DOI: 10.18454/2079-6641-2018-24-4-158-165

УДК 519.85; 519.17

АЛГОРИТМ ПОСТРОЕНИЯ БАЗОВОГО ГРАФА ЗАДАЧИ СИНТЕЗА ОПТИМАЛЬНОЙ ПОТОКОВОЙ СЕТИ

М. А. Багов, Л. В. Скорикова

Институт прикладной математики и автоматизации – филиал КБНЦ РАН, 360000, КБР, г. Нальчик, ул. Шортанова, 89 A

E-mail: ipma@niipma.ru

В статье представлен метод построения базового (избыточного) графа соединений узлов потоковой сети, основанный на формализации инженерного подхода и оптимизации.

Ключевые слова: потоковая сеть, задача синтеза, базовый граф, метод построения, функция перспективности дуг, алгоритм.

© Багов M. A., Скорикова Л. В., 2018

MSC 65K05; 94C15

ALGORITHM FOR CONSTRUCTING THE BASIC GRAPH FOR OPTIMUM FLOW NETWORK SYNTHESIS PROBLEM

M. A. Bagov, L. V. Skorikova

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS (IAMA KBSC RAS), 360000, Nalchik, Shortanova st., 89A, Russia E-mail: ipma@niipma.ru

In the paper, the construction method of the basic (redundant) flow network node-link diagram is presented. Formalized design approach combined with optimization methods are used.

Key words: flow network, synthesis problem, basic graph, construction method, arcs perspective function, algorithm.

© Bagov M. A., Skorikova L. V., 2018

Введение

Важной и нерешенной к настоящему времени проблемой является построение избыточного геометрического графа соединений узлов потоковой сети друг с другом на основе которой далее решается задача построения оптимальной потоковой сети. Проблема состоит в построение такого связного избыточного геометрического графа соединений заданных узлов сети друг с другом и с источником сетевого продукта, который не содержит нерациональных соединений (дуг графа). Такой граф позволяет снизить размерность задачи построения оптимальной потоковой сети, являющейся существенно многоэкстремальной.

Задача синтеза потоковой сети с одним источником

Задача синтеза оптимальной сети, являющаяся математической моделью проектирования оптимальных сетей по переносу вещества и энергии – распределительных сетей электро-, водо-, газоснабжения, ставится следующим образом:

$$3 = \sum_{ij \in D} f_{ij}(v_{ij})l_{ij} \to min \tag{1}$$

$$\sum_{i \in \Gamma_j^+} v_{ij} - \sum_{k \in \Gamma_j^-} v_{jk} = g_j, \ \forall j \neq 0 \in B; \ \sum_{j \in \Gamma_0^-} v_{0j} = \sum_{j \in B} g_i$$
 (2)

$$v_{ij} \geqslant 0, \forall ij \in D, \tag{3}$$

где $\Gamma(B,D)$ – заданный конечный, связный, вообще говоря, двухзвенный орграф, моделирующий заданные возможные соединения узлов сети друг с другом; B,D-множество его вершин и дуг; v_{ij},f_{ij},l_{ij} – соответственно искомое значение потока (тока, воды, газа) по (i,j)-ой дуге сети, заданная функция удельной (на единицу длины) стоимости потока по (i,j)-ой дуге, заданная длина (i,j)-ой дуги. Функция $f_{ij}(v_{ij})$ является непрерывной, строго вогнутой, возрастающей функцией, $f_{ij}(0)=0$.

В силу вогнутости целевой функции задача (1) - (3) является существенно многоэкстремальной и относится к классу NP – полных задач [1], так как любой локальный минимум задачи является базисным решением системы ограничений и, следовательно, угловой точкой транспортного многогранника (2), (3), т.е., с сетевой точки зрения, остовным деревом графа $\Gamma(B,D)$. Количество же остовных деревьев растет по экспоненте от количества вершин и дуг графа.

Построение функции перспективности дуг полного графа потоковой сети

В виде (1) – (3) задача построения оптимальной сети ставится математиками в результате совместной работы с инженерами-проектировщиками сетей [1-6]. Вследствии этого возникает вопрос: как формируется граф $\Gamma(B,D)$ возможных соединений узлов (вершин) сети друг с другом? В работах Сибирского энергетического института (г. Иркутск) СО РАН [2], одним из основных направлений деятельности которого является создание математических методов и компьютерных систем проектирования оптимальных сетей, граф $\Gamma(B,D)$ называется избыточной проектной схемой. В

[2,стр.123] говорится, что «...в предельном случае такой схемой возможных соединений узлов сети может служить полный граф, но, как правило, уже на этапе задания схемы проектировщик может учесть конкретные условия и особенности объекта и отбросить подавляющее 'большинство заведомо нерациональных и просто нереальных связей».

