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Abstract: One of crucial concern of autonomous vehicles is that driver may experience discomfort, if the driving 

pattern of the vehicle is quite different from her/his personal driving style. This study focuses on an autonomous 

vehicle control based on user’s driving preference adopted to provide a personalized and a familiar driving 

experience to autonomous vehicle users. For this purpose, we defined a driver’s driving preference metric (DPM) to 

reflect their own driving style by specifying a preferred lateral and longitudinal acceleration region. Moreover, we 

also proposed a time optimal speed planning that utilize the DPM control parameters extracted from a GG diagram 

to provide a DPM-aware maneuvering for a personalized autonomous driving. The performance of the proposed 

planning strategy and a combined vehicle controller were verified using on-road experimental tests. The 

experimental result shows that the proposed DPM-aware system can control the lateral and longitudinal acceleration 

of autonomous vehicle within 28.7% of peak error tolerance from the specified criterion of DPM. 

Keywords: Autonomous vehicles, Driver preference metric, Personalized autonomous driving, Automated driving 

style, Driving comfort, Vehicular controller. 

 

 

1. Introduction 

Autonomous vehicles are convenient since they 

subduct the driving workload, whereby driving a 

vehicle can be accomplished without paying 

attention to the roadway environment. In addition to 

the convenience, the key feature of self-driving is 

that it can prevent accidents which are mainly 

caused by drivers’ mistakes. For autonomous 

vehicles of level-3 or higher, a driver sitting in the 

cabin does not need to engage in driving maneuvers, 

so, the driver becomes a passenger similar to one of 

users in public transportation vehicles [1]. 

Autonomous driving system allows the driver to 

perform other productive tasks, or engage in 

relaxation or various entertainment activities [2], 

such as games, videos, the internet, and etc.  

However, one crucial concern for drivers in 

autonomous vehicles is that they may experience 

discomfort, or they may be prone to an increased 

likelihood of motion sickness, if the driving pattern 

of the vehicle is quite different from his/her own 

driving styles, or if it deviates from the favorable 

driving patterns. 

Despite notable achievements have been 

published in the past few decades regarding the 

development of autonomous vehicle controllers [3–

6], yet there is a lack of investigations on the control 

of the self-driving vehicle in accordance to the 

individual driver’s favorable driving style. 

Reflecting individual driving styles or personalized 

preferences has become an important issue in the 

implementation for self-driving cars in terms of the 

human factors [7–8]. 

A number of articles have been published on 

modelling driver behaviors and classification of the 

driving style. The driving style is an intricate 

concept associated with components of the driving 

context and nonlinear, uncertainty, or the random 

characteristics of the behaviors of human drivers. 

However, according to [9–15], the recorded 

longitudinal and lateral acceleration values have 
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been revealed as the key parameters that specify the 

preferred driving style as a response to dynamic 

changes to the driving conditions. The longitudinal 

and lateral acceleration values are the combined 

results of vehicular dynamics and driver maneuvers 

according to his/her perception and acceptance level 

of risks, in response to dynamic consecutive changes 

of the driving conditions and situations. Therefore, 

defining a driver’s driving style based on 

accelerations is a well-known and a reasonable 

approach. 

Furthermore, the driver’s driving style can be 

represented graphically on the GG diagram, which is 

the two-dimensional diagram of lateral and 

longitudinal accelerations [9, 10]. The GG diagram 

is used to define the performance envelope of a car 

[11, 16] and it can also be used to refine the abilities 

of a driver, or to characterize the user driving styles. 

Typically, the driver’s driving style have been 

classified into three categories that include 

aggressive (or sporty), mild (or moderate), and calm 

(or cautious) types [14–16]. We have been 

motivated that an autonomous driving system should 

provide control flexibilities and automated driving 

options for a familiar and a comfortable automated 

driving experience of each user. 

