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Abstract: Noise can affect images while acquired, transmitted, stored or compressed. One of the best methods for 

noise removal is the sparse representation algorithm (SR). The Quantum Particle Swarm Optimization (QPSO) is one 

of the meta-heuristic algorithms. This paper shows excellent results in noise reduction in the quick version of QPSO, 

which uses benefit of the SRs and meta-heuristic algorithms. This approach is known as FQPSO-MP, depending on 

the matching pursuit algorithm (MP). A proposed Dynamic-Multi-Swarm (DMS) and a pre-learned dictionary 

(FQPSO-MP) method saves the time of calculating the learning dictionary. These modifications contribute to 

important benefits of computing efficiency (productivity improvements of approximately 90% are achieved) without 

sacred image quality in comparison with the initial QPSO-MP technique (the bigger reduction relative to the PSNR 

indexes is lower than 0.58 dB and 0.019). The proposed FQPSO-MP method compared to the original QPSO-MP 

method after modification. The scientific results show that the FQPSO-MP algorithm is more effective and quicker 

without sacrificing image quality than the FQPSO-MP algorithm. The experimental results show, in comparison to 

state-of-the-art denoising algorithms, that both quantitative and image quality results are achieved with the suggested 

FQPSO-MP method. 

Keywords: Image processing, Pre-learning dictionary, Image denoising, Meta-heuristic algorithm, Medical and 

biological images. 

 

 

1. Introduction 

     In the acquisition, transmission, storage or 

compression of an image, contamination with noise 

is more obvious Images can be affected with various 

kinds of noise, like Gaussian, impulsive and mixed 

sound. Image denoising is an important pre-

processing step in image processing [1]. Image 

processing has several steps in pre-processing. The 

aim of image denoising is to remove noise from the 

corrupted images in order to estimate their original 

image while preserving the relevant features edges, 

textures, and details [2]. In recent years, the quality 

of noisy images, corrupted by various kinds of noise, 

have been improved by various image denoising 

algorithms. [3, 4] demonstrate a greater summary of 

the denoising algorithms. Although there are 

different kinds of image denoising algorithms, their 

noise removal and running time are not optimal. 

Three types of image denoising algorithms are 

founded on the transform filtering of domains, spatial 

filtering and learning. Examples of the transform 

domain filter image denoising algorithms are a 

wavelet, Fourier transforms, Block-Matching and 3D 

filtering (BM3D) algorithms, etc. [5]. The bilateral, 

Gaussian, guide, and the nonlocal mean filters are 
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examples of the second sort of the image denoising 

algorithms and are focused on spatial filtering [6]. 

The K-Singular Value Decomposition (K-SVD) [7], 

Large-Scale Sparse Clustering (LSSC) [8] and the 

Clustering based Sparse Representation (CSR) 

algorithms are examples of the following third sort 

focused on learning. These algorithms are created to 

improve image quality. In [9] the compressed sensing 

method demonstrates a novel way to combine both 

inner and external data for high-performance 

restoration of magnetic resonance imaging (MRI) 

data. In [10] the PSNR and the image performance of 

the Patch Group Prior based Denoising (PGPD) 

technique is much greater than the Patch Prior based 

Denoising (PPD) method. Unlike most of the 

techniques in [11], an energy minimization function 

is created to mix the low- and high-frequency 

denoised outcomes. To achieve excellent 

assessments of the sparsely coding coefficients of the 

residual image and to make images denoise while 

maintaining their textures, a robust algorithm mixing 

gradient histogram with SR is used [12]. Completive 

denoising efficiency and high quality images can be 

achieved in comparison to other denoising techniques 

by an iterative weighted sparse representation 

(IWSR) [13]. The objective of a dual domain filter 

(DDF) is to enhance the SAGD image quality [14]. 

For low quality optical remote-sensing images [15], 

the progressive DDF is applied. There are two 

components to DDF. The first way to achieve high 

quality images is to use a bilateral filter as the guide 

filter. Then a Fourier transform is recovered and 

improved with an adaptive adjustment parameter by 

low-contrast helpful constructions. The overall 

weighted nuclear norm minimization (WNNM) 

denoising framework is provided in [16]. There's 

several desirable characteristics within this 

framework. First, the noise impact can be reduced by 

means of a thresholding scheme with a 2D orthogonal 

transformation on the similitude measures of 

different parts. Secondly, it requires into 

consideration the significance of method noise and 

offers an adaptive linear strategy to process noise 

feedback based on noise levels. A speckle removal 

algorithm is shown depending on the theory of Grey 

and WNNM algorithm. The benefits of Gray Theory 

can efficiently maintain the image's texture data and 

the WNNM can efficiently remove the speckle noise 

are considered in this algorithm. Concurrently, both 

algorithms avoid weaknesses. The method is finally 

implemented to the remote sensing image speckle 

removal.  

The essential to the SR-based denoising 

algorithm is to know the appropriate dictionary to suit 

the local image structure. The SR-based denoising 

algorithm has been successful if the dictionary has to 

do with the results of sparse coding and if it suits the 

image features. The dictionary is split into two kinds; 

the first sort of the dictionary is the fixed dictionary 

like wavelet, Gabor, Gabor wavelet, log Gabor, log 

Gabor wavelet, and discrete cosine transform (DCT). 

The second kind is the learning dictionary like K-

SVD [7], LSSC [8], principal component analysis 

(PCA) [17] and locally learned dictionary (KLLD) 

[18]. The atoms of the adaptive dictionary are 

iteratively created. It's still a challenge for scientists 

to use the learning dictionary in the denoising 

algorithm. In [6] the K-SVD method is a long SVD 

execution time and iterative. For a normal problem, 

the CPU needs nearly a few minutes or more for the 

dictionary learning. Therefore, the application of the 

K-SVD algorithm is encumbered in large-scale 

images. The use of the learning dictionary is still an 

issue in the denoising algorithm. Researchers face a 

challenge in finding an effective technique of image 

denoising. SR Algorithm is the most frequently used 

algorithm for Gaussian noise denoising images. In 

order to achieve the optimal quality of the regulating 

parameter of the total variation technique, the 

Particulate Swarm Optimisation (PSO) shall be used 

to remove a noise from image MRI [19]. The Non-

locally Centralized Sparse Representation algorithm 

(NCSR) incorporates concepts of SR (learning 

dictionary) and non-local self-similitude in image 

patches. The NCSR incorporates these concepts in a 

given image. 