Но дело в том, что каждый проектировщик при отбрасывании нерациональных связей и построении избыточной схемы руководствуется достаточно простыми соображениями, не использует, как правило, количественных расчетов оценивающих перспективность включения дуги (i,j) в базовый граф (избыточную схему соединений) с использованием функции затрат $f_{ij}(g_{ij})$.

Оценим порядок количества дуг базового графа (БГ). Полный граф содержит $\frac{n(n-1)}{2}$ дуг, т.е. количество дуг оценивается величиной $\sim n^2$. Снизим порядок на единицу (иначе само построение базового графа лишено смысла), т.е. потребуем, чтобы базовый граф содержал mn дуг, где m-const << n. Величина m означает количество дуг, входящих в каждый узел сети. Примем $2\leqslant m\leqslant 3$. При m=1 получаем некоторое остовное дерево полного графа сети.

Пусть имеем некоторое остовное дерево полного графа сети, то перспективность включения в него дуги (i,j) и исключения любой иной дуги из образовавшегося при этом контура, зависит от потоков по контуру, т.е., в конечном итоге, от структуры остовного дерева. Поэтому, на различных остовных деревьях перспективность (i,j)-ой дуги будет различна. Однако функция перспективности дуги (i,j) должна быть независима от структуры графа, т.е. должна включать в себя лишь потоки g_i, g_j и их комбинации. Единственным остовным деревом, структура которого не влияет на функцию эффективности любой дуги полного графа, является радиальное остовное дерево, т.к. в нем узлы сети непосредственно подключены к источнику. Только такой граф позволяет оценить перспективность дуги (i,j) на основе потоков g_i и g_j .

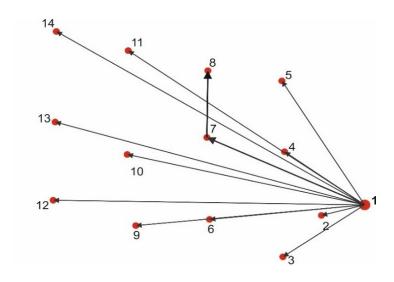


Рис. 1. Подключение узла 8 через узел 7 к сети

Тогда функция перспективности включения дуги (i, j) в БГ имеет вид:

$$\Phi_{ij} = f_{1i}(g_i)l_{1i} + f_{1j}(g_j)l_{1j} - [f_{1i}(g_i + g_j)l_{1i} + f_{ij}(g_j)l_{ij}]$$
(4)

где g_i и g_j — соответственно потоки при радиальном подсоединении узлов i и j по дугам (1,i) и (1,j) к источнику, $f_{ij}(g_j)$ — удельная стоимость потока g_j по (i,j) - ой дуге.

Выделение узла сети подключаемого непосредственно к источнику

В потоковой сети обязательно существует узел, который подключается непосредственно к источнику. Соответствующая ему дуга радиального остовного дерева должна войти в базовый граф. Инженерный подход состоит в том, что к источнику подключается ближайший к нему узел. Построенная нами функция перспективности (4) дает возможность выделить узел, подключаемый непосредственно к источнику, на основании количественных оценок. Это тот узел, который не выгодно подключать к сети через любой иной узел, т.е. тот на котором достигается

$$\min_{j} \max_{i} [\Phi_{ij}]_{j=2,\ldots,n; i=2,\ldots,n}, \ j \neq i$$
 (5)

где $[\Phi_{ij}]$ – квадратная матрица в диагональных ячейках i=j которой стоят нули. Вычислим для определения этого узла значения

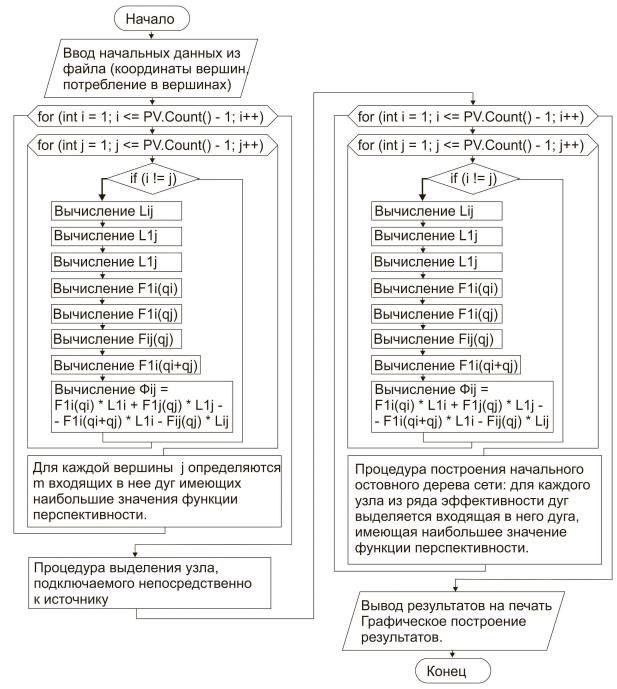
$$\Phi_{i}^{*} = \max\{\Phi_{ij}\}_{i=2,\dots,n; i\neq j}; j = 2,\dots,n$$
(6)