The first contribution of this study is that we 

propose a system architecture to reflect driving 

preference based on the preferred longitudinal and 

lateral acceleration region to provide a personalized 

driving experience in autonomous vehicles. Seconds, 

this study provides an autonomous vehicle system 

which can interact with drivers based on the GG 

diagram interface for the customization. Finally, this 

research presents a real experimental result of the 

implemented controller, which can control self-

driving vehicles in accordance to the specified 

region of admissible accelerations. 

This paper has been organized into 6 sections. 

Section 2 explains driver’s preference metric based 

on accelerations and jerks of drivers using GG 

diagram. Section 3 presents an optimal speed 

planning method with the driver’s preference-aware 

control system to provide a personalized driving. 

Experimental results and discussions are presented 

in Sections 4 and 5. The conclusions are finally 

drawn in Section 6. 

2. Representation of driving preference 

metric (DPM) on GG diagram 

Typically, the GG diagram is used to represent 

the performance envelop of a car with a two-

dimensional graph that depicts the longitudinal and 

lateral accelerations along the vertical and horizontal 

axes. The maximum friction force denotes the 

capability of the exerted vehicular grip on the 

surface of the road to ensure stable movement. 

Based on the assumption that the grip is fairly 

isotropic in all directions, the maximum frictional 

force boundary can be approximated by a circle. 

This circle is the maximum control boundary of the 

vehicle, and is used to ensure the stability of 

movement without skidding. The maximum 

acceleration capability, braking capability, and 

maximum tire grip, determine the performance 

envelop of the vehicle.  

Fig. 1 shows an example of a friction circle and 

the performance envelop of a vehicle. The 

maximum acceleration capability is a property that 

is almost the same as Zero-to-100 performance limit 

of the vehicle, and is usually smaller than the 

friction limit of the tire grip so that the vehicle 

performance envelop yields an asymmetrical shape 

with respect to the axis of the longitudinal 

acceleration. The variation of the driver’s lateral and 

longitudinal acceleration values displayed on the 

GG diagram show an objective index type in regard 

to the “driver’s capability envelope,” or in regard to 

the graphical representation of the user’s driving 

style [9].  

For instance, racing drivers manipulate the 

vehicular dynamics almost up to the end-range of 

the performance envelop, whereas normal drivers 

cannot utilize the full available capability of the 

vehicular performance. Normal drivers may fear for 

vehicular instability, and it is thus difficult to brake 

and turn at the same time. Typical criteria for 

longitudinal and lateral acceleration parameters for 

normal, aggressive, and extremely aggressive 

drivers, are plotted on the GG diagram, as shown in 

Fig. 1. The asymmetrical elliptically shaped curve 

enclosing the parameters set by the referred criterion 

represents the driver’s performance envelop, which 

denotes the approximate limit of the driver’s 

maximum capability in maneuvering the vehicle 

during dynamic motion. Statistics on driving data 

revealed that each driver possesses a unique lateral 

and longitudinal acceleration profile with the 

maximum values being considerably below the 

adherence limit of grip of tire on the road [10]. 

Moreover, approximately 40% of the acceleration 

motion control occurs in conditions of uniform 

speed (i.e., at zero acceleration), and approximately 

90% of longitudinal accelerations occur within the 

range of 0–1.5m/s2 for normal drivers [10, 17]. 
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Recorded longitudinal and lateral acceleration 

values are the means of the combined results of 

driver’s preferences and perceived risk level 

corresponding to the dynamic motion at a given 

environment. Measurement data from three drivers 

[10] with different driving skills and experience 

revealed that the maximum values of the lateral 

acceleration depend on the driving skill and 

experience as follows, 

1) Normal driver : ±3m/s2, 

2) Aggressive driver : ±6m/s2, 

3) Driver with racing experience : ±8m/s2. 

