
Received: July 27, 2019 236

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Novel Parallel Business Process Similarity Methods Based on Weighted-Tree

Declarative Pattern Models

Cahyaningtyas Sekar Wahyuni1 Kelly Rossa Sungkono1 Riyanarto Sarno1*

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

* Corresponding author’s Email: riyanarto@if.its.ac.id

Abstract: Existing methods, such as Graph Edit Distance (GED) and Cosine measure, still have drawback in

obtaining similarity of parallel relationships by neglecting the control-flow patterns, i.e. AND, OR, and XOR. Since

AND > OR > XOR, the similarity value of AND versus OR is greater than XOR versus OR and AND versus XOR.

This paper proposes two new similarity methods, Tree Declarative Pattern Edit Distance (TPED) and Cosine-Tree

Declarative Pattern (Cosine-TDP). They provides value to the control-flow pattern so the value of similarity can be

seen more differently. The new methods utilize tree model of the declarative pattern. The results show that the

proposed methods are better at differentiating parallel relationships than the existing methods, GED and Cosine

measure. In obtaining AND versus OR, XOR versus OR, and AND versus XOR, TPED obtained 0.821, 0.811, and

0.78 while Consine-TDP obtained 0.834, 0.826, and 0.693. Meanwhile, GED obtained 1 for all parallel relationships

whereas Cosine measure obtained 0.02, 0.08, and 0.04.

Keywords: Cosine-tree declarative pattern, Parallel business process, Tree declarative pattern edit distance,

Weighted-linear temporal logic, Weighted-tree declarative pattern.

1. Introduction

Business process models are graphical

representations of activity workflows [1, 2] that can

be represented by two types of relationships, which

are sequence relationships and parallel relationships.

There are several control-flow patterns [3] to depict

operators of parallel relationships, i.e. AND, OR,

and XOR [4, 5]. The control-flow patterns can be

modeled in different ways depend on the kinds of

the graphical representations. The first

representation, imperative model [6], uses specific

operators to express parallel relationships. For

example, in Business Process Modeling Notation

(BPMN) [7, 8], AND, OR, and XOR are denoted by

three gateways, i.e. +, O, and X respectively. There

are other imperative model besides BPMN, i.e. Petri

Nets [9], Yet Another Workflow Language (YAWL)

[10], and Event-Driven Process Chains (EPC) [11].

The second representation, declarative model [12],

uses rules to declare the operators of parallel

relationships. One of declarative model, Linear

Temporal Logic (LTL) [13–16], constructs the rules

by combining temporal operators, such as <> and _O,

with logical operators, e.g. ^ and V. For examples, to

construct sequence relationship, LTL uses operator

_O. Further, to construct AND, OR, and XOR

relationship, LTL uses operators <> ^, <> V, and

_O V respectively.

Business process models can be compared to

evaluate its structure [17, 18] and behavior [19, 20]

that have similar functions [21]. The comparison is

called a business process similarity [22]. In

calculating similarity between process models,

structural [23], behavioral [23], or semantic

similarity can be applied [24]. In several previous

works, behavioral similarity was calculated using

Jaccard similarity coefficient and Transition

Adjacency Relations (TARs). TARs were used to

calculate the similarity in behavioral relationships

between two models, while Jaccard similarity

coefficient was used to compare the values of

similar labels, transitions, and edges. Another

Received: July 27, 2019 237

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

method of measuring structural similarity uses

Graph Edit Distance (GED). GED calculates the

number of edits in the nodes and edges needed to

transform one process model into another process

model divided by the total number of nodes in the

two process models.

Existing similarity methods, such as GED,

Cosine, Jaccard, and TARs have several drawbacks.

Firstly, they are unable to differentiate between the

operators of parallel relationships. Secondly, when

using some imperative similarity measures (i.e. the

Cosine measure [25] and GED [23]) to compare two

imperative models with the different operators of

parallel relationships (i.e. the model containing

XOR relation versus the model containing AND

relation), the similarity result might be identical

although the models have different operators of

parallel relationships. The inability in differentiating

the operators of parallel relationships is caused by

only considering labels, nodes, and edges, not

control-flow patterns.

In this research, we propose novel similarity

methods that are able to differentiate the operators

of parallel relationships: AND versus OR, OR

versus XOR, and AND versus XOR by assigning

weight of the control-flow patterns and edges on the

declarative model [16]. The weight of edges is based

on the probability of occurrences of the activities.

The weighted declarative model is named Weighted-

Tree Declarative Pattern (W-TDP). This research

uses declarative model, i.e. Linear Temporal Logic

(LTL), because the combination of its operators can

be derived into logic table as a basis of our proposed

weighted control-flow patterns calculation. Then,

the declarative models are transformed into tree

model [26] to describe activity workflows in a more

structured way.

The contributions of this research are:

(1) Discovering process model based on W-TDP,

which are tree models of Weighted-Linear Temporal

Logic (W-LTL).

(2) Proposing two novel similarity methods based

on W-TDP. The proposed similarity methods are:

(a) Tree Declarative Pattern Edit Distance (TPED), a

modification of GED to measure structural

similarity; and (b) Cosine-Tree Declarative Pattern

Similarity (Cosine-TDP), a modification of the

Cosine measure to calculate behavioral similarity.

(3) TPED and Cosine-TDP are able to differentiate

the similarity of the operators of parallel

relationships, i.e. AND, OR, and XOR. This

statement is verified in section 4.

(4) Proposing the weight of the control-flow

pattern which are based on logic table as a basis of

our proposed similarity methods.

(5) To prove that TPED and Cosine-TDP are able

to differentiate the operators of parallel relationships

compared to the existing method (GED and Cosine

measure).

The paper is organized as follows. The existing

methods and other related works are discussed in

Section 2. The proposed methods are discussed in

Section 3. Then, we discuss the experiment results

in Section 4. Finally, the conclusion of this work is

presented in Section 5.

2. Literature review

2.1 Existing similarity methods

Several previous works have investigated

similarity methods. One of the works [27] compared

the performance of Transition Adjacency Relations

(TARs) (see Eq. (1)) and Naive Algorithm to

calculate behavioral similarity. The TARs were

obtained from the relationships between activities,

as described in Definition 1. The value of behavioral

similarity was obtained from the order of the process

in the model using Naive Algorithm. The TARs

similarity was obtained by comparing the similar

fragment between two business process models and

was then divided by the total number of activities in

the process order. .

Definition 1. Transition Adjacency Relations

(TAR). Let 𝐺 = (𝑁, 𝐸) be a graph model with a set

of nodes 𝑁 = {𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑥} and a set of edges

E = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥}. We can say 𝑒1 and 𝑒2 are in

a Transition Adjacency Relation (TAR), shown as

𝑒1
𝑇𝐴𝑅
⇒ 𝑒2 iff there is a flow of a sequence 𝑓𝑠, where

𝑟1 is executed, and 𝑓𝑠
𝑟1
→ 𝑓𝑠’ , such that 𝑟2 is

executed at 𝑓𝑠’.

