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Abstract: An electronic nose (E-nose), comprising eight metal oxide semiconductor (MOS) gas sensors and a 

moisture-temperature sensor, was used for classifying three quality grades of superior java cocoa beans, namely fine 

cocoa dark bean < 20%, fine cocoa dark bean > 60%, and bulk cocoa bean that is a harder task compared to the 

discrimination of high versus low-quality cocoa beans. The E-nose signals were pre-processed using the maximum 

value method. The capability for discriminating the quality grade of the cocoa beans was checked by applying 

multivariate statistical tools, namely, linear discriminant analysis (LDA), support vector machine (SVM) and 

artificial neural networks (ANN). For this, the experimental dataset was split into two subsets, one for training (i.e., 

establishing the classification models) and the other for external-validation purposes. Furthermore, hyperparameter 

optimization and K-fold cross-validation variant were implemented during the model training procedure to select the 

best classification models and to avoid over-fitting issues. The best predictive classification performance was 

obtained with the E-nose-MLP-ANN procedure, which allowed 99% of correct classifications (overall accuracy) for 

the training dataset and 95% of correct classifications (overall accuracy) for the external-validation dataset. The 

satisfactory results clearly demonstrated that the E-nose could be applied as a quality control tool in the cocoa 

industry, requiring minimum and simple sample preparation. 

Keywords: Cocoa bean quality, Electronic nose, Linear discriminant analysis, Artificial neural networks, Support 

vector machines. 

 

 

1. Introduction 

Cocoa (Theobroma cacao L.) is an important 

agricultural commodity in the world with a global 

annual market value of US $5.1 billion [1]. The 

World Cocoa Foundation estimates that, worldwide, 

40-50 million people economically depend on cocoa 

[1–3]. Cocoa has a unique aroma and taste, being a 

popular product, especially after processed into 

chocolate [4]. Increased demand for high-quality 

cocoa products has arisen worldwide, which 

production can only be ensured by using high-

quality cocoa beans. In 2016, 4,400,000 tons of 

cocoa beans were produced, worth US $98.3 billion 

[5]. Therefore, quality control is required to ensure 

the quality of the cocoa beans. In this sense, 

different non-destructive conventional analytical 

techniques have been reported in the literature for 
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assessing cocoa geographical origin, variety or 

grade quality. For example, cocoa bean’s 

fermentation index has been predicted based on 

hyperspectral imaging [4] or based on colour 

analysis [6]. Near-Infrared (NIR) spectroscopy or 

Fourier Transform Near-Infrared (FT-NIR) 

spectroscopy, coupled with multivariate statistical 

tools, have been used as non-destructive techniques, 

to assess cocoa bean geographical origin or quality 

grades [2, 7–9]. A NIR spectroscopy-electronic 

tongue integrated approach was accurately used for 

classifying cocoa bean varieties [10, 11]. Other 

researchers showed that Mass Spectrometry (MS)-

fingerprinting could be a reliable and fast method 

for predicting the aroma potential and quality of 

roasted cocoa beans, the extent of processing as well 

as their geographical origin [12]. The influence of 

the roasting process conditions on the polyphenol 

contents of cocoa beans, nibs and chocolates have 

been evaluated by UPLC-DAD-ESI–MS/MS [13]. 

On the other hand, chocolate polyphenol profiles, 

established by high-performance liquid 

chromatography-diode array detector–mass 

spectrometry analysis (HPLC-DAD-MS), allowed 

the successful discrimination of cocoa beans by 

geographical origin and variety [14]. Also, sensory 

analysis together with liquid chromatography (LC) 

have been described to assess the pH-dependency of 

the proteolytic formation of cocoa- and nutty-

specific aroma precursors [15] as well as to 

characterize the peptide precursors of the cocoa-

specific aroma components [16]. More recently, an 

LC Time-of-Flight Mass Spectrometry (LC-TOF-

MS)-based metabolomics approach was developed 

for assessing the geographical origin of cocoa beans, 

using partial least squares discriminant analysis [17]. 