This study proposes to define the driver’s 

preference metric with a set of selection parameters, 

including the forward longitudinal acceleration/ 

deceleration, lateral acceleration of the left and right 

sides, longitudinal- and lateral-jerk (derivative of 

acceleration). Then, the proposed DPM is a set of 

criteria represented by 

 

𝐷𝑃𝑀 = {𝑎+𝑥𝐷𝑃𝑀 , 𝑎−𝑥𝐷𝑃𝑀 , |𝑎𝑦𝐷𝑃𝑀
| , |𝑧𝑥𝐷𝑃𝑀|, |𝑧𝑦𝐷𝑃𝑀

|} (1) 

 

Herein, each of the elements in the listed DPM 

expression respectively denote the vehicular 

longitudinal acceleration ( 𝑎+𝑥𝐷𝑃𝑀 ), longitudinal 

deceleration ( 𝑎−𝑥𝐷𝑃𝑀 ), absolute value of lateral 

acceleration (|𝑎𝑦𝐷𝑃𝑀
|), and the absolute value of the 

longitudinal and lateral jerks (|𝑧𝑥𝐷𝑃𝑀 |, |𝑧𝑦𝐷𝑃𝑀|). It 

can be noted that the axes units are in m/s2 instead 

of using a normalized acceleration scale using 

gravity units, because the DPM criterion is 

represented in units of m/s2.  

Statistics on driving style revealed that normal 

drivers perform a smooth transition from 

deceleration rather than simultaneous abrupt 

cornering and deceleration, thereby resulting in a 

self-limited small amount of lateral acceleration 

during braking. The two areas, labelled using the 

letter “A”, indicate the acceleration zones rarely 

observed for ordinary non-racing drivers. In Fig. 1, 

the driver’s preference criterion is modelled as an 

asymmetric rhombic shape by connecting each 

interception point with the x- and y-axes with 

straight lines. Herein, we model the DPM as the 

favorable acceleration zone for a driver of the self-

driving car. 

Figure. 1 Proposed driver’s preference metric (DPM) display on the GG diagram along with friction 

circle and performance envelop of the vehicle. Note that the units of the x- and y-axes are in m/s2, instead 

of acceleration of gravity units 
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Fig. 1 also depicts the region of proposed DPM 

for a cautious [18], normal, dynamic, and extremely 

dynamic style in this study. If we assume that a 

driver of the fully autonomous self-driving vehicle 

can select his/her driving preference, the preferred 

driving style can be interpreted as a preference 

metric that the driver might want for experience 

during riding a car. In addition, the magnitude of 

jerks was considered 0.6m/s3 by the comfort criteria 

of previous studies [1, 18]. 

3. Driver’s driving preference based control 

system for autonomous vehicles 

3.1 Driver’s preference metric-aware system 

Fig. 2 presents the block diagram of the 

proposed control system for a driver’s driving 

preference-aware autonomous vehicle. The main 

components of the proposed control system are the 

blocks for DPM selection for velocity planning, and 

for integrated longitudinal lateral control input to the 

autonomous vehicle. The user can select his/her own 

criteria of DPM parameters to meet his/her driving 

preferences. The criteria and parameters of the 

typical driver include cautious, normal, dynamic, 

and extremely dynamic styles, and are stored in the 

DB of the DPM as recommended reference values 

available for selection. It is also possible to 

customize with the user's preference parameters, 

rather than select among the recommended reference 

values in a typical pattern. 

The selected DPM parameters are used as a 

criterion for determining the maximum allowable 

ranges of accelerations and jerks during velocity 

planning on a predefined reference path. In regard to 

the desired reference path, the forward velocity can 

be planned so that the lateral acceleration does not 

exceed the bounded range of the selected DPM by 

negotiating velocity with curvature for the specific 

road under consideration. 

If a lane change or obstacle avoidance is 

required while driving along a predetermined route 

and in accordance to the map, the local path may 

need to be generated in real time. In this case, by 

considering the current driving speed of the vehicle, 

a path is dynamically generated in the trajectory 

planning block in real time that satisfies the range of 

the lateral acceleration of the DPM. However, the 

detail of the local dynamic path planning is beyond 

research scope of this study. 

The reference path and state variables of the 

vehicle determined in the upper level controller 

block become the input to the lower level controller. 