The equation to compute the TARs similarity value

is shown in Eq. (1).

𝑇𝐴𝑅𝑠 𝑆𝑖𝑚 =
(𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑇𝐴𝑅𝑠𝑒𝑡)2

𝑇𝐴𝑅𝑠𝑒𝑡1 . 𝑇𝐴𝑅𝑠𝑒𝑡2
 (1)

where 𝑇𝐴𝑅𝑠𝑒𝑡 is the similar fragment between first

and second model. For example, we have two graph

process models as shown in Fig. 1. Graph model 1

has TARset {AB, BC, BF, CE, FE} and Graph

model 2 has TARset {AB, BC, BD, CE, DE}. TARs

similarity value between graph model 1 and graph

model 2 is 32/25 = 0.36. We can see that the

amount of similar fragment TARset between two

process models is 3, which are {AB, BC, CE} and

Received: July 27, 2019 238

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

(a)

(b)

Figure. 1 Example of two graph process models: (a)

Graph model 1 and (b) Graph model 2

the amount of TARset in graph model 1 and 2 is 5

each. From the example above, we can see that

TARs similarity does not differentiate the operators

of parallel relationship.

Another previous work, [28, 29], attempted to

extract similar fragments based on similarity

measures from a scalable process model. Jaccard

similarity (see Eq. (2)) and TARs were used to

obtain the structural similarity value and the

behavioral similarity value respectively. As shown

in Definition 2, the Jaccard coefficient value was

obtained from the similarity between aspects such as

the number of nodes transitions in the model divided

by all aspects contained in the two models under

comparison.

Definition 2. Jaccard coefficient. Given 𝑥 as nodes

and 𝑦 as edges of a graph model. 𝑥1, 𝑦1 ∈ 𝐺1; 𝑥2, 𝑦2

∈ 𝐺2 , where 𝐺1 is the first graph model and 𝐺2 is

the second graph model, Jaccard similarity is

defined as:

𝐽 (𝑥, 𝑦) = {

∑(𝑥1 ∩ 𝑥2)+∑(𝑦1 ∩ 𝑦2)

∑(𝑥1 ∪ 𝑥2)+∑(𝑦1 ∪ 𝑦2)
 𝑖𝑓 𝑥 ∪ 𝑦 ≠ ∅

1 𝑖𝑓 𝑥 ∪ 𝑦 = ∅
 (2)

where

𝑥 is node,

𝑦 is edge,

𝑥1 ∩ 𝑥2 is the similar set of nodes from two models,

𝑦1 ∩ 𝑦2 is the similar set of edges from two models,

𝑥1 ∪ 𝑥2 is the union of all nodes, and

𝑦1 ∪ 𝑦2 is the union of all edges.

From the example above, we can see that Jaccard

similarity only consider the same set of nodes and

edges from two models, but does not differentiate

the operators of parallel relationship.

The other similarity metric, used on the structure

of the process model, is Graph Edit Distance (GED)

(see Eq. (3)) [23]. As defined in Definition 3, GED

measures the minimal number of edit operations

between two models. The three types of measures in

GED are: node insertion or deletion, edge insertion

or deletion, and node label substitution (see Eq. (4)-

(6)). The final result of GED similarity which is

presented in Eq. (3) is obtained by subtracting 1

from the average number of node insertions or

deletions, edge insertions or deletions, and node

label substitutions.

Definition 3. Graph Edit Distance (GED). Let 𝐺1
and 𝐺2 be the first and the second business process

model respectively. The similarity of Graph Edit

Distance 𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) is denoted as:

𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) =

𝑚𝑖𝑛(𝑥1,…, 𝑥𝑘)∈𝑃(𝐺1,𝐺2) ∑ 𝑐(𝑥1)
𝑘
𝑖=1 , where 𝑃(𝐺1,𝐺2) is

the set of edits needed to transform 𝐺1 into 𝐺2 and

𝑐(𝑥) ≥ 0 is the cost of GED to perform operation 𝑥.

The equations to compute the value of GED

similarity are shown in Eq. (3) to Eq. (6):

𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) = 1 − 𝑎𝑣𝑔(𝑠𝑛𝑣, 𝑠𝑒𝑣, 𝑠𝑏𝑣) (3)

𝑠𝑛𝑣 =
|𝑠𝑛|

|𝑁1|+|𝑁2|
 (4)

𝑠𝑒𝑣 =
|𝑠𝑒|

|𝐸1|+|𝐸2|
 (5)

𝑠𝑏𝑣 =
2.∑(𝑛,𝑚)∈𝑀 1−𝑆𝑖𝑚(𝑛,𝑚)

|𝑁1|+|𝑁2|−|𝑠𝑛|
 (6)

where

𝑠𝑛𝑣 is the average number of node insertions or

deletions,

𝑠𝑒𝑣 is the average number of edge insertions or

deletions,

𝑠𝑏𝑣 is the average number of node label

substitutions,

|𝑠𝑛| is the number of node insertions or deletions,

|𝑠𝑒| is the number of edge insertions or deletions,
|𝑁1| is the number of nodes in 𝐺1,
|𝑁2| is the number of nodes in 𝐺2,
|𝐸1| is the number of node edges in 𝐺1, and

|𝐸2| is the number of node edges in 𝐺2.

From the example above, we can see that GED

similarity only consider the number of nodes and

edges from two models, but does not differentiate

the operators of parallel relationship.

Another similarity metric, the Cosine measure in

Eq. (7), has been used to measure behavioral

similarity. In [25], the Cosine measure was used to

Received: July 27, 2019 239

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

calculate the behavioral similarity between two

graph models using two vectors: the activity vector

and the transition vector. As described in Definition

4, the Cosine measure is the measurement of two-

non zero vectors.

Definition 4. Cosine measure. Let 𝐴 and 𝐵⃗⃗ be the

two vector attributes, 𝐴𝑖 and 𝐵𝑖 are the components

of 𝐴 and 𝐵⃗⃗ respectively. The Cosine measure cos 𝜃

is formulated as:

Sim cos𝜃 =
𝐴.𝐵

||𝐴||||𝐵||
=

∑𝐴𝑖.𝐵𝑖

√∑𝐴𝑖
2∑𝐵𝑖

2
 (7)

where 𝐴𝑖 is the component of activity in model A

and 𝐵𝑖 is the component of activity in model B.

From the example above, we can see that Cosine

similarity only consider the component of activity

from two models, but does not differentiate the

operators of parallel relationships.