The dictionary must be derived from the entry 

data, which constitutes a main principle for dictionary 

learning. Due to the reality that the image processed 

typically wishes to depict the input data using as few 

parts as feasible, the emerging sparse dictionary 

learning techniques were encouraged. Prior to that 

strategy, predefined dictionaries like Fourier or 

wavelet transforms had to be used in the general 

practice. In some cases, however, a dictionary trained 

in suiting the input data can greatly improve the 

sparsity of the data decomposition, compression and 

analysis applications used in the fields of image 

denoising, classification, Video and audio. Image 

compression, image fusion and inpainting are the 

applications of sparsity and over-complete 
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dictionaries. Most current dictionary learning 

techniques regard an over-complete dictionary, e.g. 

the K-SVD method. They often involve the 

resolution of a minimum issue that is extremely 

difficult in aspects of computational feasibility and 

quality. However, if the correlations between 

dictionary atoms are not well limited, a dictionary's 

redundancy does not inherently enhance sparse code 

efficiency. A quick orthogonal dictionary learning 

technique is suggested to explore sparse image 

representation. This technique is significantly more 

computationally efficient than over-complete 

dictionary based learning techniques, given similar 

results in many image recovery tasks. In an 

alternative minimization system, the new K-SVD 

method [7] teaches both an over-complete dictionary 

and sparse representations of the patches under that 

dictionary. Getting started with the set of 

disconnected image patches gathered from the 

original image, the K-SVD technique alternately 

executes between two sub-problems: sparse coding 

and dictionary updating. Almost all sub-problems in 

[7] are dependent on heuristic sampling techniques: 

the sparse coding under the over-complete dictionary 

is achieved via OMP and the dictionary is measured 

by column-wise sequential SVD changes. In [20] the 

over-complete dictionary was tested using the K-

SVD algorithm, accompanied by the Batch-

Orthogonal Matching Pursuit (Batch-OMP) rather 

than the OMP algorithm to improve the denoising 

algorithm. 

This paper aims at reducing the computational 

complexity of the adaptive dictionary and improving 

the denoising efficiency of the test images. The paper 

offers a new speedy QPSO algorithm based on the 

MP and the pre-learned dictionary generated by the 

Translation, Libration, and Screw (TLS) model. The 

QPSO algorithm has two improvements that reduces 

the computational complexity and the execution time. 

Two significant assessment indices for denoising 

performance are generally both noise reduction and 

computational efficiency. That is to say, most 

denoising apps involve an agreement between noise 

reduction and computational cost. This paper is 

mainly aimed at researching the effectiveness of 

decreasing the computational complexity of 

dictionary learning, one of the longest-term modules 

of the initial QPSO-MP algorithm. Detailed 

experimental findings demonstrate that, compared 

with their naive implementation and other state-of - 

the-art denoising algorithms, our fast QPSO-MP 

(FQPSO-MP) method, with two technical advances, 

is highly competitive performance with respect to 

noise reduction and computational complexity. 

The efficiency of BM3D is well known as a 

benchmark algorithm due to its ability to use block 

similarity and sparse representation. However, as 

BM3D utilizes set square blocks with a fixed scale 

and square shape across the image, it has restricted 

performances, in particular on edges with a strong 

contrast. The variety BM3D-SAPCA, that adopts a 

neighborhood adaptive shape strategy, enhances 

visual quality efficiency as well as significantly 

increases execution time. The proposed FQPSO-MP 

is somewhat higher than the visual quality BM3D-

SAPCA in comparison with BM3D-SAPCA, but 

reduces the time of execution by a factor of 2-8. 

The rest of this paper is structured in the 

following way, the proposed FQPSO-MP method 

with two modifications over the original QPSO 

algorithm is discussed in section 2. The experiment 

results and efficiency of the proposed FQPSO-MP 

algorithm and the other denoising algorithms are 

tested and evaluated in section 3. The paper is 

concluded in section 4.   

2. Methodology 

2.1 Matching pursuit (MP) 

MP algorithm uses the signal decomposition 

based on a redundant dictionary. Each element of the 

dictionary called an atom. When MP is utilized, the 

best atom of the dictionary can be detected. These 

atoms can be found in each iteration. For an arbitrary 

image 𝑦 of size 𝑏 × 𝑐,  let {dγ}γ∈Γ are the atoms of 

the dictionary 𝐷, where 𝛤 is the set of all indexes 𝛾 

and ||dγ|| = 1  [21]. The approximation of 𝑦  by 

projecting it on a vector 𝑑𝛾0
∈  𝐷 is the first step of 

the MP. 

 

𝑦 =< 𝑦, 𝑑𝛾0
> 𝑑𝛾0

+ 𝑟𝑦        (1) 

 

Where the projection of 𝑦 into the atom 𝑑𝛾0
 is <

𝑦, 𝑑𝛾0
> 𝑑𝛾0

 , and the residual of the original image 𝑦 

is 𝑟𝑦, where the 𝑟𝑦 is orthogonal to 𝑑𝛾0
 [21]: 

 

||𝑦||2 = | < 𝑦, 𝑑𝛾0
> |2 ||𝑑𝛾0

||2 + ||𝑟𝑦||2         (2)  

 

 ||𝑦||2 = | < 𝑦, 𝑑𝛾0
> |2 + ||𝑟𝑦||2,                      (3) 

 

where ||𝑑𝛾0
||2 = 1  
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The term ||𝑟𝑦||2 = ||𝑦||2 − | < 𝑦, 𝑑𝛾0
> |2  should 

be minimized, so 𝑑𝛾0
∈ 𝐷 must be selected to 

maximize the term | < 𝑦, 𝑑𝛾0
> |. The image 𝑦 can 

be remodelled via the selected atom 𝑑𝛾𝑛
 after  𝑁 

iterations 

 

  𝑦 ≈ ∑ < 𝑟𝑦
𝑛,𝑁−1

𝑛=0 𝑑𝛾𝑛
> 𝑑𝛾𝑛

       (4) 

  

The essential step in the denoising processes is 

constructing 𝑑. We used the Gaussian function (Eq. 

(5)) to construct the fixed dictionary of the proposed 

FQPSO-MP algorithm. The essential function is a 

Gaussian in one axis and the second derivative of the 

Gaussian in the various another axis. In this paper, the 

TLS model is applied the Gaussian function to 

construct the pre-learned dictionary  𝑑(𝑚, 𝑞) . The 

Gaussian function is presented as the following 

formula:  

 

𝑑(𝑚, 𝑞) = (2 − 4𝑚2)𝑒− 
1

4
(𝑚2+𝑞2)

          (5)  

                             

Eq. (5) is applied to construct the dictionary 𝑑(𝑚, 𝑞) 

with the TLS rotation in x direction and y direction, 

i.e. 𝑇[𝐿]𝑥 , 𝑇[𝐿]𝑦, 𝐿𝑥 , 𝐿𝑦, 𝑆[𝐿] respectively. The TLS 

model applied to calculate 𝑚, 𝑞 

 

Where,    𝑚 =
(𝑐𝑜𝑠 (𝑆[𝐿]) × 𝑇[𝐿]𝑥+𝑠𝑖𝑛 (𝑆[𝐿])×𝑇[𝐿]𝑦)

2
(

𝑠𝑡𝑥
𝑁𝑁

)
   (6)  

                

              𝑞 =
(𝑐𝑜𝑠(𝑆[𝐿])×𝑇[𝐿]𝑦−𝑠𝑖𝑛 (𝑆[𝐿])×𝑇[𝐿]𝑥)

2
(
𝑠𝑡𝑦
𝑁𝑁

)
 (7)

                    

Where 𝑇[𝐿]𝑥 , 𝑇[𝐿]𝑦, 𝑆[𝐿], 𝑠𝑡𝑥 , 𝑎𝑛𝑑 𝑠𝑡𝑦 are a 

translation in 𝑥 direction, 𝑦 direction, screw rotation 

angle, arbitrary columns of the population 

respectively, and 𝑁𝑁 is the number of parameters of 

TLS model (𝑁𝑁 = 5).  