и определим тот узел $2 \leqslant p \leqslant n$ на котором

$$\Phi_n^* = \min\{\Phi_i^*\}_{i=2,\dots,n}.\tag{7}$$

Этот узел p и следует подключить непосредственно к источнику сети.

Поскольку распределение потоков по узлам сети происходит из этого узла p, а узел 1 есть источник потока (например, точка водозабора для водопроводной сети) то функция перспективности дуги (i,j) примет вид:


$$\Phi'_{ij} = f_{pi}(g_i)l_{pi} + f_{pj}(g_j)l_{pj} - [f_{pi}(g_i + g_j)l_{pi} + f_{ij}(g_j)l_{ij}]$$
(8)

Алгоритм построения базового графа сети

Пусть задано среднее количество дуг $m\geqslant 1$ входящих в любую вершину БГ. Решение задачи построения БГ состоит из следующих этапов:

- 1. Определяется узел p, где $1 , непосредственно подключаемый к источнику. Для этого вычисляются значения функции перспективности всех дуг полного графа сети <math>\Gamma(,D)$ и выделяется тот узел, который удовлетворяет условиям (5-7).
- 2. Для каждого узла j (за исключением 1 и p) вычисляются значения функции перспективности Φ'_{ij} (8) входящих в них дуг и выделяются среди них m дуг, имеющих наибольшие значения. Среди этих m дуг выделяются те, которые имеют положительные значения функции перспективности.
- 3. На $\mathsf{F}\Gamma$ выделяется основное дерево наибольшего веса, с которого перспективно начинать решение задачи синтеза оптимальной сети.

Ниже представлена блок-схема алгоритма построения $\mathsf{F}\Gamma$ и остовного дерева наибольшего веса сети.

Для построения базового графа и начального остовного дерева сети разработана программа для ЭВМ на языке C#.

Вычислительный эксперимент

Таблица 1.

Дуги	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14
Длины	3,1	4,0	8,1	6,0	7,5	10,3	9,8	10,9	14,1	14,2	15,0	17,7

Проведен обширный вычислительный эксперимент для различных геометрических полных графов сетей. Ниже представлен результат построения БГ для сети, содержащей 14 узлов. Сеть соответствует оросительной трубопроводной сети колхоза

"Родина"Ставропольского края в разработке которой принимали участие сотрудники ИПМА КБНЦ РАН.

Таблица 2.

Вершины	Дуги	l_{ij}	Φ_{ij}	Верш ины	Дуги	l_{ij}	Φ_{ij}
2	3-2	3,1	-2,994	8	7-8	3,9	3,293
	4-2	4,0	-3,770		5-8	4,2	2,745
	5-2	8.1	-9,197		4-8	6,4	2,243
3	2-3	3,1	1,247	9	6-9	4,0	3,315
	4-3	6,0	-2,557		10-9	4,0	1,285
	6-3	4,7	-4,085		7-9	6,2	0,493
4	2-4	4,0	0,047	10	7-10	4,9	2,893
	3-4	6,0	-3,284		9-10	4,0	2,841
	5-4	4,3	-3,655		6-10	5,7	2,715
5	4-5	4,3	2,143	11	8-11	4,6	5,234
	7-5	5,5	-0,507]	7-11	6,7	4,293
	2-5	8,1	-0,853		10-11	6,0	3,585
6	2-6	6,0	1,247	12	9-12	4,6	5,541
	3-6	4,7	0,016		10-12	4,5	5,185
	4-6	5,7	-1,357		13-12	4,3	3,687
7	4-7	4,4	1,443	13	10-13	4,2	6,285
	2-7	7,5	0,547		12-13	4,3	4,818
	6-7	4,5	0,515		7-13	8,1	3,793
			8	14	11-14	4,0	7,860
					13-14	5,1	6,387
				1	10-14	8,1	5,085

В табл. 2 даны рассчитанные значения функций эффективности. На рис. 2 представлен построенный БГ сети, на дугах которого указаны значения функции перспективности. На рис. 3 представлено начальное остовное дерево сети, с которого стартует метод решения задачи синтеза оптимальной потоковой сети.