Multi-elemental fingerprinting also enabled the 

geographic traceability of Theobroma cacao beans 

and cocoa products [18]. A classification 

chemometric model based on HR-MS 1H NMR data 

has been also proposed for assessing the 

geographical origin of cocoa beans [19]. Finally, 

cocoa fermentation quality and aroma formation 

potential have been evaluated by gas 

chromatography-mass spectrometry (GC-MS) [12], 

[20]. Indeed, advanced chemical untargeted and 

targeted fingerprinting together with two-

dimensional GC-MS may be used as a pattern 

recognition tool for classification, discrimination, 

and sensory-quality assessment of high-quality 

cocoa at early processing stages [21]. In fact, the 

volatile flavour profile is one of the most important 

factors in determining the quality of cocoa beans. 

Cocoa beans have a unique complex volatile profile 

that is responsible for its unique and highly 

appreciated aroma, which is the result of a mixture 

of 600 different chemical compounds, such as 

alcohols, aldehydes, ketones, acids, esters, and 

pyrazines [22].  

For cocoa analysis, NIR spectroscopy provides 

rapid analysis for the conventional method, but it is 

relatively high-cost equipment and needs experts to 

operate. On the other hand, HPLC, LC-MS, GC-MS, 

and NMR provide precise and reliable information 

about compounds of a sample, but they are 

expensive and need specific sample preparation, i.e., 

GC-MS need sample extraction and pre-

concentration to get precise results that need expert 

[23]. Therefore, the above mentioned conventional 

analytical techniques being usually far beyond the 

economic capacity of several local cocoa industries. 

In this context, electronic noses (E-nose) have 

emerged as possible alternative analytical tools for 

cocoa evaluation, based on their sensitivity towards 

volatile organic compounds (VOC) that are 

responsible for the specific and exclusive cocoa 

aroma. Indeed, E-nose is usually low-cost devices, 

user-friendly interfaces and do not require complex 

sample pre-treatments nor experienced operators. 

The E-nose is a device that aims to mimic the 

working concept of the human nose through a set of 

gas sensor arrays that are able to detect and 

distinguish different VOCs  [24–27]. So, some 

studies reported the use of E-noses for cocoa bean 

analysis. The quality of cocoa beans could be 

accurately assessed using different E-nose devices 

coupled with chemometric tools, such as extreme 

machine learning (ELM), support vector machine 

(SVM), linear discriminant analysis (LDA), k-

nearest neighbours (k-NN) and artificial neural 

networks (ANN), with accuracy rates of 89% to 

95% [9, 28]. On the other hand, cocoa beans degree 

of roasting could also be assessed coupling an E-

nose (MOS sensors) with ANN model, with a 

predictive accuracy of 94.4%, similar to that of a 

GC-MS (95.8%) [5]. Likewise, an E-nose, with six 

MOS gas sensors, was used to continuously monitor 

VOC of cocoa samples undergoing refining, using a 

Kernel distribution model, allowing predicting 

optimal refining and conching times [29]. Finally, it 

has been demonstrated that a GC E-nose could be an 

effective and fast aroma profiling allowing 

discrimination between single-origin cocoa liquors 

[22]. 

In the present study, we reported the overall 

satisfactory performances of cocoa analysis with an 

E-nose device. The three cocoa bean quality grades 

used in this study are superior quality and so this is a 

harder task compared to the discrimination of high 
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Table. 1 Cocoa bean samples details 

Label 
High-grade Java 

Cocoa Typea 

Number  

of 

samples 

Sample code 

from factory 
Additional information Figure 

A 

 

Fine cocoa: dark 

bean < 20% 

100 I-AA-FC/W Criollo or Trinitario cocoa varieties 

subjected to a short fermentation 

time 

 

B Fine cocoa: dark 

bean > 60% 

100 I-AA-FC/W Criollo or Trinitario cocoa varieties 

subjected to a long fermentation 

time 

 