2.2 Control-flow patterns in linear temporal

logic (LTL)

Linear Temporal Logic (LTL) is an official

language to describe various temporal logics that

refers to time [16]. In Definition 5, it is shown that

LTL is constructed from the atomic proposition,

logical, also temporal capital operators. This

research adopts LTL to describe business process

model to discover model pattern by using LTL. The

previous research has constructed control-flow

patterns derived from the declarative model.

Definition 5. Linear Temporal Logic (LTL). Let

𝜏 ∈ LTL; 𝜑 is the name of activities; 𝛼,𝛽 ∈ the order

of activities;

𝜏 |= ○𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 = 1,

𝜏 |= □𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 ≥ 0,

𝜏 |= ◊𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 = 1, and

𝜏 |= 𝜑1U𝜑2 iff 𝜏 |𝛼|= 𝛿 for all 𝛼 ≥ 0 && 𝜏 |𝛽|= 𝜑

for all 0 ≤𝛽< 𝛼

To describe the relation between activities,

control-flow patterns are converted to LTL. To

convert the control-flow patterns, several rules are

used as shown in Table 1. To construct a sequence,

we use the operators -> and _O. The operators -> and

_O are placed in front of next activity. For example,

activity B occured after executing activity A.

Therefore, activity B acts as next activity. Then, the

operators -> and _O are placed in front of B.

To construct AND relation, we use the operators

->, <> and ^. In AND SPLIT relation, the operators

<> is used once before split and operators ^ is used as

separator between next activities. Lastly, the

operators -> and _O are used in AND JOIN relation

to merge split and executing activity after split. For

example, activities B, C, and D are executed

concurrently in split relation from activity A and are

merged in activity E. Therefore, the operators ->

and <> are placed before split activities (B, C, and

D) and the operators ^ is placed to seperate B, C,

and D. Lastly, to merged the split relation, operators

-> and _O are placed before activity E.

To construct XOR relation, we use the operators

->, _O and V. In XOR SPLIT relation, the operator

_O is used once before split and operators V is used as

separator between next activities. Lastly, the

operators -> and _O are used in XOR JOIN relation

to merge split and executing activity after split. For

example, activities B, C, and D are chosen in XOR

Split relation from activity A and are merged in

activity E. Therefore, the operators -> and _O are

placed before split activities (B, C, and D) and the

operators V is placed to seperate B, C, and D. Lastly,

to merged the split relation, operators -> and _O are

placed before activity E.

Table 1. LTL control-flow patterns

Control

flow Patterns

LTL Description

Sequence

relation
A->_O(B)

A and B occur

sequentially.

AND Split

relation
A-><>((B^C^D))

AND Split

occurs

concurrently

in B, C, and D

after A.

AND Join

relation

<>((B^C^D))->
_O(E)

AND Join

occurs

concurrently

in B, C, and D

before E.

XOR Split

relation
A->_O((BVCVD))

XOR Split

occurs in B, C,

and D after A.

XOR Join

relation

_O((BVCVD))->
_O(E)

XOR Join

occurs in B, C,

and D before

E.

OR Split

relation
A-><>((BVCVD))

OR Split

occurs in B, C,

and D after A.

OR Join

relation

<>((BVCVD))->
_O(E)

OR Join

occurs in B, C,

and D before

executing E.

Received: July 27, 2019 240

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

To construct OR relation, we use the operators

->, <> and V. In OR SPLIT relation, the operators

<> is used once before split and operators V is used

as separator between next activities. Lastly, the

operators -> and _O are used in OR JOIN relation to

merge split and executing activity after split. For

example, activities B, C, and D are chosen two

among three in split relation from activity A and are

merged in activity E. Therefore, the operators ->

and <> are placed before split activities (B, C, and

D) and the operators V is placed to seperate B, C,

and D. Lastly, to merged the split relation, operators

-> and _O are placed before activity E.

2.3 Tree model

Formally, a given tree model 𝑇 has a set of

nodes 𝑁 = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑥} and a set of edges

𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥−1} . Based on [16], the first

step is choosing the first W-LTL, which is the

control-flow pattern that contains the first activity.

Start_Act(act) contains the first activity of the

process model. Then, the W-LTL is split into parts

of W-LTL (pW-LTL) separated by commas. For

example A -> _O((B V C V D)) can be split as

[A, ->, _O, (, (, B, V, C, V, D,),)]. The tree model

is built after all of the pW-LTL have been processed.

An open parenthesis is intended to construct a child

of a node and a closing parenthesis is intended to put

back the pointer position to the parent of that node.

Other logical operators, i.e. X, V, ^, and ->, as nodes

of W-LTL are used to construct XOR, OR, AND,

and sequence relations respectively. The detail

algorithm to construct Weighted-Tree Declarative

Pattern (W-TDP) is shown in section 3 in Table 4.

3. The proposed method

The methodology to conduct the research is

depicted in Fig. 2. It consists of three steps:

constructing the weighted declarative pattern,

constructing the weighted-tree model, and

conducting the similarity analyses using the

proposed methods.

Figure. 2 The proposed methods

3.1 Weighted-linear temporal logic (W-LTL)

declarative patterns

Each relation between activities is assigned by

weight value. Weight 𝑤 is assigned to calculate the

probability of occurences of activities. The example

of calculating 𝑤-value is shown in Table 2. The 𝑤-

value is used as a basis to construct W-LTL. The W-

LTL is constructed based on the graph model by

using the algorithm as shown in Table 3. The input

to construct W-LTL is a dataset of graph process

model. In this paper, the graph process model is

shown in Fig. 4. Then the W-LTL is shown in Table

8. If the graph model contains NEXT relation, then

the constructed W-LTL is defined as A -> _O
(activity Bw). Weight 𝑤 is assigned besides

activity Bw . If the graph model contains

ANDSPLIT relation, then the constructed W-LTL is

defined as A-><>((activity Bw^Cw^Dw)).

Table 2. Assigning weight value to activity relation

Relation Trace examples 𝑤-value

Sequence

Type

[A]-[B]-[C]

10x

Occurences of [A]-

[B] = 10

Outgoing edge of [A]

= 10

𝑤-value of [A]-[B] =

10/10 = 1

Occurences of [B]-

[C] = 10

Outgoing edge of [B]

= 10

𝑤-value of [B]-[C] =

10/10 = 1

Split

Type

[A]-[B] 7x

[A]-[C] 3x

Occurences of [A]-

[B] = 7

Outgoing edge of [A]

= 10

𝑤-value of [A]-[B] =

7/10 = 0.7

Occurences of [A]-

[C] = 3

Outgoing edge of [A]

= 10

𝑤-value of [A]-[C] =

3/10 = 0.3

Join Type [B]-[D] 7x

[C]-[D] 3x

Occurences of [B]-

[D] = 7

Incoming edge of

[D] = 10

𝑤-value of [B]-[D] =

7/10 = 0.7

Occurences of [C]-

[D] = 3

Incoming edge of

[D] = 10

𝑤-value of [C]-[D] =

3/10 = 0.3

Received: July 27, 2019 241

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Table 3. Algorithm for W-LTL Declarative Pattern

