑗−1+𝑐𝑘(1 − 𝜋)𝑛−𝑥  

 

(18) 

 

where  𝐴 =
𝑐

𝛽(𝑎,𝑏)
(𝑛

𝑥
)𝑇𝑛  

The marginal probability density function is  

(𝑋) = 𝐴 ∑ ∑(−1)𝑘 (
𝑥

𝑗
)

𝑏−1

𝑘=0

𝑥

𝑗=0

(
𝑏 − 1

𝑘
) 𝑑𝑥−𝑗𝛽(𝑎𝑐 + 𝑗 + 𝑐𝑘, 𝑛 − 𝑥 + 1) 

(19) 

 

Thus, the posterior distribution of 𝜋 given X is  
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𝑓(𝜋|𝑋) =
𝑓(𝑋, 𝜋)

𝑓(𝑋)
=

∑ ∑ (−1)𝑘 (𝑥
𝑗
)𝑏−1

𝑘=0
𝑥
𝑗=0 (𝑏−1

𝑘
)𝑑𝑥−𝑗𝜋𝑎𝑐+𝑗−1+𝑐𝑘(1 − 𝜋)𝑛−𝑥 

∑ ∑ (−1)𝑘 (𝑥
𝑗
)𝑏−1

𝑘=0
𝑥
𝑗=0 (𝑏−1

𝑘
)𝑑𝑥−𝑗𝛽(𝑎𝑐 + 𝑗 + 𝑐𝑘, 𝑛 − 𝑥 + 1)

 

 

 

(20) 

 

 The posterior mean which is the Bayes estimator is derived as 

 

�̂�𝑝𝑟𝑜𝑝2  =
∑ ∑ (𝑥

𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝑏−1

𝑘=0
𝑥
𝑗=0 𝛽(𝑐𝑘 + 𝑎𝑐 + 𝑗 + 1, 𝑛 − 𝑥 + 1)

∑ ∑ (𝑥
𝑗
) (𝑏−1

𝑘
)(−1)𝑘𝑑𝑥−𝑗𝛽(𝑐𝑘 + 𝑎𝑐 + 𝑗, 𝑛 − 𝑥 + 1)𝑏−1

𝑘=0
𝑥
𝑗=0

 
 

(21) 

 

The bias of  �̂�𝑝𝑟𝑜𝑝2 is  

 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑟𝑜𝑝2) = 𝐸(�̂�𝑝𝑟𝑜𝑝2) − 𝜋 (22) 

 

The mean square error of �̂�𝑝𝑟𝑜𝑝2 is  

𝑀𝑆𝐸(�̂�𝑝𝑟𝑜𝑝2) = ∑(�̂�𝑝𝑟𝑜𝑝2 − 𝜋)
2 

(
𝑛

𝑥
)

𝑛

𝑥=0

𝜙𝑥(1 − 𝜙)𝑛−𝑥 
 

(23) 

 

Results and discussions 

 We wrote suitable codes using R-statistical software to evaluate the de-

rived estimators, bias and mean square errors which are given by equations 8, 

9, 14, 15, 20, and 21 at sample sizes 25, 100, and 250 respectively. From the 

results presented in tables 1a to 6b respectively, when 𝑛 = 25, 𝑇 = 0.1 and 0.2, 

the conventional simple beta estimator is better than the proposed Bayesian es-

timators when 𝜋 lies within the range of 0.1 ≤ 𝜋 < 0.2 while the proposed 

Bayesian estimators are better than the conventional simple beta estimator when 

𝜋 lies within the range of 0.2 < 𝜋 < 1. However, the proposed Bayesian esti-

mator which assumes the generalised beta prior is the best in obtaining more 

responses from respondents when 𝜋 lies within the range of 0.3 < 𝜋 < 1. When 
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𝑛 = 100, 250;  𝑇 = 0.1 and 0.2, the proposed Bayesian estimators are better 

than the conventional simple beta estimator when 𝜋 lies within the range of 

0.1 < 𝜋 < 1. However, the proposed Bayesian estimator which assumes the 

generalised beta prior is the best in obtaining more responses from respondents 

when 𝜋 lies within the range of 0.1 < 𝜋 < 1 respectively. 

 

Table 1a. Mean square errors for Kim & Warde (2004) RRT  

at 𝑛 = 25, 𝑥 = 11, 𝑇 = 0.1 
 

 

 

Table 1b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 25, 𝑥 = 11,  𝑇 = 0.1 
 

𝛑 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.01119064 0.12074121 0.25907821 

0.2 0.08880936 0.02074121 0.15907821 

0.3 0.18880936 0.07925879 0.05907821 

0.4 0.28880936 0.17925879 0.04092179 

0.5 0.38880936 0.27925879 0.14092179 

0.6 0.48880936 0.37925879 0.24092179 

0.7 0.58880936 0.47925879 0.34092179 

0.8 0.68880936 0.57925879 0.44092179 

0.9 0.78880936 0.67925879 0.54092179 

 

 

 

 