C Bulk cocoa 100 I-B-BC/W Forastero variety  

aQuality grades according to the Indonesian National Standard (SNI 2323:2008) [30] 

 

versus low-quality cocoa beans. Thus, in this work, 

we demonstrated the capability of a lab-made E-

nose, with eight different MOS gas sensors and a 

combined moisture-temperature sensor, was built 

and applied for differentiating three grades of 

superior java cocoa bean samples, using linear 

(LDA) and nonlinear (SVM and ANN) supervised 

pattern recognition statistical tools. This paper is 

organized into the following sections: Section 1 and 

2 explain the background and materials and methods 

related to the work, respectively. Meanwhile, 

Section 3 describes the results and discussion. 

Finally, section 4 explains the conclusion of this 

work. 

2. Materials and methods 

2.1 Sample preparation 

Java cocoa bean samples, with different quality 

grades, were acquired from the plantation factory 

PTPN XII (Surabaya, Indonesia). Two types of 

cocoa beans were obtained, namely fine cocoa and 

bulk cocoa, which classifications are in accordance 

with the Indonesian National Standard (SNI 

2323:2008) [30]. In this study, bulk cocoa and two 

kinds of fine cocoa (i.e., fine dark cocoa bean > 60% 

and fine dark cocoa bean < 20%) were studied. 

Table 1 shows these three cocoa bean quality grades 

that are superior quality or high-grade. The cocoa 

beans were previously fermented at the factory. For 

replication purposes, sub-samples from each cocoa 

quality code were analyzed (100 independent 

assays) allowing to establish a dataset with 300 data 

for each type of cocoa (100 assays × 3 types of 

cocoa beans). 

2.2 Electronic nose apparatus and analysis 

A lab-made E-nose with eight MOS gas sensors 

(TGS series) along with relative humidity and 

temperature sensor, was used to analyze cocoa bean 

samples. The eight TGS series of gas sensor (TGS 

822, TGS 2612, TGS 2620, TGS 832, TGS 826, 

TGS 2603, TGS 2600, TGS 813) were equipped in 

the device as well as the most targeted gases as 

listed in our previous work [27]. Here, the Sensirion 

SHT-31 sensor was used as relative humidity and 

temperature sensor. Fig. 1 the measurement system 

of E-nose used in this study. Briefly, the E-nose 

consisted of a sampling system, a sensor array 

system, a data acquisition system (DAQ), and a 

signal processing framework as illustrated in Fig. 2. 

Two valves (valve-1 and valve-2) were used in the 

sampling system to control the air flow passing 

through the E-nose system. The air flow reached the 

sensor chamber after a two-step procedure of 

delay/purging step and sampling step. During the 

delay/purging step, air (from air reference or air 

ambient) flows directly into the sensor chamber. 

Oppositely, during the sampling step, the air is 

directed through the sample container and then 

enters the sensor chamber. In this step, volatile 

organic compounds (VOC) from the sample are 

carried by the air flow and allowed to enter the 

sample container for detection. The DAQ used a 16-

bit ADC and an Arduino Mega microcontroller. 

Prior to measuring, a 2-bean of the cocoa sample 
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Figure. 1 The measurement system developed 

 

 
Figure. 2 Schematic diagram of the E-nose device 

 

was put into a 10-mL beaker glass (sample container, 

Fig. 1) and analyzed with the E-nose, being settled a 

time delay phase of 60 s, a sampling phase of 60 s, 

and a purging phase of 180 s. The measurements 

were carried out at room temperature (25 °C) and 

without heating the sample. 

2.3 Data pre-processing 

The signals data matrix generated by the E-nose 

consisted of 10 signal profiles gathered by the 8 

MOS gas sensors and the moisture-temperature 

sensor. For each sample assay the data matrix 

contained 10 sensors × 3,000-raw time series values. 