Input :Dataset of graph process model G (the

example can be seen in Fig. 4)

Output :W-LTL y (the example can be seen in

Table 8)
For each data in the dataset:

If the relation of the data is NEXT

 Add weight 𝑤 to the W-LTL

 Print activity A -> _O (activity Bw)

If the relation of the data is ANDSPLIT

 For each data in the dataset:

 Add all ANDSPLIT relation to ands

 For each data in dataset ands:

 Search all weight values in ANDSPLIT

 Print activity A-><>((activity
Bw^Cw^Dw))

If the relation of the data is ANDJOIN

 For each data in the dataset:

 Add all ANDJOIN relation to andj

 For each data in dataset andj:

 Search all weight values in ANDJOIN

 Print activity <>((activity
Bw^Cw^Dw))->_O(E)

If the relation of the data is XORSPLIT

 For each data in the dataset:

 Add all XORSPLIT relation to xors

 For each data in dataset xors:

 Search all weight values in XORSPLIT

 Print activity A->_O((activity
BwVCwVDw))

If the relation of the data is XORJOIN

 For each data in the dataset:

 Add all XORJOIN relation to xorj

 For each data in dataset xorj:

 Search all weight values in XORJOIN

 Print activity _O((activity
B𝑤VC𝑤VD𝑤))->_O(E)

If the relation of the data is ORSPLIT

 For each data in the dataset:

 Add all ORSPLIT relation to ors

 For each data in dataset ors:

 Search all weight values in ORSPLIT

 Print activity A-><>((activity
BwVCwVDw))

If the relation of the data is ORJOIN

 For each data in the dataset:

 Add all ORJOIN relation to orj

 For each data in dataset orj:

 Search all weight values in ORJOIN

 Print activity <>((activity
BwVCwVDw))->_O(E)

Weight 𝑤 is assigned besides

activity Bw, Cw, and Dw. If the graph model

contains ANDJOIN relation, then the constructed

W-LTL is defined as <>((activity

Table 4. Algorithm for Weighted-Tree Declarative

Pattern

Input :W-LTL y

Output :W-TDP z

Algorithm W-TDP

While W-LTL are being modeled :

Split W-LTL into pW-LTL as part of W-LTL

separated by comma

For pW-LTL in W-LTL :

If pW-LTL is “(”

Then make child of node, pointer is in the

child of node

Else if pW-LTL is “)”

Then place the pointer position in the parent

of node

Else if pW-LTL is “O”

Then create “O”, bracket next to this part is

skipped

Else if pW-LTL is “<>”

Then create “<>”, bracket beside is skipped

Else if pW-LTL is “V”

If node is “O”

Then create node “X”

Else If node is “<>”

Then create node “V”

Else if pW-LTL is “^” or “->”

If node is “X” or “V”

Then make child node and fill in the node

with “->” or “^”

Child node of “X” or “V” become child

node of “->” or “^”

Else

Fill in the node name with pW-LTL

("ActNode˄𝑤-value"), pointer at parent

Bw ^ Cw ^ Dw))->_O(E). Weight 𝑤 is assigned

besides activity Bw, Cw, and Dw. If the graph

model contains XORSPLIT relation, then the

constructed W-LTL is defined as A-
>_O((activity Bw V Cw V Dw)). Weight 𝑤 is

assigned besides activity Bw, Cw, and Dw. If

the graph model contains XORJOIN relation, then

the constructed W-LTL is defined as

_O((activity B𝑤VC𝑤VD𝑤))->_O(E). Weight

𝑤 is assigned besides activity Bw, Cw, and Dw.

If the graph model contains ORSPLIT relation, then

the constructed W-LTL is defined as A-
><>((activity Bw V Cw V Dw)). Weight 𝑤 is

assigned besides activity Bw, Cw, and Dw. If

the graph model contains ORJOIN relation, then the

constructed W-LTL is defined as <>((activity
Bw V Cw V Dw))->_O(E). Weight 𝑤 is assigned

besides activity Bw, Cw, and Dw.

Received: July 27, 2019 242

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

3.2 Building a weighted-Tree declarative pattern

(W-TDP) model

Given W-TDP z of order 𝑛 with a set of nodes

𝑁 = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑥} , and a set of edges E=
{𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥−1} , and weights 𝑤 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑥−1}. The tree model is built based

on all discovered patterns in W-LTL. The first W-

LTL to be processed is the control-flow pattern that

has Start_Act(act) as the first activity to be

executed. Then, the W-LTL is split into parts of W-

LTL (pW-LTL) as explained in Subsection 2.3. To

construct the W-TDP model, Table 4 is used as the

modification result from the algorithm in [16] by

inserting the weight after ActNode. The 𝑤-values

from the declarative pattern are inserted into the tree

model by adding operator ‘˄’ before the 𝑤 -values

in the declarative template. For example,
Initializing Game ->_O (Collecting
Company Expenditure Data Every Month
₁.₀₀) becomes Initializing Game ->_O
(Collecting Company Expenditure Data
Every Month˄₁.₀₀) as shown in the last line.

3.3 The proposed execution probability 𝒑(𝒆)

As shown in Definition 6, this paper proposes

execution probability 𝑝(𝑒) to weigh the control-flow

pattern in the proposed TPED and Cosine-TDP

similarity.

Definition 6. Execution probability p(e). Let 𝑝(𝑒)
be the execution probability of activities in the

relations and 𝑒 is the control-flow patterns. 𝑝(𝑒) is

¼ iff e = <> and ^; 𝑝(𝑒) is ½ iff e = <> and V; 𝑝(𝑒)
is ¾ iff e = _O and X;

The value of 𝑝(𝑒) is derived from truth table as

shown in Table 5. We use uppercase letters to

represent variables (in this context, we use A, B, and

C). The variables are always said to have truth value.

It is said that we have 2𝑛 possible truth combination

from 𝑛 set of variables. Because we have 3 variables,

then the possible truth combinations are 23 = 8.
Next, we assign truth value (either True (T) or False

(F)) to AND Logic, OR Logic, XOR Logic, and

Implication Logic. AND Logic has True (T) value

as long as these 3 variables are all True (T).

However, OR Logic has True (T) value as long as

there is at least one True (T) among those 3

variables. Next, XOR Logic has True value where

there is exactly one True value among 3 variables.

We assign value rate to give score to relatonships

types and rank them ascendingly. Value rate is the

possibility of True (T) value based on the truth table.