2.2 Quantum-behaved particle swarm opti-

mization (QPSO) 

QPSO algorithm is roused by the familiarity with 

quantum mechanics with the first PSO algorithm [22]. 

QPSO is the refreshed and upgraded version of PSO 

algorithm, not only in its search capacity but also in 

its precision. The particles of QPSO algorithm can 

show on any search space and these particles rely 

upon the delta potential. The QPSO algorithm can 

skip the mistake of the standard version of PSO 

algorithm, however the global convergence with 

probability 1 can't be ensured. At the same time in the 

quantum search space, the positions and velocities of 

the particles can't be calculated. The wave function 

𝜓(𝑋, 𝑡)  used to calculate the state of the particle. In 

the certain position, the formula|𝜓(𝑋, 𝑡)|2  used to 

find the probability of the particles, then the 

probability distribution function can be measured. 

Each particle must have position, where the position 

of each particles can be calculated and updated using 

the following Eq. (8): 

 

𝑋𝑖𝑑 = 𝑝𝑗𝑑 ± 0.5 𝐴 ln (
1

𝑢
)    𝑢 ~𝑈(0,1)      (8) 

    

Where  𝑃𝑗𝑑  and  𝑈(0,1)  are the local attractor, and 

random number respectively. The value of the 

random number 𝑈(0,1) between 0 and 1. The 𝑃𝑗𝑑can 

measured by the following Eq. (9). 

 

𝑝𝑗𝑑 = 𝛽𝑃𝑗𝑑 + (1 − 𝛽)𝑃𝑔𝑑     𝛽 ~𝑈(0,1)        (9)  

 

Where the best position of the jth particle is defined 

as 𝑃𝑗 = (𝑃𝑗1, 𝑃𝑗2, 𝑃𝑗3, … , 𝑃𝑗𝑑), the global position of 

all particles is defined as  𝑃𝑔 =

(𝑃𝑔1, 𝑃𝑔2, 𝑃𝑔3, … , 𝑃𝑔𝑑); and 𝛽 is the random number. 

The value of 𝛽  distributed between 0 and 1.The 

parameter 𝐴 measured by Eq. (10). 

 

𝐴 = 2𝛼. |𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑗𝑑|                             (10)  

 

Where the average optimal position of all the 

particles is  𝑚𝑏𝑒𝑠𝑡 . The 𝑚𝑏𝑒𝑠𝑡  is measured by 

following Eq. (11). 

 

𝑚𝑏𝑒𝑠𝑡 =
1

𝑀
∑ 𝑝𝑏𝑒𝑠𝑡𝑗

𝑀
𝑗=1                              (11) 

 

 The parameter 𝛼  is the contraction-expansion 

coefficient.  The parameter 𝛼 can be calculated as the 

following Eq. (12). 

 

𝛼 = 0.5 + 0.5 ×
(𝐿𝑐−𝐶𝑐)

𝐿𝑐
                  (12) 

           

Where 𝐿𝑐  and 𝐶𝑐   are the total number and the 

current number of iterations respectively.  

2.3 TLS model 

Cruickshank was the first to use the TLS model 

to describe the movements of the atomic groups. In 

the TLS model, the T, L and S, three matrices are 

defined which can define the combination of the 

atomic vibrations and liberations. The TLS model 

used in the molecular systems [23]. Matrix 

components should meet several requirements for 

transformation into vital molecular motion. The 

matrices may not describe concerted molecular 
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movements if these conditions are not met. The 

atoms can be given in a few bases denoted [M], and 

the [L] basis of the TLS matrices can be calculated 

using the following formulas: 

 

     𝐿[𝐿] = 𝑅𝑀𝐿
𝑇 𝐿[𝑀]𝑅𝑀𝐿; 

     𝑇[𝐿] = 𝑅𝑀𝐿
𝑇 𝑇[𝑀]𝑅𝑀𝐿; 

     𝑆[𝐿] = 𝑅𝑀𝐿
𝑇 𝑆[𝑀]𝑅𝑀𝐿.                                        (13) 

  

Where 𝑅𝑀𝐿  is the transition matrix from basis [M] 

into basis [L], 𝑅𝑀𝐿
𝑇  is its transpose, and  𝐿[𝐿], 𝑇[𝐿], 

and  𝑆[𝐿]  are liberation, translation, and screw 

rotation matrices in the [L] basis . In addition, the 

matrices of the TLS in the [M] basis can be calculated 

using the following formulas: 

 

     𝐿[𝑀] = 𝑅𝑀𝐿
𝑇 𝐿[𝐿]𝑅𝑀𝐿; 

     𝑇[𝑀] = 𝑅𝑀𝐿
𝑇 𝑇[𝐿]𝑅𝑀𝐿; 

     𝑆[𝑀] = 𝑅𝑀𝐿
𝑇 𝑆[𝐿]𝑅𝑀𝐿.                             (14) 

 

Where, 𝑅𝑀𝐿 is the transition matrix from basis [M] 

into basis [L], 𝑅𝑀𝐿
𝑇  is its transpose , and  𝐿[𝑀], 𝑇[𝑀], 

and  𝑆[𝑀] are libration, translation, and screw rotation 

matrices in the [M] basis. 

- Liberation ( 𝐿𝑥 , 𝐿𝑦 ): the atom should be 

locally oriented along the contours. 

- Translation (𝑇𝑥 , 𝑇𝑦): moving the atom across 

the image. 

- Screw rotation (𝑆): to take the smoothness of 

the contour.                                      

The Eqs. (13) or (14) are applied to find ℎ, 𝑤. In this 

paper, the Eq. (13) is substituted in Eqs. (6) and (7) 

to calculate ℎ, 𝑤. 

2.4 Pre-learned dictionary 

The dictionary 𝐷 is reconstruction at every outer 

loop iteration in the original algorithm. The denoising 

or intermediate noisy image extracting to training 

patches and these training patches are grouped into 𝐶 

clusters and each cluster is learned a PCA sub- 

dictionary. Then a compact PCA sub-dictionary is 

chosen to code it for a particular patch. Because 

constructing of dictionary from image patches takes 

place at runtime, which is comparatively high time 

complexity, particularly for large image size. In 

reality, some factor should be satisfied in order to 

construct the dictionary efficiently depicts the image 

content: (1) training the dictionary itself on the 

corrupted image (generated at runtime and iteratively 

updated, later referred to as the learned dictionary, 

taken in the original algorithm) and (2) directly 

training the dictionary on a high-quality image 

instead of a noisy one (generated offline without 

updating, later referred to as pre-learned dictionary). 