One of the signals recorded is shown in Fig. 3 that 

was recorded using the lab-made E-nose and DAQ 

system for cocoa fine dark <20% (cocoa A). Each i- 

 

 
Figure. 3 One of the signals recorded using the lab-made 

E-nose for the fine dark cocoa bean < 20% samples 

(cocoa A) 

 

sensor and j-sample produces a signal with a time 

series (t), 𝑉𝑖,𝑗(𝑡). For the statistical analysis, the raw 

data matrix was pre-processed using a feature 

extraction method. The feature extraction method 

aims to retrieve important information (𝑋𝑖,𝑗) of the 

profile of the signal and minimize the redundant 

data [31]. In this study, the statistical parameter 

maximum signal value of the raw E-nose data was 

used as a feature extraction method, which can be 

represented by Eq. (1). Before analysis, the pre-

processed data was normalized using scaled (Eq. 

(2)) and centered (Eq. (3)) methods, where 𝑥𝑖 is the 

data point i, 𝑥′𝑖 is the transformation data point i, 𝑥�̅� 

is the mean value of 𝑥𝑖 and 𝛿𝑥𝑖  is the standard 

deviation of 𝑥𝑖. 

 

 𝑋𝑖,𝑗 = max (𝑉𝑖,𝑗(𝑡))                           (1) 

 

 𝑥′𝑖 = 𝑥�̅� − 𝑥𝑖                                 (2) 

 

 𝑥′𝑖 =
𝑥𝑖

𝛿𝑥𝑖
                                        (3) 

2.4 Proposed methods 

After data pre-processing, the final data matrix 

comprising 10 sensors × 300 maximum value was 

built, for all cocoa samples evaluated. This pre-

processed dataset was split into two data subsets 

using the Kennard-Stone algorithm [32], one 

containing 80% of the data that was used for 

training (i.e., for establishing the classification 

chemometric models) and the other, with the 

remaining 20% of the data, for testing (i.e., for 

external-validation of the developed models). For 

the statistical analysis, cocoa samples were grouped 
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Figure. 4 Flow charts of the proposed method 

 

according to the quality grade using the class labels 

A, B, and C as listed in Table 1. Fig. 4 shows the 

flow chart of the proposed method to determine the 

performance of the E-nose to classify the samples. 

First, linear discriminant analysis (LDA), a 

supervised multivariate statistical method, was 

applied for evaluating the possibility of establishing 

a linear discriminant model, based on the signal 

profiles gathered by the E-nose sensors, for 

classifying the cocoa beans by quality grade. Then, 

non-linear multivariate models were also evaluated, 

considering the expected non-linear characteristics 

of the MOS gas sensors signals. Support vector 

machine (SVM) and artificial neural networks 

(ANN) were used aiming to verify the feasibility of 

classifying the cocoa bean samples according to the 

pre-known quality grades. SVM is a machine 

learning technique that is able to handle data with 

linear and non-linear characteristics, allowing to 

deal with complex pattern recognition problems [33]. 

SVM is a classifier technique that uses a quadratic 

hyperplane optimization to discriminate the classes 

under study. The kernel function generally used to 

optimize the performance of SVM is a liner, 

polynomial or a radial basis kernel function. SVM 

has hyperparameters like the cost value (C) and the 

gamma value. In this work, a grid search method 

(exhaustive search method) was implemented to 

select the optimal hyperparameters in order to 

establish the best SVM classification model. K-fold 

cross-validation was implemented in the grid search 

process to overcome over-fitting issues.  

Furthermore, ANN was also used. In this case, a 

multilayer perceptron (MLP) architecture, with a 

feed-forward algorithm, was applied for cocoa bean 

samples classification by quality grade. MLP is a 

nonlinear model that requires setting or optimizing 

several hyperparameters, namely, the number of 

neurons, the number of hidden layers, the activation 

functions, the dropout layer, the loss function, and 

the optimizer [34]. In theory, the number of hidden 

layers and the number of neurons is unlimited. 