 

 

 

 

 

MSEBETA MSEKUMA MSE GLS 

0.1 4.470146E-12 5.203827E-10 2.395927E-09 

0.2 2.815330E-10 1.535606E-11 9.033024E-10 

0.3 1.272503E-09 2.242367E-10 1.245852E-10 

0.4 2.977381E-09 1.147025E-09 5.977522E-11 

0.5 5.396165E-09 2.783720E-09 7.088725E-10 

0.6 8.528857E-09 5.134322E-09 2.071877E-09 

0.7 1.237546E-08 8.198832E-09 4.148789E-09 

0.8 1.693596E-08 1.197725E-08 6.939608E-09 

0.9 2.221038E-08 1.646957E-08 1.044433E-08 
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Table 2a. Mean square errors for Kim and Warde (2004) RRT  

at 𝑛 = 25, 𝑥 = 11, 𝑇 = 0.2 
 

 

 

Table 2b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 25, 𝑥 = 11, 𝑇 = 0.2 

 
 

𝛑 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.24462626 0.80499236 0.84070996 

0.2 0.14462626 0.70499236 0.74070996 

0.3 0.04462626 0.60499236 0.64070996 

0.4 0.05537374 0.50499236 0.54070996 

0.5 0.15537374 0.40499236 0.44070996 

0.6 0.25537374 0.30499236 0.34070996 

0.7 0.35537374 0.20499236 0.24070996 

0.8 0.45537374 0.10499236 0.14070996 

0.9 0.55537374 0.00499236 0.04070996 

 

Comment: When 𝑛 = 25, 𝑇 = 0.1 and 0.2, the conventional simple beta 

estimator is better than the proposed estimators when 𝜋 lies within the range of 

0.1 ≤ 𝜋 < 0.2 while the proposed estimators are better than the conventional 

simple beta estimator when 𝜋 lies within the range of 0.2 < 𝜋 < 1. However, 

the proposed estimator which assumes the generalised beta prior is the best in 

obtaining more responses from respondents when 𝜋 lies within the range of 

0.3 < 𝜋 < 1 respectively. 

 

 

 

  MSEBETA MSEKUMA MSE GLS 

0.1 1.298247E-11 6.368725E-10 2.645818E-09 

0.2 2.337871E-10 4.023513E-11 1.059132E-09 

0.3 1.168499E-09 1.575050E-10 1.863521E-10 

0.4 2.817118E-09 9.886822E-10 2.747996E-11 

0.5 5.179645E-09 2.533767E-09 5.825151E-10 

0.6 8.256078E-09 4.792758E-09 1.851458E-09 

0.7 1.204642E-08 7.765657E-09 3.834307E-09 

0.8 1.655067E-08 1.145246E-08 6.531064E-09 

0.9 2.176882E-08 1.585318E-08 9.941729E-09 
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Table 3a. Mean square errors for Kim & Warde (2004) RRT  

at 𝑛 = 100, 𝑥 = 43, 𝑇 = 0.1 

 

 

 

Table 3b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 100, 𝑥 = 43, 𝑇 = 0.1 
 

 

Table 4a. Mean square errors for Kim & Warde (2004) RRT  

at 𝑛 = 100, 𝑥 = 43, 𝑇 = 0.2 
 

 

 

MSE BETA MSE KUMA MSE GLS 

0.1 8.967545E-33 1.979483E-33 1.785698E-33 

0.2 5.755682E-32 3.598771E-32 1.059981E-32 

0.3 1.483197E-31 1.121695E-31 6.158749E-32 

0.4 2.812561E-31 2.305249E-31 1.547487E-31 

0.5 4.563660E-31 3.910538E-31 2.900836E-31 

0.6 6.736496E-31 5.937563E-31 4.675919E-31 

0.7 9.331067E-31 8.386324E-31 6.872739E-31 

0.8 1.234737E-30 1.125682E-30 9.491294E-31 

0.9 1.578542E-30 1.454905E-30 1.253159E-30 

 

|BIAS| BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.06521261 0.03063872 0.02910039 

0.2 0.16521261 0.13063872 0.07089961 

0.3 0.26521261 0.23063872 0.17089961 

0.4 0.36521261 0.33063872 0.27089961 

0.5 0.46521261 0.43063872 0.37089961 

0.6 0.56521261 0.53063872 0.47089961 

0.7 0.66521261 0.63063872 0.57089961 

0.8 0.76521261 0.73063872 0.67089961 

0.9 0.86521261 0.83063872 0.77089961 

 

MSE  BETA MSE KUMA MSE GLS 

0.1 7.984359E-33 1.190816E-33 3.334982E-33 

0.2 5.502221E-32 3.229967E-32 7.649880E-33 

0.3 1.442336E-31 1.055821E-31 5.413835E-32 

0.4 2.756186E-31 2.210381E-31 1.428004E-31 

0.5 4.491772E-31 3.786677E-31 2.736360E-31 

0.6 6.649093E-31 5.784708E-31 4.466452E-31 

0.7 9.228150E-31 8.204475E-31 6.618279E-31 

0.8 1.222894E-30 1.104598E-30 9.191842E-31 

0.9 1.565147E-30 1.430922E-30 1.218714E-30 
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Table 4b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 100, 𝑥 = 43, 𝑇 = 0.2 
 