In this paper, the pre-learned dictionary is used 

instead of a built-in learned dictionary runtime, 

which significantly decreases the runtime. Each 

inner iteration in the original algorithm involves 

decomposing the noisy image into overlapped 

patches, coding the image patches sparsely, 

estimating the sparse coefficients, and rebuilding the 

denoised image from the approximate patches. 

The dictionary performs a significant part in these m

odules. As we understand, reaching the original 

image equivalent to the noisy image is not practical. 

The dictionary should generate from another smooth 

image when applying the original algorithm to 

denoise image, where its components differ from the 

contents of the corrupted image. The regeneration 

mistake can therefore usually not be determined by 

the change of the representation of the image 

throughout the denoising method. Table 1 

demonstrates the pre-learned dictionary trained to 

detect the value of the retrieved images on some high-

quality images. In Table 1, it is obvious that all PSNR 

outcomes are more than 138 decibels, meaning the 

performance of the image being recreated is adequate. 

The TLS model in this paper utilizes the pre-learned 

dictionary instead of the constructed dictionary 

throughout runtime, which demonstrates why the 

runtime is considerably decreased. The adaptive 

dictionary does not always obtain the highest 

outcomes in regeneration. The rebuilding mistake of 

the sample images in the two types of dictionaries is 

an irrelevant change. The contents of the test images 

in Fig. 1 are obviously different from the contents of 

the test images in Figs. 2 and 3 that are also suitable 

for measuring the stability of the pre-learned 

dictionary strategy. The denoising outcomes of the 

original method are not susceptible to the details of 

the test images used to construct the dictionary. To 

accelerate the QPSO-MP algorithm, the TLS model 

is often used as a pre-learned dictionary. 

 

 
(a)                        (b)                           (c) 

Figure.1 (a) Img1, (b) Img2, and (c) Img3. The size of all 

images is 512×512 
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(d)                            (e)                               (f) 

Figure.2 (d) Lena, (e) Cameraman, and (f) Couple. The 

size of all images is 512×512 

 

 
(g)                            (h)                         (i) 

Figure.3 (g) Meloid. Kralli, (h) Meloid. Duyts, and (i) 

Meloid. Pore. The size of all images is 490×330 

 

 
Figure.4 DMS-QPSO’s search 

2.5 DMS of population 

The DMS-QPSO approach is based on the QPSO 

algorithm's normal variant. The distinction between 

both the QPSO and DMS-QPSO algorithms is that 

the swarms are dynamic and lower in size [24]. The 

DMS-QPSO algorithm's neighbourhood topology 

has two essential features; The DMS splits the entire 

QPSO algorithm population into tiny swarms. These 

swarms are repeatedly re-clustered using different 

regrouping plans, and these swarms data is shared 

between them. Fig. 4 illustrates the search for the 

DMS-QPSO algorithm. 

2.6 The proposed FQPSO-MP algorithm 

A first enhancement is to use the TLS model to 

construct the pre-learned dictionary from high-

quality, textured images rather than the over-

complete dictionary produced from the specified 

noisy image as its own or from the incompletely 

denoised image. The second enhancement is to use 

the DMS over the QPSO (DMS-QPSO) algorithm. 

While using DMS, the population is split into tiny 

parts. Every group should explore the space using its 

own participants. Throughout this method, there will 

be no reduction in the diversity of an entire 

population as the information generated by each 

swam will be swapped. In 𝑅 generation, the members 

of each swarm group will distribute randomly (i.e. 𝑅 

is the period of the Regroup). Table 2 provides the 

proposed FQPSO-MP algorithm with two significant 

changes to the original QPSO-MP algorithm. 

3. Results and discussion 

3.1 Comparison between the proposed and the 

original QPSO algorithms 

On the BSD500 [25], BITE [26], and nematode 

[27] databases, we assess the suggested FQPSO-MP 

technique. We developed a dataset of 150 images 

from the database of the BSD500 and performed a 

statistical test on these images. These sample images 

include several kinds of scenes, including indoor, 

outdoor and portrait scenes. The BITE database 

objective is to communicate in vivo medical images 

of brain tumor patients to promote the creation and 

verification of latest methods for image processing. 

These data can be found internet on the Brain Tumor 

Image database of the Montreal Neurological 

Institute. It includes images of 14 patients with 

ultrasound and magnetic resonance. Every patient 

was subjected to a preoperative and postoperative T1-

weighted magnetic resonance scan with enhanced 

gadolinium, and various intraoperative B-mode 

pictures were obtained pre and post resection. Some 

of the images were used for previous publications. 

This is why the data is split into three classes with 

their own properties and features; 1) Ultrasonic 

images pre and after resections; 2) Ultrasonic pre and 

after resection images and 3) MR images pre and 

after resection. In order to facilitate the development 

and validation of new image processing algorithms, 

the aim of the nematode database is to share bio 

images. The data is accessible internet for the 

assessment database at WAGENINGEN 

UNIVERSITY & RESEARCH. It includes various 

nematode images. To ensure reasonable contrast of 

the FQPSO-MP algorithm suggested to the local 

version of the QPSO method, all the conditions are 

prepared the same way, the patch size is 8×8, with 

similar test images all circumstances are designed in 

the same manner. The performance of denoised 

images is measured by the PSNR. The SSIM index 

has been evaluated in order to assess the performance 

of denoted images more reliably. The performance 

and time of execution of the denoised images must be 
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measured. The computational complexity of the 

proposed FQPSO-MP and QPSO-MP algorithms is 

assessed. The experiment is conducted on a DELL 

PC, running Windows 7 Enterprise with 2.4 GHz 

Intel Core (TM) i5-M520 CPU, (R), MATLAB 

R2016 64-bit and 4 GB RAM. 

3.1.1. Complexity analysis 

In the present subsection, the QPSO-MP 

algorithm's time complexity is analysed. The primary 

computational costs of the QPSO-MP method are as 

follows. The performance of the denoising algorithm 

QPSO-MP is heavily dependent on dictionary 

learning, particularly if it increases the size of the 

dictionary or the number of training patches. As we 

do now, one of the reasons for low efficiency of the 

original algorithm a non-locally estimated sparse 

coefficients (NESC) are strictly dependent upon a 

matching patch that is also time-consuming process 

in order to identify a patch that is sufficiently similar 

to that used for a diagnosis in the original algorithm.  

An isotropic atom that is used to build the dictionary 

in the original algorithm is time consuming processes, 

which is another reason for low efficiency of the 

original algorithm. Although the original algorithm is 

very good for reducing noise, in large-scale images 

with growing difficulty, it is computationally 

expenses and eventually restricted. In addition, the 

outcomes of the QPSO-MP method are not 

susceptible to the content of the dictionary test 

images. The pre-learned dictionary is therefore used 

to accelerate the original algorithm. The QPSO-MP 

denoising algorithm requires 𝑶(𝒅𝑴𝟐)  complexity, 

with 𝒅 as the pixel amount for the patch, and 𝑴 as 

the pixel amount for the image. The duration required 

to denoise a single image 𝟓𝟏𝟐 × 𝟓𝟏𝟐 is therefore too 

lengthy. For 𝟓𝟏𝟐 × 𝟓𝟏𝟐 images, the runtime for an 

outer loop is approximately 𝟒𝟓𝟕 𝐬 with unoptimized 

MATLAB codes on a PC equipped with 2.4 GHz 

Intel Core (TM) i5-M520 CPU and 4 GB RAM. In a 

single external loop, the calculation of dictionary 

learning and weighting costs around 70 s and 390 s, 

which takes around 1096 s to denoise a 𝟓𝟏𝟐 × 𝟓𝟏𝟐 

image. While, the total running time of the proposed 

FQPSO-MP algorithm increases by 𝟏. 𝟒 % when the 

size of the 𝟓𝟏𝟐 × 𝟓𝟏𝟐 test image increases by 𝟏𝟓%. 