The rectified linear unit (ReLU) function, the 

sigmoid function, the softmax function, and leaky 

ReLU function are commonly used as the activation 

function. The dropout layer is usually included to 

overcome possible over-fitting problems. The loss 

function is a metric that helps the model to 

understand whether the learning procedure is in the 

right direction or not, after each iteration. Since this 

study involved a multiclass classification task, the 

selected loss function was a categorical cross-

entropy method. On the other hand, the 

backpropagation algorithm was selected as the 

optimization algorithm [33, 35]. In this work, two 

hidden layers with 300 neurons and 100 neurons and 

ReLu activation function were used for establishing 

the MLP-ANN model. To avoid over-fitting, the 

MLP-ANN model used a dropout layer with a value 

of 0.2 and contained 100 neurons. A softmax 

function was used in the output layer that contains 3 

neurons to handle multiclass classification. 

Fig. 5 shows the proposed architecture of the 

MLP-ANN-E-nose. The MLP-ANN-E-nose model 

used a Glorot uniform for the initial kernel, a 

categorical cross-entropy for the loss function, an 

Adam algorithm for the optimizer, and five batch 

size. The modelling development and analysis were 

performed using the Python 3.6 open-source 

software with scikit-learn and keras libraries [33], 

[34]. In this works, an accuracy metric was used to 

compare the performance of classification models. 

The accuracy can be calculated from Eq. (4), 
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Figure. 5  The proposed architecture of the artificial 

neural networks of multiple layer perceptron (MLP) 

 

 %𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (4) 

where TP is true positive, TN is true negative, FP is 

false positive, and FN is a false negative. 

3. Results and Discussion 

In this case of the cocoa bean analysis, no 

specific sample treatment is needed for measuring 

using the E-nose. During the training and testing 

processes, each assay took place a relatively short 

time, about five minutes, for analysis using the E-

nose. It included delay, sampling and purging 

processes. Moreover, the E-nose has been designed 

for very easy in operation and interpretation and for 

another case, it is suitable for in-situ measurement 

[23]. 

The mean signal profiles of eight MOS gas 

sensors (centred and scaled) obtained from the lab-

made E-nose for each cocoa bean sample is shown 

in Fig. 6, using a radar plot. It shows the variability 

of the signal profiles recorded by each sensor of the 

lab-made E-nose for the cocoa bean samples that 

could be attributed to the different volatile organic 

compound of the cocoa bean samples. To confirm 

this hypothesis, the discrimination analysis method 

(LDA) was performed using the signals data matrix 

in order to verify the distribution of all assays for 

classification purpose. Moreover, LDA was used to 

classify the data. 

 
Figure. 6 Radar plots of the average responses obtained 

with the lab-made E-nose 

 

The performance of the LDA was pointed out in 

Fig. 7 that it was possible to establish a 

classification model, based on the signals recorded 

by the E-nose during the analysis of the cocoa beans. 

The model comprised two discriminant functions 

(LD1 and LD2), which explained 83.4% and 16.6% 

of the total variance. The linear classification LDA-

E-nose model allowed to correctly identify the 

cocoa quality grade of 70% of the original grouped 

samples (for the training dataset) and of 55% for the 

cocoa samples included in the testing dataset (i.e., 

external validation). The established model showed 

and under-fitting performance regarding the 

prediction of the quality of cocoa beans. As can be 

inferred from Fig. 7, samples belonging to the three 

cocoa quality grades overlap, which is more evident 

between samples belonging to the fine dark cocoa 

bean > 60% (B) and the bulk cocoa bean (C) that 

have individual class sensitivities of 70% (B), 68% 

(C) for data training and 0% (B), 28% (C) for data 

testing. Furthermore, the model showed specificities 

of 80% (B), 84% (C) for data training and 82.4% 

(B), 76.9% for data testing. The overall results 

showed that the LDA-E-nose was not capable of 

discriminating cocoa quality B and C with the 

required sensitivity, which would be an important 

drawback for practical applications. On the contrary, 

samples of fine dark cocoa bean < 20% (A) were the 

most easily discriminated with a sensitivity of 77% 

for data training and 90% for data testing; and with a 

specificity of 90% for data training and of 70% for 

data testing. The less satisfactory performance of the 

LDA-E-nose model pointed out the need for 

applying other supervised pattern recognition 

models, which could deal with linear and non-linear 

data behaviours.  
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Figure. 7 LDA-E-nose classification performance of 