The combined longitudinal and lateral controller 

module calculates the required steering control, 

throttle, and brake inputs of the vehicle to track the 

reference path with the desired vehicular input state. 

The state variables of the vehicle, such as its current 

position, velocity, and yaw and steering angles, are 

measured by the mounted vehicular sensors and 

CAN at every predefined period (i.e., every 0.1s), 

and are transferred as the input variables to the 

upper level controller block and to the lower level 

controller block, simultaneously. 

3.2 Time optimal desired speed planning based 

on driver’s driving preference 

In the case of a straight road, the desired speed 

can be determined by taking into account the speed 

Figure. 2 Block diagram of the proposed driver’s preference metric control system 
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limit and the safe braking distance to prevent 

collisions with obstacles at the front of the car. 

However, on curved roads, the lateral acceleration is 

proportional to the centrifugal force of the vehicle, 

which in turn, is proportional to the square of the 

speed and to the curvature of the road. In order to 

meet the criterion of lateral acceleration and jerk, a 

vehicle traveling at high speeds must decelerate 

before it enters a curved road, while concurrently 

satisfying the criterion of longitudinal acceleration 

and jerk. This study exploited a simultaneous 

approach, based on the interior-point-method (IPM) 

to optimize the desired speed that minimized the 

travel time of the route, while vehicle states 

simultaneously complied with the criterion of DPM 

in a given route. The proposed simultaneous 

trajectory and speed co-planning method was used 

to calculate the optimum driving speed that satisfied 

the DPM for a road with a known curvature. The 

vehicle kinematics for front-steering can be 

expressed by [18]: 

𝑑

𝑑𝑡

(

 
 

𝑥(𝑡)

𝑦(𝑡)

𝑣(𝑡)

𝑎(𝑡)
𝜃 )

 
 
=

(

  
 

𝑣(𝑡) ∙ 𝑐𝑜𝑠(𝜃)

𝑣(𝑡) ∙ 𝑠𝑖𝑛(𝜃)

𝑎(𝑡)
𝑧(𝑡)

�̇�(𝑡) )

  
 

 (2) 

where 𝑥(𝑡) and 𝑦(𝑡)  are changes of the vehicle 

position. 𝑣(𝑡) is the value of speed, corresponding 

to the acceleration 𝑎(𝑡). Equivalently, 𝑧(𝑡) denotes 

the jerk which is derivative of accelerations. 𝜃(𝑡) 
refers the vehicle heading angle. 

The simultaneous dynamic optimization was 

extensively used to solve constrained optimization 

problems subject to imposed constraints on the 

referred variables. Herein, the optimization of the 

speed planning can be expressed as a general 

nonlinear programming problem with equality and 

inequality constraints in accordance to [18],  

min∑ℎ𝑖 (3) 

subject to, 

1) the model principles for the vehicle speed and 

accelerations for ∀𝑡 ∈ [0, 𝑡f] 

𝑣𝑑 = 𝑣𝑑−1 + 𝑎𝑥𝑖ℎ𝑖 

 

𝑎𝑥𝑖 = 𝑎𝑥𝑖−1 + 𝑧𝑥𝑖ℎ𝑖 

 

𝑎𝑦𝑖 = 𝑎𝑦𝑖−1 + 𝑧𝑦𝑖ℎ𝑖 

(4a) 

 

(4b) 

 

(4c) 

2) the speed–curvature constraints [17, 19] for ∀𝑡 ∈
[0, 𝑡f] 

𝑣𝑑 ≤ √p1/(𝑘𝑖 + p2) (5) 

3) constraints for driver’s preference metric in ∀𝑡 ∈
[0, 𝑡f] 

𝑎𝑥𝑖 ≤ 𝑎+𝑥𝐷𝑃𝑀 

 

𝑎𝑥𝑖 ≥ 𝑎−𝑥𝐷𝑃𝑀 

 

𝑎𝑦𝑖 ≤ |𝑎𝑦𝐷𝑃𝑀| 

 