Table 5. The truth table logic and the proposed 𝑝(𝑒)

Variables <> ^
AND

<> V

OR

_O V
XOR

Sequence
(A→B)→C

A B C -> _O

F F F F F F F

F F T F T T T

F T F F T T F

T F F F T T T

F T T F T F T

T F T F T F T

T T F F T F F

T T T T T F T

Value Rate 3 1.714 1 0.6

𝑟𝑎𝑛𝑘 1 2 3 4

𝑝(𝑒) =

𝑟𝑎𝑛𝑘/𝑛
1/4

2/4 =

½
3/4 4/4 = 1

𝑛 is the number of relationship types (Sequence, AND,

OR, and XOR)

Then, we give the execution probability value 𝑝(𝑒)
= 𝑟𝑎𝑛𝑘/𝑛, where 𝑟𝑎𝑛𝑘 is the rank of the value rate

and 𝑛 is the number of relationships that this

research used (Sequence, AND, OR, and XOR).

The first example is Start_Act(act) -> <>
(A ^ B ^ C), where Start_Act(act) is the

first activity and A, B, and C occur concurrently in

AND relationship seperated by “^”. The LTL rules

used in this relationship are <> and ^. For AND

relationship type, rule “^” is used to assign True

value. True value is based on AND Logic, where all

variables have to be True (consider the yellow

shades). Hence, the value rate is the number of True

from the selected combination divided by True

value in AND Logic. Therefore, the value rate of

AND relationship type is 3/1 = 3.
The second example is Start_Act(act) -> <>

(A V B V C), where Start_Act(act) is the

first activity and A, B, and/or C occur in OR

relationship seperated by “V”. The LTL rules used in

this relationship are <> and V. For OR relationshp

type, the true value is based on OR Logic, where

there should be at least one True among 3 variables

(consider the shades area). Hence, the value rate is

the number of True from the selected combination

divided by True value in OR Logic. Therefore the

value rate of OR relationship type is 12/7.
The third example is Start_Act(act) -> _O

(A V B V C), where Start_Act(act) is the

first activity and A, B, or C occur in XOR

relationship seperated by “V”. The LTL rules used in

this relationship are _O and V. The rule of XOR is

the combination of OR (V) and Sequence (_O).

Therefore, we choose exactly one True value among

3 variables (consider the green shades). Hence, the

Received: July 27, 2019 243

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

value rate is the number of True from the selected

combination divided by True value in XOR Logic.

Therefore the value rate of OR relationship type is

3/3 = 1.

The last example is Start_Act(act->_O(A)-
>_O(B)->_O(C), where Start_Act(act) is the

first activity and A, B, and C occur sequentially. The

LTL rule used in this relationship is _O, where there

is next activity executed sequentially. All variables

have to be true (consider the yellow shades) and

divided by True value in Implication logic. Hence,

the value rate is 3/5 = 0.6.

3.4 Similarity analysis

In this research, we propose two similarity

methods: Tree Declarative Pattern Edit Distance

(TPED) to calculate structural similarity and Cosine-

Tree Declarative Pattern (Cosine-TDP) to calculate

behavioral similarity. As described in Definition 7,

TPED is a modification of GED and is used to

differentiate the types of nodes and edges in the

declarative pattern contained in W-TDPs. TPED are

the absolute value of |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅)| .

Meanwhile, as defined in Definition 8, Cosine-TDP is

a modification of the Cosine measure and is used to

compare the occurrence probability of activities

between W-TDPs. 𝑝(𝑒) is added to give weight to the

control-flow patterns contained in two models. The

proposed algorithm for computing the similarity

between W-TDPs is shown in Table 6.

Definition 7. Tree Declarative Pattern Edit

Distance (TPED). Let 𝑀𝑥 = (𝑁1 , 𝐸1 , 𝑤1 , 𝑝(𝑒)1)

and 𝑀𝑦 = (𝑁2, 𝐸2 , 𝑤2, 𝑝(𝑒)2) be the first and the

second weighted-tree Declarative Pattern model

respectively. Let 𝑝(𝑒) be the execution probability

to weigh the relationships. The similarity of Tree

Declarative Pattern Edit Distance

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥,𝑀𝑦) is denoted as:

𝑚𝑖𝑛((𝑠1,…, 𝑠𝑘),(𝑝(𝑒)1,…,𝑝(𝑒)𝑘))∈𝑃(𝑀𝑥,𝑀𝑦) ∑ 𝑐(𝑠1)
𝑘
𝑖=1 ,

where 𝑃(𝑀𝑥,𝑀𝑦) is the set of edits needed to

transform 𝑀𝑥 into 𝑀𝑦 and 𝑐(𝑥) ≥ 0 is the cost of

TPED to perform operation s.

The equations to compute TPED are shown in Eq. (8)

to Eq. (11):

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦) = |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅)| (8)

𝑛𝑠̅̅ ̅ =
|𝑛𝑖|+𝑝(𝑒)𝑥+𝑝(𝑒)𝑦

|𝑁𝑥|+|𝑁𝑦|
 (9)

𝑒𝑠̅̅̅ =
|𝑒𝑖|

|𝐸𝑥|+|𝐸𝑦|
 (10)

𝑛𝑏̅̅̅̅ =
2.∑(

𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
)

|𝑁𝑥|+|𝑁𝑦|−(|𝑛𝑖|+𝑝(𝑒)𝑥+𝑝(𝑒)𝑦)
 (11)

where

𝑛𝑠̅̅ ̅ is the average number of node insertions or

deletions in W-TDPs,

𝑒𝑠̅̅̅ is the average number of edge insertions or

deletions in W-TDPs,

𝑛𝑏̅̅̅̅ is the average number of nodes label substitution

in W-TDPs,

|𝑛𝑖| is the number of node insertions or deletions in

W-TDPs,

𝑝(𝑒)𝑥 is the exection probability 𝑝(𝑒) to weigh the

control-flow patterns in Model Mx,
𝑝(𝑒)𝑦 is the exection probability 𝑝(𝑒) to weigh the

control-flow patterns in Model My,

|𝑁𝑥| is the number of nodes in the first W-TDP

model,
|𝑁𝑦| is the number of nodes in the second W-TDP

model,

|𝑒𝑖| is the number of node insertions or deletions in

W-TDPs,

|𝐸𝑥| is the number of nodes in the first W-TDP

model,

|𝐸𝑦| is the number of nodes in the second W-TDP

model, and
𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
 is

|𝑝(𝑒)𝑥 − 𝑝(𝑒)𝑦|

max (𝑝(𝑒)𝑥 , 𝑝(𝑒)𝑦)
.

Definition 8. Cosine-Tree Declarative Pattern

(Cosine-TDP). Let 𝑀𝑥 = (𝑁1 , 𝐸1 , 𝑤1 , 𝑝(𝑒)1) and

𝑀𝑦 = (𝑁2, 𝐸2, 𝑤2, 𝑝(𝑒)2) be the first and the second

weighted-tree declarative pattern model respectively.