cocoa bean samples according to the quality grades (A) 

fine dark cocoa bean < 20%; (B) fine dark cocoa bean > 

60%; and, (C) bulk cocoa bean 

 

So, an SVM-E-nose model was developed using 

the grid search method to determine the best model 

hyperparameters. In addition, to minimize the risk of 

over-fitting, a 10-fold cross-validation procedure 

(i.e., an internal cross-validation variant) was used 

within the grid search procedure. The 10-fold cross-

validation implies a random split of the training 

dataset into 10 subsets, each one comprising 10% of 

training data, being, at each run, one subset used for 

internal-validation of the SVM model established 

using the other nine data subsets. Moreover, for the 

grid search procedure, a linear kernel and an RBF 

kernel functions were used. The C was set to 0.01, 

0.1, 1.0, 10.0, 100.0, and 1000.0 while the gamma 

was set to 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, and 

1000.0. The applied procedure allowed selecting 

using the RBF kernel function, a C value of 100.0 

and a gamma value of 0.1 as the values of the 

optimal hyperparameters of the best SVM-E-nose 

classification model. This SVM-E-nose model had 

an overall predictive accuracy of 99% for the 

original grouped data (training data) and an overall 

predictive accuracy of 90% for the testing data 

(sensitivity of 90%, 100% and 87% for cocoa 

quality grades A, B, and C, respectively). 

Although the classification performance of the 

SVM-E-nose model was satisfactory, an MLP-ANN 

technique was further applied. The MLP-ANN-E-

nose model was developed using a sequential 

procedure. The ANN model enabled the correct 

assessment of the quality grade of all cocoa bean 

samples for the training dataset (an overall 

 

 
Figure. 8 Accuracy achieved for training (black bars), and 

external-validation (testing dataset, red bars) for the 

combinations of supervised pattern recognition tool (LDA, 

MLP-ANN, and SVM) 

 
Table. 2 The overall sensitivities and specificities of the 

developed supervised E-nose classification models 

 Sensitivity (%) Specificity (%) 

A B C A B C 

LDA 
Train 77 70 68 90 80 84 

Test 90 0 28 70 82 77 

SVM 
Train 100 100 97 100 98 100 

Test 90 100 86 100 88 100 

MLP

-

ANN 

Train 99 99 100 100 100 100 

Test 100 100 86 100 94 100 

 

predictive accuracy equal to 99%) and a global 

predictive classification accuracy of 95% for cocoa 

samples of the testing dataset (sensitivities of 100%, 

100% and 86% for A, B and C quality grades, 

respectively). 

Fig. 8 shows the overall accuracies and Table 2 

shows a comparison between the overall sensitivities 

and specificity obtained with the different E-nose 

classification models developed for the cocoa 

quality grade discrimination, based on LDA, SVM, 

and MLP-ANN approaches. 

The results showed that both SVM and MLP-

ANN could be successfully used for assessing the 

cocoa beans quality grade when 3 classes were 

evaluated, namely high-grade java fine dark cocoa 

bean < 20% (A), high-grade java fine dark cocoa 

bean > 60% (B), and high-grade java bulk cocoa 

bean (C). 

Fig. 9 shows the confusion matrix of the MLP-

ANN from the classification of the overall samples. 