In order to decrease the computation time without too 

much sacrificing image quality, both changes (DMS 

population and pre-learned dictionary) are used to 

enhance computing performance of the original 

QPSO-MP algorithm. The role of the pre-learned 

dictionary construcred by the TLS model is effective 

in reducing the running time of the proposed FQPSO-

MP algorithm. Table 4 provides the execution time of 

the proposed FQPSO-MP and the original QPSO-MP 

algorithms on the test images. The execution time of 

the proposed FQPSO-MP algorithm is less than the 

execution time of the QPSO-MP algorithm. 

Replacing the adaptive dictionary (Anisotropic atom) 

with the pre-learned dictionary is the explanation for 

this distinction in running time. The pre-learned 

dictionary can be used directly with the proposed 

FQPSO-MP algorithm (it doesn't take long to run) 

while the time required for image generation to run is 

more than 70 s. This implies that the FQPSO-MP 

algorithm's computational complexity is less than the 

local version of the QPSO-MP algorithm. Fig. 6 

illustrates the average performance of the proposed 

FQPSO-MP algorithm that is surpasses the 

performance of the QPSO-MP algorithm. Fig. 5 

displays the average execution time of the proposed 

FQPSO-MP algorithm, which is lower than the 

corresponding score of the original QPSO-MP 

algorithm. This demonstrates the possible advantages 

of the FQPSO-MP algorithm. 

3.1.2. Noise reduction 

The proposed FQPSO-MP and QPSO-MP 

algorithms are summarized in Table 4 by a PSNR 

values of denoised images. Because of its minimum 

 

 
Figure.5 Average execution time on all the test images 

using the proposed and original QPSO-MP denoising 

algorithm 

 

Figure.6 Average PSNR results on all test images using 

the proposed and original QPSO-MP denoising algorithm 

 



Received:  July 5, 2019                                                                                                                                                       105 

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020           DOI: 10.22266/ijies2020.0229.10 

 

running time and the optimal results of denoised 

images, the proposed FQPSO-MP method can be 

used for large images. The FQPSO-MP algorithm's 

average values of PSNR are higher than those of 

QPSO-MP algorithm. The principal cause for this is 

the population split into groups in the suggested 

FQPSO-MP algorithm. From Table 11, differences 

between the original QPSO-MP and proposed 

FQPSO-MP algorithms can observe are very small. 

The largest decline is less than 0.58 dB and 0.019 

with respect to PSNR and SSIM indices, respectively. 

The distinction is not easy to discern between 

denoised results. When visual inspection is carried 

out, the results of the two algorithms are very near. 

This means that the proposed FQPSO-MP algorithm 

works as well as the original QPSO-MP algorithm 

and reduces running time significantly. The 

differences between the denoised results shown in 

Figs. 7 and 8 are between the proposed FQPSO-MP 

and QPSO-PM algorithms at the same sigma 𝝈 and 

same image. The proposed FQPSO-MP algorithm 

implements the QPSO-MP algorithm as well as 

reducing the runtime. The summary of this test 

indicates that, instead of the adaptive dictionary 

acquired in the corrupted image throughout runtime, 

the best-denoised images can be obtained by the pre-

learned dictionary. The TLS model can be applied to 

construct the pre-learned dictionary that suits most 

the medical, biological and the natural images. In 

brief, the final results demonstrate that the proposed 

FQPSO-MP algorithm is great for the removal of 

noise (noise reduction) and running time 

(computational complexity). 

 

 
(a) (b) 

 
(c)                                           (d) 

Figure. 7 Denoised results on Cameraman image with 

moderate noise corruption (σ = 30) using the proposed 

and QPSO-MP algorithms, respectively: (a) original 

image, (b) corrupted image, (c) denoised image using the 

proposed algorithm, PSNR= 30.77, and (d) denoised 

image using the QPSO-MP algorithm, PSNR=29.16 

 

(a)                                           (b) 

 
(c)                                           (d) 

Figure. 8 Denoised results on image 3 with moderate 

noise corruption (σ= 50) using the proposed and QPSO-

MP algorithms, respectively. (a) Original image; (b) 

corrupted image; (c) denoised image using proposed 

algorithm, PSNR= 28.38 (d) denoised image using the 

QPSO-MP algorithm, PSNR=25.68 

3.2 Comparison between the proposed FQPSO-

MP and the state-of-the-art algorithms 

The denoising performance of the proposed 

FQPSO-MP algorithm is comparable to the state-of-

the-art denoising algorithms, 1) K-SVD [7], 2) 

Bilateral [5], 3) Wiener [28], 4) Total Variation (TV) 

[29], 5) Median [30], and 6) Bayes [31]. The software 

package of the earlier algorithms is used in this paper 

to produce denoising performance results. To 

guarantee a suitable compare between both the 

proposed FQPSO-MP algorithm and the state-of-the-

art algorithms, the tested images [25-27] are the same, 

having the same size and damaged by the additive 

Gaussian noise (GN) N(0, σ2), where σ2 is the 

estimated noise deviation with noise levels σ =
 10, 30, 50, 70 and 90. Six separate (the state-of-the-

art) methods just under the distinct Gaussian noise 

rates are summarized in Tables (5, 6, and 7) in 

denoising outcomes. The proposed algorithm 

FQPSO-MP provides the highest outcomes for 

performance. Fig. 9 shows the general average output 

of the algorithms being evaluated. Figs. 10 and 11 

provide the distinction between the denoised results 

of the suggested FQPSO-MP and the state-of-the-art 

algorithms at the same sigma 𝜎 and at the same image. 

The test findings of this paper demonstrate that there 

is the shortest implementation time for the suggested 

FQPSO-MP algorithm. But at the other hand, the 
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Figure.9 The average PSNR results on the tested images using the proposed and the state-of-the-art approaches 

 

 
(a)                   (b)                  (c)                  (d) 

 
(e)                   (f)                  (g)                  (h) 

 
(i) 

Figure. 10 Denoised results on the Lena image with 

moderate noise corruption (σ = 30) using the proposed 

and state of-art approaches: (a) original image, (b) 

corrupted image, (c) denoised image using the proposed 

algorithm, PSNR= 30.61, (d) denoised image using the 

K-SVD algorithm, PSNR=29.24, (e) denoised image 

using the TV algorithm, PSNR= 26.97, (f) denoised 

image using the Bayes filter, PSNR=26.03, (g) denoised 

image using the Median filter, PSNR=22.69, (h) denoised 

image using the Wiener filter, PSNR=24.59, and (i) 

denoised image using the Bilateral filter, PSNR= 18.70 

 

Bilateral and the Wiener filters are faster than the 

FQPSO-MP algorithm, whereas the FQPSO-MP 

proposed average performance is greater than the 

other algorithms. The proposed FQPSO-MP 

algorithm achieves a certain balance among the 

performance of denoised images and the running time. 