Let 𝑝(𝑒) be the execution probability to weigh the

relationships. The similarity of Cosine-Tree

Declarative Pattern (Cosine-TDP) is denoted as:

 𝑝(𝑒)1𝑁1 . 𝑝(𝑒)2𝑁2 + 𝑝(𝑒)1𝑝(𝑒)2 −
(𝑝(𝑒)1−𝑝(𝑒)2) = ||𝑝(𝑒)1𝑁1 + 𝑝(𝑒)1||.||𝑝(𝑒)2𝑁2 +
𝑝(𝑒)2||𝑐𝑜𝑠 𝜃.

The equation to compute Cosine-TDP is shown in

Eq. (12):

𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥,𝑀𝑦) =

(∑ 𝑝(𝑒)𝑖,𝑥 . 𝑤𝑎𝑡𝑖,𝑥 . 𝑝

(𝑒)𝑖,𝑦 . 𝑤𝑎𝑡𝑖,𝑦)+(
∑𝑝(𝑒)𝑖,𝑥 . 𝑝(𝑒)𝑖,𝑦)−𝑒𝑑𝑖𝑡

√∑(𝑝(𝑒)𝑖,𝑥
2
 + (𝑝(𝑒)𝑖,𝑥(𝑤𝑎𝑡𝑖,𝑥))

2) . ∑(𝑝(𝑒)𝑖,𝑦
2 +(𝑝(𝑒)𝑖,𝑦(𝑤𝑎𝑡𝑖,𝑦))

2)

(12)

Where

Received: July 27, 2019 244

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Table 6. Algorithm of the proposed similarity methods

Input: Weighted-Tree Declarative Pattern Model W-TDP

Output:

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥 , 𝑀𝑦), 𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥 , 𝑀𝑦), 𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥, 𝑀𝑦)

Algorithm 𝑆𝑖𝑚(𝑀𝑥, 𝑀𝑦)

Foreach W-TDPx, W-TDPy do

Compute 𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦) for structural similarity

Compute 𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥, 𝑀𝑦) for behavioral

similarity

Compute 𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥, 𝑀𝑦) for structural similarity

end for

𝑤𝑎𝑡𝑥 is the weight of an activity in Model Mx,

𝑤𝑎𝑡𝑦 is the weight of an activity in Model M𝑦, and

𝑒𝑑𝑖𝑡 is |𝑝(𝑒)𝑥 − 𝑝(𝑒)𝑦|.

The equation to compute the overall similarity

between W-TDPs is shown in Eq. (13):

𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥,𝑀𝑦) = 𝛼𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥,𝑀𝑦) +

(1 − 𝛼)𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦) (13)

where 𝛼 is the threshold (here, we used 0.5 as a

threshold because we use two similarity metrics for

similarity analyses: structural similarity and

behavioral similarity, therefore the total similarity

value is the addition of two similarities divided by

2).

4. Results and discussion

This research was aimed at getting more

accurate similarity measures between W-TDPs. The

proposed methods were evaluated in a retail

business process. Fig. 3 shows the real-life complex

retail graph model, which has 23 activities as

mentioned in Table 7.

Referring to Table 7, the activities in the process

are: initializing game, collecting company

expenditure data every month, updating product

configuration data, choosing supplier, restocking

automatically, receiving items automatically, adding

items automatically, calculating market share,

recording items purchase journal, selling items

based on market share, delivering items

automatically, calculating EOQ, calculating supplier

selection, calculating ROP, calculating optimal price,

recording items sales journal, making maximum

round checks, calculating the highest profit item,

calculating the highest income item, calculating

ROA, calculating ROI, calculating ROE, and

displaying dashboard.

Table 7. Activities in event log and their aliases

Activities Aliases Activities Aliases

Initializing

game

A Calculating

supplier

selection

M

Collecting

company

expenditure

data every

month

B Calculating

ROP

N

Updating

product

configuration

data

C Calculating

optimal price

O

Choosing

supplier

D Recording items

sales journal

P

Restocking

automatically

E Making

maximum round

checks

Q

Receiving items

automatically

F Calculating the

highest profit

item

R

Adding items

automatically

G Calculating the

highest income

item

S

Calculating

market share

H Calculating

ROA

T

Recording

items purchase

journal

I Calculating ROI U

Selling items

based on

market share

J Calculating

ROE

V

Delivering

items

automatically

K Displaying

dashboard

W

Calculating

EOQ

L

In real-life complex retail graph model, there is

General Ledger department which is used as

analysis material. The General Ledger department

consists of the following activities: ‘Delivering

items automatically (symbolized as K)’,

‘Calculating supplier selection (symbolized as L)’,

‘Calculating optimal price (symbolized as M)’,

‘Calculating ROP (symbolized as N)’, ‘Calculating

EOQ (symbolized as O)’, and ‘Recording items

sales journal (symbolized as P)’. Suppose that we

have three types of general ledger part containing

AND relation, OR relation, and XOR relation as

shown in Fig. 4.

After discovering the graph model, the W-LTL

declarative pattern was constructed. Table 8 shows

the results of composing the W-LTL declarative

pattern and Table 9 shows the result of composing

the tree model from the W-LTL declarative pattern.

Received: July 27, 2019 245

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Figure. 3 Real-life complex retail graph model

 (a) (b) (c)

Figure. 4 General ledger part: (a) AND relations (b) OR relations, and (c) XOR relations

Table 8. Results of composing the W-LTL Declarative Pattern of general ledger

AND Split Relation |

AND Join Relation

K -><> ((N₀.₂₆ ^ O₀.₂₂ ^ L₀.₁₇ ^ M₀.₃₅))
<> ((M₀.₃₅ ^ L₀.₁₃ ^ N₀.₁₇ ^ O₀.₃₅)) ->_O (P)

OR Split Relation |

OR Join Relation

K -><> ((L₀.₂₃ V M₀.₂₇ V N₀.₂₇ V O₀.₂₃))
<> ((O₀.₃₅ V N₀.₁₉ V L₀.₂₃ V M₀.₂₃)) -> _O (P)

XOR Split Relation |

XOR Join Relation

K ->_O ((L₀.₁₀ V N₀.₃₀ V O₀.₂₀ V M₀.₄₀))
_O ((L₀.₁₀ V M₀.₄₀ V N₀.₃₀ V O₀.₂₀)) ->_O (P)

Table 9. Results of composing the Weighted-Tree Declarative Pattern model of General Ledger

AND Split | AND Join OR Split | OR Join XOR Split | XOR Join

Elements:

{->K, ->^, ^N, ^O, ^L, ^M, ->P}

Elements:

{->K, ->V, VL, VM, VN, VO, ->P}

Elements:

{->K, ->X, XL, XN, XO, XM, ->P}

Element values:

{1, ¼, 0.26, 0.22, 0.17, 0.35, 1}

Element values:

{1, ½, 0.23, 0.27, 0.27, 0.23, 1}

Element values:

{1, ¾, 0.1, 0.3, 0.2, 0.4, 1}

We assigned the value of ->^, ->X, and ->V with the proposed constraint 𝑝(𝑒) as declared in Table 5.