Generally, a confusion matrix performed the 

performance of a classification method. In this work, 

4 data were predicted incorrectly by the MLP-ANN. 
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Figure. 9 Result of confusion matrix MLP-ANN for 

classification all the superior Java cocoa bean samples 

 
Table. 3 Performance measurement of MLP-ANN for 

classification all the superior Java cocoa bean samples 

 A B C 

PPV 1.00 0.98 0.99 

TNR 1.00 0.99 0.99 

TPR 0.99 0.99 0.99 

F1-Score 0.99 0.98 0.99 

Overall Accuracy 0.99 

Kappa 0.98 

 

From the confusion matrix, we can calculate 

other performance indicators, such as accuracy, 

kappa, precision or positive prediction value (PPV), 

true negative rate (TNR) or specificity, true positive 

rate (TPR) or sensitivity/recall/hit rate, and F1-Score. 

Table 3 shows the value of these indicators for the 

MLP-ANN from classifying overall samples. 

Generally, we can get the best classification 

performance of discrimination each of three quality 

superior Java cocoa bean samples. 

Furthermore, the performances achieved in the 

present study are in agreement with those reported 

by Olunloyo et al. that used an E-nose coupled with 

ANN to assess the quality grade of cocoa beans 

(overall accuracy of 95%) [28]. However, it should 

be remarked that in this later work, the cocoa beans 

belonged to very different quality grades, namely 

high and low-quality grades. On the contrary, in the 

present study, it was aimed to distinguish 3 different 

types of high-quality cocoa beans. Slightly better 

classification performances were obtained compared 

to those reported by Kutsanedzie et al., for the 

classification of cocoa beans from 3 quality grades 

(fully fermented, partially fermented and non-

fermented) using an E-nose coupled with LDA, 

SVM or k-NN models (accuracies from 89 to 94%) 

[9]. The overall results reported in the present study 

allowed verifying that the E-nose, comprising MOS 

gas sensors and a moisture-temperature sensor, 

coupled with suitable supervised classification 

models (SVM or MLP-ANN) can be used as a 

practical device to correctly discriminating cocoa 

bean samples according to their quality grades, 

being possible to infer that fine dark cocoa bean < 

20% and fine dark cocoa bean > 60% possessed 

different aroma fingerprints even though they 

belong to the same cocoa class, i.e., fine cocoa 

beans. Contrary, bulk cocoa beans and fine dark 

cocoa beans > 60%, apparently have more similar 

aroma attributes. Since, bulk cocoa beans have a 

strong aroma and flavor characteristics, it can be 

tentatively concluded that the fine dark cocoa bean > 

60% has a stronger aroma characteristic than the 

fine dark cocoa bean < 20%. A fine cocoa bean is 

usually more aromatic and so, has a smoother aroma. 

The taste and aroma consistency of the cocoa beans 

is related to the flavor, acidity, sourness, bitterness, 

and astringency, which intensities are influenced by 

cocoa bean variety, geographical origin and 

agricultural practices [2–7, 12, 22, 35]. Generally, 

cocoa beans become darker over a long period of 

fermentation, due to the presence of anthocyanin 

pigments, being the final flavor of cocoa highly 

dependent on the fermentation level [2, 4]. 

4. Conclusions 

This study demonstrated the prospective of using 

a lab-made E-nose, with MOS gas sensors, coupled 

with chemometric tools to correctly classify the 

quality grade of java cocoa beans (fine dark cocoa 

bean < 20%, fine dark cocoa bean > 60%, and bulk 

cocoa bean). The best predictive classification 

performance was obtained with the MLP-ANN 

procedure, which allowed 99% overall accuracy of 

correct classifications for all datasets with high 

sensitivity and specificity. The overall satisfactory 

predictive performance achieved with the E-nose 

device pointed out the possibility of its practical 

implementation at an industrial level, which may be 

foreseen in the future. Indeed, the proposed tool 

allowed a preliminary, fast and cost-effective 

assessment of the cocoa bean quality, being an 

alternative or at least a complementary technique of 

common conventional high-cost and time-

consuming analytical techniques. 
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