The proposed FQPSO-MP algorithm is implemented 

to medical, biological and natural images, to fulfill 

and test various kinds of images. Also, the proposed 

FQPSO-MP algorithm is implemented to different 

extension types of image such as jpeg, bmp, png, and 

tif. Generally, it has been shown that the suggested 

FQPSO-MP algorithm is a stable algorithm. 

Table 8 illustrates the average SSIM performance 

using seven different algorithms under the different 

noise levels on the 150 test images. The overall 

outcomes of the Tables (3, 4, 5, 6, 7, 8, and 9) 

indicated that, as compared with the remaining 

algorithms for separate images, a suggested FQPSO-

MP achieved superior outcomes in terms of runtime 

and noise reduction. Notions on the performance 

results of FQPSO-MP are comparable to other state-

of-the-art algorithms, 1) BM3D [12], 2) LSSC [8], 3) 

NCSR [17], 4) edge-preserving image denoising 

(EPID) [11], 5) WNNM [16], 6) SNLM [32], 7) 

BM3D-SAPCA [33], 8) FastNLM [34], and 9) 

FNCSR [65]. Table 9 illustrates the average PSNR 

performance using nine different state-of-the-art 

algorithms under different noise levels on the 150 test 

images. In addition, this part compares the execution 

time and the performance outcomes between the 

proposed FQPSO-MP algorithm with seven 

denoising algorithms such as SNLM [32], BM3D 

[12], BM3D-SAPCA [33], FastNLM [34], FNCSR 

[35], K-SVD [7], and WNNM [16] to demonstrate the 

efficiency of the proposed FQPSO-MP algorithm in 

large-scale image verity. We had produced 150-

image from the BSD500 [25] to guarantee a suitable 

comparison. Table 10 shows six levels of GN on each 

image, i.e., 𝜎 = 5, 10, 15, 20, 50  and  100 . The 

average execution time of the completion algorithms 

on the 150 test images is shown in Table 10. The 

FastNLM is most successful algorithm in relation to  
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Table 1. Summary of the reconstruction error results on the test images in terms of PNSR. The images to be 

reconstructed are listed in the table's rows, whereas each column names an image used for constructing the dictionary  

Images Img1 Img2 Img3 Lena 
Living 

room 
Cameraman 

Meloid. 

kralli 

Meloid. 

duyts 

Meloid. 

pore 

Img1 145.54 142.02 147.82 140.25 145.02 140.59 145.97 145.84 139.96 

Img2 140.13 144.92 150.3 143.64 142.97 147.83 143.44 140.97 141.56 

Img3 143.32 142.54 153.49 141.99 140.85 142.95 149.37 146.09 147.67 

Lena 138.09 141.03 144.19 146.51 147.95 144.87 145.14 149.01 149.28 

Living room 139.63 141.31 141.77 144.39 149.09 148.6 142.62 152.13 150.22 

Cameraman 142.31 142.54 143.82 143.98 145.53 152.61 143.65 138.45 147.82 

Meloid. kralli 138.69 143.98 151.87 138.94 144.98 139.84 154.87 149.33 140.59 

Meloid. duyts 142.07 140.76 148.69 141.47 148.52 145.26 149.56 153.76 148.87 

Meloid. pore 144.89 140.78 146.67 145.79 147.64 150.74 147.94 150.5 150.98 

The bold values denote the dictionary trained on itself 

 

Table 2. Shows pseudo-code of the proposed FQPSO-MP algorithm based on the MP algorithm with two major 

improvements to the original QPSO algorithm 

The proposed (FQPSO-MP) algorithm.  

Input: Noisy image 𝑦 and the iteration number N. 

- R : Regroup Period (R=3) 

- m : Population size of each group (m=5) 

- n : Number of groups (n=5) 

Initialization Stage: 

(a) Set the initial estimate as y(0) =  y∗. 

(b) Divide a random initial population into groups (DMS). 

(c) Use TLS model to generate pre-learned dictionary 𝐷1 using Eq. (5).  

(d) Use DMS-QPSO to select the best atom of pre-learned dictionary 𝐷. 

(e) Use MP to find the sparse representation of an image. 

 Iterative Denoising Stage: 

Outer loop 𝑙 = 1,2, … , 𝐿. 

(f) Use the pre-learned dictionary 𝐷 for sparse coding throughout the iterative denoising process. 

Inner loop: iterate on 𝑗 = 1,2, … , 𝐽. 

(g) Calculate weighting coefficient 𝑊𝑗,𝑞. 

(h) 𝑦(𝑗+1/2) = 𝑦𝑗 + 𝛿(𝑦 − 𝑦𝑗), where 𝛿 is a constant. 

(i) Sparsely code 𝑦(𝑗+1/2) with respect to 𝐷 to obtain 𝛼(𝑗+1/2). 

(j) According to equation 𝛾𝑗 = ∑ 𝑊𝑗,𝑞𝛼𝑗,𝑞𝑞∈𝒬𝑗
 calculate 𝛾(𝑗+1/2) from 𝛼(𝑗+1/2). Where 𝛼𝑗,𝑞 is the sparse patch 

within set 𝒬𝑗, 𝑊𝑗,𝑞 is corresponding weight. 

(k) According to equation 𝛼𝑖
𝑗+1

= 𝑆𝜗(𝛼𝑖
𝑗

− 𝛾𝑖
𝑗
) + 𝛾𝑖

𝑗
 calculate 𝛼(𝑗+1). Where 𝑆𝜗(. ) is the classic soft-thresholding 

operator, and 𝜗 is the soft threshold parameter. 

(l) According to equation 𝑥 ≈ 𝐷Ο𝛼𝑥 = (∑ 𝑅𝑖
𝑇𝑅𝑖

𝑁
𝑖=1 )−1 ∑ 𝑅𝑖

𝑇𝑁
𝑖=1 𝐷𝛼𝑥,𝑖  compute intermediate estimate 𝑋(𝑗+1) =

𝐷Ο𝛼(𝑗+1) where 𝛼𝑥 denotes the concatenation of all 𝛼𝑥,𝑖. 

End of inner loop 

End of outer loop 

 

the execution time it is also the worst noise reduction 

can be found From the Table 10. The proposed 

FQPSO-MP algorithm achieves the best noise 

reduction. The running time of the WNNM is the 

worst-case. The other algorithms achieve a certain 

balance between running time and visual quality. 

Due to his ability to use block similarity and 

sparse representation, the efficiency of BM3D is 

popularly referred to as a benchmark algorithm. 