Received: July 27, 2019 246

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

The proposed similarity methods were validated

by comparing the similarity results of structural

similarity (the proposed TPED in Eq. (8)-(11)),

behavioral similarity (the proposed Cosine-TDP in

Eq. (12), and overall similarity using Eq. (13), to

those of several existing methods, based on General

Ledger part.

4.1 Structural similarity

We compare each W-TDPs in Table 9 (tree

model containing AND relation versus OR relation,

OR relation versus XOR relation, and AND relation

versus XOR relation) by inputting the elements into

the proposed structural similarity method, TPED.

The calculation example below is to show the

calculation result of W-TDP in AND relation versus

OR relation in structural aspect based on Eq. (8) to

Eq. (11).

𝑛𝑠̅̅ ̅ =
|𝑛𝑖| + 𝑝(𝑒)𝑥 + 𝑝(𝑒)𝑦

|𝑁𝑥| + |𝑁𝑦|
=
1 +

1

4
+
1

2

8 + 8
= 0.109

𝑒𝑠̅̅̅ =
|𝑒𝑖|

|𝐸𝑥| + |𝐸𝑦|
=

0

7 + 7
= 0

𝑛𝑏̅̅̅̅ =
2. ∑ (

𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
)

|𝑁𝑥| + |𝑁𝑦| − (|𝑛𝑖| + 𝑝(𝑒)𝑥 + 𝑝(𝑒)𝑦)

=
2.

1
2−
1
4
1

2

8 + 8 − 1.75
= 0.0702

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀AND, 𝑀OR) = |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅)|

= |1 − (0.109 + 0 + 0.0702)|
= 0.821

4.2 Behavioral similarity

The next step is to compute behavioral

similarity using the proposed method, Cosine-TDP.

The calculation example below is to show the

calculation result of W-TDP in AND relation versus

OR relation in behavioral aspect. We compare each

element and element value between W-TDP in AND

relation and OR relation based on Eq. (12).

𝑺𝒊𝒎𝑪𝒐𝒔𝒊𝒏𝒆−𝑻𝑫𝑷(𝑴𝑨𝑵𝑫,𝑴𝑶𝑹) =

(1𝑥1)+(1𝑥1)+(
1

4
 𝑥
1

2
)−(

1

2
−
1

4
)

√(12+12+(
1

4
)2+(

0.26

4
)
2
+..+(

0.35

4
)
2
)(12+12+(

1

2
)2+(

0.23

2
)2+..+(

0.23

2
)
2
)

𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝐴𝑁𝐷,𝑀𝑂𝑅) = 0.834

As shown in Table 10, it was proved that the

proposed methods are able to produce better results

in differentiating the operators of parallel

relationships. Meanwhile, the existing methods gave

the same result (Jaccard, TARs, and GED). The

existing Cosine measure produced the lowest value

for AND versus OR relations, followed by AND

versus XOR relations. OR versus XOR relations had

the highest value. However, the proposed methods

were able to produce a better similarity result (see

the justification in Table 5) compared to the existing

methods. AND versus OR relations had the highest

value, followed by OR versus XOR and AND

versus XOR. Based on Table 5, AND relation has

the highest value rate followed by OR relation.

Meanwhile XOR relation has the lowest value rate.

Therefore, matching two model containing AND

versus OR is greater than OR versus XOR and

greater than AND versus XOR.

5. Conclusion

Two new similarity methods to calculate

structural similarity and behavioral similarity were

proposed and evaluated in this paper: Tree

Declarative Pattern Edit Distance (TPED) and

Cosine-Tree Declarative Pattern (Cosine-TDP).

They are based on Weighted-Tree Declarative

Pattern models (W-TDP) using Weighted-Linear

Temporal Logic (W-LTL). The proposed similarity

methods were evaluated by comparing their results

with the existing methods Graph Edit Distance

(GED) and Cosine measure, which were applied to a

complex graph model.

Since AND > OR > XOR, the similarity value of

AND versus OR is greater than that of XOR versus

OR and AND versus XOR, while the similarity

value of XOR versus OR lies between AND versus

OR and AND versus XOR, and that of AND versus

XOR is the lowest. The proposed methods, TPED

and Cosine-TDP, were able to differentiate between

AND, OR, and XOR relations more accurately

compared to the existing methods. For structural

similarity, the results of the proposed method

(TPED) were 0.821, 0.811, and 0.78 for AND

versus OR, XOR versus OR, and AND versus XOR,

respectively, while the result of the existing method

(GED) is 1 for all relations. For behavioral

similarity, the results of the proposed method were

0.834, 0.826, and 0.693, while the results of the

existing methods were 0.02, 0.08, and 0.04 for AND

versus OR, XOR versus OR, and AND versus XOR,

respectively. Lastly, the results of overall similarity

of the proposed methods were 0.828, 0.819, and

0.737, while the overall results of the existing

methods were 0.51, 0.54, and 0.52 for AND versus

OR, XOR versus OR, and AND versus XOR,

respectively.

Received: July 27, 2019 247

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Table 10. Result of comparison between the proposed methods and existing methods

Operators of Parallel

Relation

Existing Methods Proposed Methods

Jaccard

[28], [29]

TARs

[27]

Cosine

[25]

GED

[23]

TPED Cosine-TDP Overall Similarity

AND versus AND 1 1 1 1 1 1 1

OR versus OR 1 1 1 1 1 1 1

XOR versus XOR 1 1 1 1 1 1 1

AND versus OR 1 1 0.02 1 0.821 0.834 0.828

OR versus XOR 1 1 0.08 1 0.811 0.826 0.819

AND versus XOR 1 1 0.04 1 0.78 0.693 0.737

It can be concluded that the proposed methods

are able to give better result in differentiating the

operators of parallel relationships (AND > OR >

XOR). Meanwhile, the existing methods give result

where OR > XOR > AND.

Acknowledgments

The authors would like to sincerely thank Institut

Teknologi Sepuluh Nopember, Ministry of Research,

Technology and Higher Education of Indonesia,

Direktorat Riset dan Pengabdian Masyarakat, and

Direktorat Jenderal Penguatan Riset dan

Pengembangan Kementerian Riset, Teknologi, dan

Pendidikan Tinggi Republik Indonesia for

supporting this research.

References

[1] Y. A. Effendi and R. Sarno, "Non-Linear

Optimization of Critical Path Method", In: Proc.

of International Conf. on Science in

Information Technology (ICSITech), pp. 90–96,

2017.

[2] Y. A. Effendi and R. Sarno, "Discovering

Process Model from Event Logs by

Considering Overlapping Rules", In: Proc. of

International Conf. on Electrical Engineering,

Computer Science and Informatics (EECSI

2017), pp. 19–21, 2017.