 

 

Table 5a. Mean square errors for Kim & Warde (2004) RRT  

at 𝑛 = 250, 𝑥 = 106 , 𝑇 = 0.1 
 

 

Table 5b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 250, 𝑥 = 106 , 𝑇 = 0.1 
 

 

 

|BIAS| BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.06153396 0.02376387 0.03976872 

0.2 0.16153396 0.12376387 0.06023128 

0.3 0.26153396 0.22376387 0.16023128 

0.4 0.36153396 0.32376387 0.26023128 

0.5 0.46153396 0.42376387 0.36023128 

0.6 0.56153396 0.52376387 0.46023128 

0.7 0.66153396 0.62376387 0.56023128 

0.8 0.76153396 0.72376387 0.66023128 

0.9 0.86153396 0.82376387 0.76023128 

 

MSE BETA MSE KUMA MSE GLS 

0.1 7.329826E-77 5.052631E-77 1.914836E-77 

0.2 3.452198E-76 2.933285E-76 2.072026E-76 

0.3 8.178880E-76 7.368774E-76 5.960036E-76 

0.4 1.491303E-75 1.381173E-75 1.185551E-75 

0.5 2.365464E-75 2.226215E-75 1.975846E-75 

0.6 3.440373E-75 3.272004E-75 2.966887E-75 

0.7 4.716028E-75 4.518540E-75 4.158674E-75 

0.8 6.192429E-75 5.965822E-75 5.551209E-75 

0.9 7.869578E-75 7.613852E-75 7.144490E-75 

 

|BIAS| BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.08545503 0.07094954 0.04367738 

0.2 0.18545503 0.17094954 0.14367738 

0.3 0.28545503 0.27094954 0.24367738 

0.4 0.38545503 0.37094954 0.34367738 

0.5 0.48545503 0.47094954 0.44367738 

0.6 0.58545503 0.57094954 0.54367738 

0.7 0.68545503 0.67094954 0.64367738 

0.8 0.78545503 0.77094954 0.74367738 

0.9 0.88545503 0.87094954 0.84367738 
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Table 6a. Mean square errors for Kim & Warde (2004) RRT  

at 𝑛 = 250, 𝑥 = 106 , 𝑇 = 0.2 
 

 

 

Table 6b. Absolute bias for Kim & Warde (2004) RRT  

at 𝑛 = 250, 𝑥 = 106 , 𝑇 = 0.2 

 

Comment: When 𝑛 = 100, 250;   𝑇 = 0.1 and 0.2, the proposed estima-

tors are better than the conventional simple beta estimator when 𝜋 lies within 

the range of 0.1 < 𝜋 < 1. However, the proposed estimator which assumes the 

generalised beta prior is the best in obtaining more responses from respondents 

when 𝜋 lies within the range of 0.1 < 𝜋 < 1 respectively. 

 

 Conclusion 

 We have proposed alternative Bayesian estimators of population propor-

tion when life data were gathered through the administration of questionnaires 

 

MSE BETA MSEKUMA MSE GLS 

0.1 7.045008E-77 4.599335E-77 1.439075E-77 

0.2 3.390056E-76 2.822565E-76 1.907759E-76 

0.3 8.083078E-76 7.192663E-76 5.679077E-76 

0.4 1.478357E-75 1.357023E-75 1.145786E-75 

0.5 2.349152E-75 2.195526E-75 1.924411E-75 

0.6 3.420695E-75 3.234776E-75 2.903783E-75 

0.7 4.692984E-75 4.474772E-75 4.083902E-75 

0.8 6.166019E-75 5.915516E-75 5.464767E-75 

0.9 7.839802E-75 7.557006E-75 7.046379E-75 

 

|BIAS| BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.08377830 0.06769215 0.03786452 

0.2 0.18377830 0.16769215 0.13786452 

0.3 0.28377830 0.26769215 0.23786452 

0.4 0.38377830 0.36769215 0.33786452 

0.5 0.48377830 0.46769215 0.43786452 

0.6 0.58377830 0.56769215 0.53786452 

0.7 0.68377830 0.66769215 0.63786452 

0.8 0.78377830 0.76769215 0.73786452 

0.9 0.88377830 0.86769215 0.83786452 
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on abortion on 300 matured women in addition to the conventional simple beta 

estimator proposed by Hussain & Shabbir (2012). We observed clearly from the 

results presented in tables and figures above, that for relatively small, interme-

diate as well as large sample sizes, the proposed Bayesian estimators are more 

sensitive in capturing sensitive attribute than the conventional simple beta esti-

mator. However, the proposed generalised beta estimator is the best in obtaining 

information from respondents in survey which asks sensitive questions. 
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