Because BM3D uses set square blocks with a fixed 

scale and square shape across the image, its 

performance is limited, notably in particular on edges 

with a strong contrast. The BM3D-SAPCA variety 

adopts a neighborhood adaptive shape approach and 

improves visual efficiency and increases execution 

time. Compared to BM3D-SAPCA, the proposed 

FQPSO-MP approach reduces the execution time by 

two-eight factors because of using the pre-learning 

dictionary that saves the time of calculating the 

learning dictionary, FQPSO-MP proposed is slightly 

greater than the visual performance BM3D-SAPCA 

because of the proposed FQPSO-MP approach uses 

benefit of the SRs and meta-heuristic algorithms 

(DMS with QPSO algorithm). 
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Table 3. PSNR (in decibel) comparison of the proposed and the QPSO-MP algorithms under different noise levels from 

10 to 90. The bold values denote the highest PSNR values 

Images 

𝜎 = 10 𝜎 = 30 𝜎 = 50 𝜎 = 70 𝜎 = 90 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

Img1 37.9 34.99 32.31 29.59 29.68 26.16 27.88 23.71 26.37 21.88 

Img2 36.26 35.2 31.22 29.33 28.59 26.04 26.63 23.58 25.24 21.75 

Img3 36.55 34.38 31.02 28.95 28.38 25.68 26.41 23.34 24.86 21.57 

Lena 35.4 32.7 30.61 28.68 28.01 25.69 26.4 23.42 25.32 21.72 

Living 

room 
33.26 28.82 27.78 26.25 25.2 24.13 23.81 22.37 22.85 20.87 

Cameraman 36.72 34.42 30.77 29.16 28.5 25.95 26.77 23.46 25.31 21.62 

Meloid. 

Kralli 
30.33 21.64 23.77 21.23 22.20 20.57 21.54 19.73 20.88 18.88 

Meloid. 

Duyts 
29.78 21.92 23.42 21.48 22.01 20.77 21.41 19.94 20.93 19.08 

Meloid. 

Pore 
29.56 22.86 23.50 22.26 22.29 21.41 21.45 20.40 20.73 19.43 

Average 33.97 29.66 28.27 26.33 26.10 24.04 24.70 22.22 23.61 20.76 

 

Table 4. Execution time (in seconds) comparison of the proposed and the QPSO-MP algorithms under different noise 

levels from 10 to 90. The bold values denote the shortest execution time 

Images 

𝜎 = 10 𝜎 = 30 𝜎 = 50 𝜎 = 70 𝜎 = 90 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

FQPSO-

MP 

QPSO-

MP 

Img1 273 1052.2 221 991.6 224 1096.1 225 940.8 231 917.2 

Img2 229 452.3 229 423.4 223 387.1 228 393.6 253 468.7 

Img3 229 402.1 210 387.8 212 379.7 195 425.4 147 374.1 

Lena 196.4 403.4 181.9 377.9 182.2 387.1 183.4 377 184.3 376.2 

Living 

room 
193.9 955.1 190.8 955 186.5 224.13 200.8 906.2 197.1 400.6 

Cameraman 189.8 977.3 185.6 973 181.2 1146 183.4 1120.8 184.3 976 

 Meloid. 

Kralli 
128.9 246.9 121.7 238 114.5 278.7 124.8 279.8 113.4 299.5 

Meloid. 

Duyts 
114.1 374.7 114.4 297.5 120 312.2 138.8 233 111.4 309.9 

Meloid. 

Pore 
110.7 291 110 555.8 111.7 325.3 117.9 237.1 116.3 241.5 

Average   184.98 572.78 173.82 577.78 172.79 504.04 177.46 545.97 170.87 484.86 

 

Table 5. PSNR (dB) results of different denoising algorithms on test images (noise level σ = 10). The bold values denote 

the highest PSNR values 

Images  K-SVD Median Bayes TV Bilateral Wiener FQPSO-MP 

Img1 37.68 32.26 34.13 35.09 29.08 35.17 37.9 

Img2 36.27 32.24 33.15 34.02 28.8 34.51 36.29 

Img3 36.81 31.36 32.95 34.33 29.23 34.38 36.95 

Lena 35.03 30.58 32.79 34.39 28.13 34.26 35.4 

Living room 32.94 29.27 30.31 31.97 28.16 33.17 33.26 

Cameraman 36.03 31.06 32.61 33.71 28.29 32.17 36.72 

 Meloid. kralli 30.24 27.29 28.71 29.09 28.06 29.16 30.33 

Meloid. duyts 28.53 26.91 28.07 29.18 28.15 29.13 29.78 

Meloid. pore 28.32 26.73 28.19 29.32 28.19 29.15 29.56 

Average 33.54 29.74 31.21 32.34 28.45 32.34 34.02 
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Table 6. PSNR (dB) results of different denoising algorithms on test images (noise level σ = 30). The bold values denote 

the highest PSNR values 

Images K-SVD Median Bayes TV Bilateral Wiener FQPSO-MP 

Img1 31.33 25.08 28.07 29.92 20.08 29.64 32.31 

Img2 29.87 23.87 26.71 25.86 19.76 24.63 31.22 

Img3 29.77 22.02 24.18 25.08 19.94 24.62 31.02 

Lena 29.24 22.69 26.03 26.97 18.70 24.59 30.61 

Living room 26.58 23.31 24.52 25.33 18.73 24.61 27.78 

Cameraman 29.97 23.82 25.03 26.93 19.02 24.63 30.77 

 Meloid. kralli 23.28 22.98 24.29 25.87 18.74 23.61 23.77 

Meloid. duyts 22.81 19.74 20.83 21.98 18.71 22.98 23.42 

Meloid. pore 23.21 23.06 24.09 25.35 18.72 23.23 23.50 

Average 27.34 22.95 24.86 25.92 19.16 24.73 28.27 

 

Table 7. PSNR (dB) results of different denoising algorithms on test images (noise level σ = 90). The bold values denote 

the highest PSNR values 

Images K-SVD Median Bayes TV Bilateral Wiener FQPSO-MP 

Img1 24.86 16.43 20.31 18.39 11.48 15.06 26.37 

Img2 22.96 16.93 19.71 18.06 11.35 15.09 25.24 

Img3 22.33 17.03 20.29 19.85 11.45 14.21 24.86 

Lena 23.31 14.92 17.31 15.09 10.71 14.08 25.32 

Living room 21.65 14.75 19.24 16.83 10.64 14.06 22.85 

Cameraman 23.75 15.95 19.41 17.76 10.85 13.91 25.31 

 Meloid. kralli 19.99 16.47 19.82 18.86 10.82 15.08 20.88 

Meloid. duyts 20.77 14.92 17.82 16.61 10.76 15.07 20.93 

Meloid. pore 20.06 15.47 19.26 16.41 11.63 15.27 20.31 

Average 22.19 15.87 19.24 17.54 11.08 14.65 23.56 

 

Table 8. Average SSIM comparison between the proposed and state of the art approaches on a 150-image dataset under 

different noise levels from 10 to 90. The bold values denote the highest SSIM values 