[3] N. Russell, A. H. M. Hofstede, W. M. P. Van

Der Aalst, and N. Mulyar, "Workflow Control-

Flow Patterns: A Revised View", Netherlands,

2006.

[4] R. Sarno and K. R. Sungkono, "Coupled

Hidden Markov Model for Process Discovery

of Non-Free Choice and Invisible Prime Tasks",

In: Proc. of the 4th Information Systems

International Conference, pp. 134–141, 2017.

[5] R. Sarno and K. R. Sungkono, "Hidden Markov

Model for Process Mining of Parallel Business

Processes", International Review on Computers

and Software (IRECOS), Vol. 11, No. 4, pp.

290–300, 2016.

[6] M. Baumann, "Comparing Imperative and

Declarative Process Models with Flow

Dependencies", In: Proc. of 2018 IEEE

Symposium on Service-Oriented System

Engineering (SOSE), pp. 63–68, 2018.

[7] K. R. Sungkono, R. Sarno, and N. F. Ariyani,

"Refining Business Process Ontology Model

with Invisible Prime Tasks using SWRL Rules",

In: Proc. of International Conf. on Information

& Communication Technology and System

(ICTS), pp. 215–220, 2017.

[8] R. Flowers and C. Edeki, "Business Process

Modeling Notation", International Journal of

Computer Science and Mobile Computing, Vol.

2, No. 3, pp. 35–40, 2013.

[9] M. P. Cabasino, A. Giua, and C. Seatzu,

"Introduction to Petri Nets", (eds) Control of

Discrete-Event Systems. Lecture Notes in

Control and Information Sciences, Vol. 433, pp.

191–211, 2013.

[10] W. M. P. Van Der Aalst and A. H. M. Hofstede,

"YAWL : Yet Another Workflow Language",

Information System, Vol. 30, No. 4, pp. 245–

275, 2005.

[11] A. Amjad, F. Azam, M. W. Anwar, W. H. Butt,

M. Rashid, and A. Naeem, "UMLPACE for

Modeling and Verification of Complex

Business Requirements in Event- driven

Process Chain (EPC)", IEEE Access, Vol. 6, pp.

76198–76216, 2018.

[12] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J.

Mendling, and H. A. Reijers, "Imperative

versus Declarative Process Modeling

Languages : An Empirical Investigation", In:

Proc. of International Conf. on Business

Process Management, pp. 383–394, 2012.

[13] V. V. Rybakov, "Non-transitive Linear

Temporal Kogic and Logical Knowledge

Operations", Journal of Logic and Computation,

Vol. 26, No. 3, pp. 945–958, 2016.

[14] R. Marah and A. E. L. Hibaoui, "Formalism of

Self-Stabilization with Linear Temporal Logic

and its Verification", In: Proc. of Third World

Received: July 27, 2019 248

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.23

Conf. on Complex Systems (WCCS), pp. 1–5,

2015.

[15] M. M. Maryamah, R. Sarno, and M. A. Nurlaili,

"Determining Linear Temporal Logic Formula

for Decomposed Process Model", In: Proc. of

International Conf. on Information and

Communications Technology (ICOIACT), pp.

466–470, 2018.

[16] K. R. Sungkono and R. Sarno, "Constructing

Control-Flow Patterns Containing Invisible

Task and Non-Free Choice Based on

Declarative Model", International Journal of

Innovative Computing, Information and

Control (IJICIC), Vol. 14, No. 4, pp. 1285–

1299, 2018.

[17] N. M. Mahmod and W. Y. Chiew, "Structural

Similarity of Business Process Variants", In:

Proc. of IEEE Conf. on Open Systems (ICOS

2010), pp. 17–22, 2010.

[18] N. Syukriilah, D. S. Kusumo, and S. Widowati,

"Structural Similarity Analysis of Business

Process Model Using Selective Reduce Based

on Petri Net", In: Proc. of International Conf.

on Information and Communication

Technology (ICoICT) Structural, pp. 1–5, 2015.

[19] H. Huang, R. Peng, and Z. Feng, "A time-aware

method to process behavioral similarity

calculation", In: Proc. of IEEE International

Conf. on Services Computing, pp. 395–402,

2016.

[20] J. Sun, T. Gu, and J. Qian, "A Behavioral

Similarity Metric for Semantic Workflows

Based on Semantic Task Adjacency Relations

With Importance", IEEE Access, Vol. 5, pp.

15609–15618, 2017.

[21] E. Kuss, H. Leopold, H. Van Der Aa, H.

Stuckenschmidt, and H. A. Reijers, "A

Probabilistic Evaluation Procedure for Process

Model Matching Techniques", Data &

Knowledge Engineering, Vol. 117, pp. 1–14,

2018.

[22] M. J. Amiri and M. Koupaee, "Data-driven

Business Process Similarity", IET Software,

Vol. 11, No. 6, pp. 309–318, 2017.

[23] R. Dijkman, M. Dumas, B. Van Dongen, K.

Reina, and J. Mendling, "Similarity of business

process models : Metrics and evaluation",

Information System, Vol. 36, pp. 498–516,

2011.

[24] K. G. Saranya and G. S. Sadasivam, "Modified

Heuristic Similarity Measure for

Personalization using Collaborative Filtering

Technique", Applied Mathematics &

Information Sciences, Vol. 11, No. 1, pp. 307–

315, 2017.

[25] J. Y. Jung, J. Bae, and L. Liu, "Hierarchical

Clustering of Business Process Models",

International Journal of Innovative Computing,

Information and Control (IJICIC), Vol. 5, No.

12, pp. 613–616, 2009.

[26] M. Arriagada-benítez, M. Sepúlveda, and J. C.

A. M. Buijs, "Strategies to Automatically

Derive a Process Model from a Configurable

Process Model Based on Event Data", Applied

Science, Vol. 7, pp. 1–28, 2017.

[27] D. Rahmawati, L. N. Aini, R. Sarno, C.

Fatichah, and D. Sunaryono, "Comparison of

Behavioral Similarity use TARs and Naïve

Algorithm for Calculating Similarity in

Business Process Model", In: Proc. of

International Conf. on Science in Information

Technology (ICSITech), pp. 115–120, 2017.

[28] A. C. Fauzan, R. Sarno, M. A. Yaqin, and A.

Jamal, "Extracting Common Fragment based on

Behavioral Similarity using Transition

Adjacency Relations for Scalable Business

Processes", In: Proc. of International Conf. on

Science in Information Technology (ICSITech),

pp. 131–136, 2017.

[29] A. C. Fauzan, R. Sarno, and M. A. Yaqin,

"Performance Measurement Based on Coloured

Petri Net Simulation of Scalable Business

Processes", In: Proc. of International Conf. on

Electrical Engineering, Computer Science and

Informatics (EECSI), pp. 1–6, 2017.