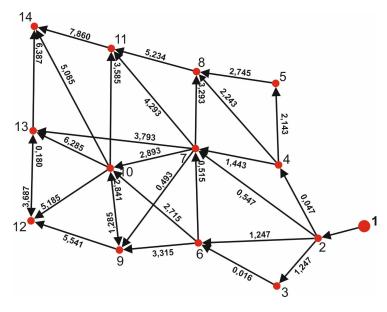


Рис. 2. Базовый граф сети

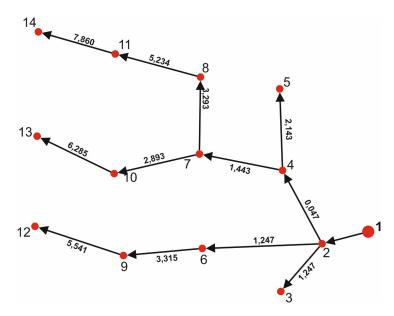


Рис. 3. Начальное остовное дерево сети

Заключение

Представлен метод построения базового графа потоковой сети и начального остовного дерева сети, основанный на формализации инженерного опыта, его расширения и оптимизации. Впервые базовый граф строится на основе предложенной функции, оценивающей перспективность включения любой дуги полного графа сети в базовый граф. Эта функция позволяет определить и тот узел, который следует подключить непосредственно к источнику сети. Проведенный вычислительный эксперимент показал перспективность использования метода при создании компьютерных систем оптимального проектирования потоковых сетей с одним источником.

Список литературы

- [1] Михалевич В.С., Трубин В.А., Шор Н.З., Оптимизационные задачи производственно-транспортного планирования, Наука, М., 1986, 260 с. [Mihalevich V.S., Trubin V.A., SHor N.Z., Optimizacionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka, М., 1986, 260 pp.]
- [2] Меренков А.П., Сеннова Е.В., Сумароков С.В. и др., Математическое моделирование и оптимизация систем тепло-, водо-, нефте- и газоснабжения, ВО «Наука», СО РАН, Новосибирск, 1992, 406 с. [Merenkov A.P., Sennova E.V., Sumarokov S.V. i dr., Matematicheskoe modelirovanie i optimizaciya sistem teplo-, vodo-, nefte- i gazosnabzheniya, VO «Nauka», SO RAN, Novosibirsk, 1992, 406 pp.]
- [3] Некрасова О.А., Хасилев В.Я., "Оптимальное дерево трубопроводной системы", Экономика и математические методы, **3**:4 (1970), 427–431. [Nekrasova O.A., Hasilev V.YA., "Optimal'noe derevo truboprovodnoj sistemy", *Ekonomika i matematicheskie metody*, **3**:4 (1970), 427–431].
- [4] Сумароков С.В., "Метод решения многоэкстремальной сетевой задачи", Экономика и математические методы, **5**:12 (1976), 1016–1018. [Sumarokov S.V., "Metod resheniya mnogoehkstremal'noj setevoj zadachi", Ekonomika i matematicheskie metody, **5**:12 (1976), 1016–1018].
- [5] Кудаев В. Ч., "Метод динамической декомпозиции синтеза нелинейных сетевых систем", *Известия КБНЦ РАН*, 2002, № 1(8), 18–27. [Kudaev V. Ch., "Metod dinamicheskoj

- dekompozicii sinteza nelinejnyh setevyh sistem", *Izvestiya KBNC RAN*, 2002, \mathbb{N} 1(8), 18–27].
- [6] Кудаев В. Ч., "Ранги экстремумов и структурная оптимизация больших сетевых систем", *Известия КБНЦ РАН*, 2016, \mathbb{N} 94(72), 15–24. [Kudaev V. Ch., "Rangi ehkstremumov i strukturnaya optimizaciya bol'shih setevyh sistem", *Izvestiya KBNC RAN*, 2016, \mathbb{N} 94(72), 15–24].

Для цитирования: Багов М. А., Скорикова Л. В. Алгоритм построения базового графа задачи синтеза оптимальной потоковой сети // Вестник КРАУНЦ. Физ.-мат. науки. 2018. \mathbb{N} 4(24). С. 158-165. DOI: 10.18454/2079-6641-2018-24-4-158-165

For citation: Bagov M. A., Skorikova L. V. Algorithm for constructing the basic graph for optimum flow network synthesis problem, *Vestnik KRAUNC. Fiz.-mat. nauki.* 2018, **24**: 4, 158-165. DOI: 10.18454/2079-6641-2018-24-4-158-165

Поступила в редакцию / Original article submitted: 18.09.2018