σ 10 30 50 70 90 

K-SVD 0.9548 0.9401 0.8843 0.7059 0.6582 

Median 0.9034 0.8248 0.7352 0.6074 0.5233 

Bayes 0.9463 0.9261 0.8906 0.6902 0.6249 

TV 0.9492 0.9398 0.8868 0.6976 0.6392 

Bilateral 0.8743 0.8051 0.6357 0.5543 0.4767 

Wiener 0.9283 0.8856 0.8195 0.7245 0.6107 

QPSO-MP 0.9582 0.9391 0.8637 0.6993 0.6674 

FQPSO-MP 0.9746 0.9482 0.9019 0.7286 0.6851 

 

Table 9. Average PSNR comparison between the proposed and other state of the art approaches on a 150-image dataset 

under different noise levels from 10 to 90. The bold values denote the highest PSNR values 

σ 10 30 50 70 90 

BM3D 33.29 29.73 27.49 25.39 23.41 

LSSC 33.18 29.78 27.31 25.04 23.07 

NCSR 33.22 29.30 27.24 24.96 22.85 

WNNM 33.73 30.23 27.97 25.82 23.99 

EPID 33.79 30.36 28.13 25.97 24.02 

SNLM 28.66 26.72 25.04 23.83 22.19 

BM3D-SAPCA 33.81 30.32 27.99 25.95 22.82 

FastNLM 29.74 26.84 25.58 24.03 22.53 

FNSCR 33.46 30.19 27.67 25.91 24.19 

FQPSO-MP 34.92 30.41 28.15 26.11 24.27 
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Table 10. Average running time (in seconds) comparison of the competing algorithms on a 150-image dataset under 

different noise levels from 5 to 100 

σ 5 10 15 20 50 100 

SNLM [32] 80.42 80.07 78.58 82.34 81.02 82.14 

BM3D [5] 3.67 3.72 3.84 3.87 4.03 4.20 

BM3D-SAPCA [33] 206.31 188.04 181.10 176.27 183.52 201.33 

FastNLM [34] 0.84 0.81 0.83 0.79 0.80 0.79 

WNNM [16] 271.06 278.93 270.65 274.31 396.57 613.02 

K-SVD [7] 93.62 137.61 144.18 164.82. 183.38 372.19 

FNSCR [35] 23.81 35.12 33.74 45.86 79.06 86.41 

FQPSO-MP 17.94 28.61 27.03 38.52 69.73 74.07 

 
Table 11. The decline in PSNR (dB) and SSIM on test images with different noise levels from 5 to 100 

 
 

 
(a)                   (b)                  (c)                  (d) 

 
(e)                   (f)                  (g)                  (h) 

 
(i) 

Figure. 11 Denoised results on the Img1 image with 

moderate noise corruption (σ = 70) using the proposed 

and state of-art approaches: (a) original image, (b) 

corrupted image, (c) denoised image using the proposed 

algorithm, PSNR= 27.88, (d) denoised image using the 

K-SVD algorithm, PSNR=26.47, (e) denoised image 

using the TV algorithm, PSNR= 20.01, (f) denoised 

image using the Bayes filter, PSNR=21.92, (g) denoised 

image using the Median filter, PSNR=18.75, (h) denoised 

image using the Wiener filter, PSNR=17.26, and (i) 

denoised image using the Bilateral filter, PSNR= 13.31 

 

 

BM3D's output is satisfying due to its ability to 

use block resemblance and SR as a popular 

benchmark. Since BM3D utilizes blocks with a fixed 

square shape and a fixed scale throughout an image, 

its efficiency is restricted when dealing with edges, 

particularly for edges with strong contrast. Its new 

version, i.e. BM3D-SAPCA that uses an adaptive 

neighborhood approach, improves visual quality 

performance and significantly increases running time. 

The proposed FQPSO-MP algorithm, in comparison 

with BM3D-SAPCA and K-SVD, is better in terms 

of quality and running time than BM3D-SAPCA and 

K-SVD. In addition, the running time of the proposed 

FQPSO-MP algorithm is better and faster than 

FNCSR algorithm. The proposed FQPSO-MP 

algorithm enhances visual performance efficiently at 

an appropriate time. In general, the outcomes of 
Tables 9 and 10 show that the proposed FQPSO-MP 

algorithm provides superior outcomes in noise 

reduction and in terms of running time compared to 

current competitive image algorithms. 

3. Conclusion  

This paper presents a pre-learned dictionary using 

the TLS model. This dictionary is obtained by the 

high-quality images rather than by the corrupted 

image. Furthermore, DMS is used to increase the 

image's performance. These changes contribute to 

significant computing effectiveness advantages 

(performance gains of approximately 90% are 

Algorithms Original (QPSO-MP)   Proposed (FQPSO-MP) 

𝜎 5 30 50 100  5 30 50 100 

Img1 0.21 0.26 0.19 0.32  0.0217 0.0354 0.0350 0.1401 

Img2 0.47 0.42 0.28 0.35  0.0218 0.1617 0.1602 0.1850 

Img3 0.53 0.40 0.23 0.19  0.0218 0.0647 0.0634 0.1793 

sLena 0.30 0.25 0.22 0.18  0.0326 0.1096 0.1098 0.0103 

Living room 0.15 0.88 0.58 0.35  -0.0263 0.1099 0.1082 0.05932 

Cameraman 0.21 0.15 0.22 0.22  0.0313 0.0419 0.0231 0.0082 
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achievable) without sacrificing too much image 

quality compared to the original QPSO-MP method 

(the larger decrease is less than 0.58 dB and 0.019 

compared with the PSNR indexes). These 

improvements have significant advantages over their 

performance (PSNR and SSIM) and the execution 

time compared to the current QPSO-MP algorithm. 

Comprehensive experimental outcomes also show 

that the efficiency of the proposed algorithm in visual 

qualitative assessment and execution time 

measurements for different images and noise levels 

are inferior to other competing algorithms. The final 

performance results of the original QPSO-MP 

algorithm is not susceptible to image components 

used for dictionary construction. For this reason, the 

pre-learned dictionary approach applied to speed up 

the original QPSO-MP algorithm. The experimental 

results demonstrate that the FQPSO-MP algorithm's 

performance goes beyond the original and the state-

of-art algorithms. The proposed FQPSO-MP 

algorithm is less running time than the original, the 

K-SVD, Bayes, TV, LSSC, NCSR, WNNM, EPID, 

median, SNLM, BM3D-SAPCA, and FNCSR 

approaches. The proposed FQPSO-MP algorithm 

achieves an important role in a certain balance 

between the performance of the denoised images and 

its execution time.  In brief, two improvements have 

been made to this paper. One is the pre-learned 

dictionary, which uses the TLS model to decrease the 

running time relative to the original algorithm rather 

than learning dictionary. Where, the total running 

time of the proposed FQPSO-MP algorithm increases 

by 1.4 % when the size of the 512×512 test image 

increases by 15%. The second is the DMS, which 

improves the best atom search for images and 

increases their efficiency of the denoised images. In 

future, we will improve our proposed FQPSO-MP 

approach to be suitable for more types of images such 

as X-ray cardiovascular angiogram and remote 

sensing images. 
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