𝑧𝑥𝑖 ≤ |0.6| 

 

𝑧𝑦𝑖
≤ |0.6| 

(6a) 

 

(6b) 

 

(6c) 

 

(6d) 

 

(6e) 

4) the linear relationship of longitudinal–lateral 

acceleration for ∀𝑡 ∈ [0, 𝑡f] 

𝑎𝑥𝑖 ≤ −(
𝑎𝑥𝐷𝑃𝑀
𝑎𝑦𝐷𝑃𝑀

) ∙ 𝑎𝑦𝑖 + 𝑎𝑥𝐷𝑃𝑀 (𝑎𝑥𝑖 ≥ 0)𝑎𝑥𝑖 (7a) 

𝑎𝑥𝑖 ≥ (
|𝑎−𝑥𝐷𝑃𝑀|

𝑎𝑦𝐷𝑃𝑀
) ∙ 𝑎𝑦𝑖 + 𝑎−𝑥𝐷𝑃𝑀 (𝑎𝑥𝑖 < 0) (7b) 

where 𝑡f indicates a terminal moment for the entire 

optimization process. The symbol 𝑣𝑖  denotes the 

vehicle speed during ℎ𝑖, which is the duration of the 

time element between 𝑡𝑖  and 𝑡𝑖−1 , and 𝑎𝑥𝑖  and 𝑎𝑦𝑖 

refer to the corresponding longitudinal and lateral 

accelerations. Equivalently, 𝑧𝑥𝑖  and 𝑧𝑦𝑖
 are the 

longitudinal and lateral jerk corresponding to the 

accelerations.  

The speed–curvature constraints is the safety 

conditions that the acquired speed must be satisfied. 

These are expressed as a function of the trajectory 

curvature 𝑘𝑖 . Correspondingly, p1  and p2  are the 

parameters for Reymond model [17, 19], which 

constitutes an additional constraint used to prevent 

violations of the speed (𝑣𝑐𝑐 ) on the curved road. 

These parameters were obtained from the fitted 

curve based on test data from human drivers.  

The proposed discrete time optimization 

problem was solved with the A mathematical 

programming language (AMPL) using interior point 

optimizer (IPOPT) solver [20–22]. The minimum 

time speed profile 𝑣𝑑 can be obtained based on the 

Eq. (2)–(7) of the formulated dynamic optimization 

problem.  

Fig. 3 describes an example of the optimization 
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Figure. 3 Optimization results of the desired speed planning calculated for DPM={0.9, -0.9, |0.9|, |0.6|, |0.6|}: (a) 

reference path, (b) optimized speed profile (𝑣𝑑) and safety speed corresponding curvature constraint (𝑣𝑐𝑐), (c) calculated 

lateral and longitudinal accelerations, and (d) calculated lateral and longitudinal jerks on a GG diagram, and (e) 

calculated lateral and longitudinal jerks 
 

results of the speed planning based on the cautious 

driver preference. These simulated optimization 

results were assigned to region of DPM={0.9, -0.9, 

|0.9|, |0.6|, |0.6|}, and the initial and terminal speed 

conditions for ∀𝑡 ∈ [0, 𝑡f] in accordance to 

𝑣(0) = 10 (m/s), 𝑎(0) = 0 

 

𝑣(𝑡f) = 10 (m/s), 𝑎(𝑡f) = 0 

(8a) 

 

(8b) 

Fig. 3 (a) shows the test course with many 

curved sections, which was selected to demonstrate 

the optimization. The minimum time velocity profile 

and Reymond velocity model ( 𝑣𝑐𝑐)  with the 

recommended parameter ( p1 = 4.58m/s2, p2 = 

5.69×10−3m−1) are presented in Fig. 3 (b). In the 

simulation, the maximum velocity of the straight 

course was limited by 102km/h, approximately. Fig. 

3 (c), and (e) describe the calculated longitudinal 

and lateral motion profiles with the jerk and 

acceleration constraints. Fig. 3 (d) represents the 

calculated lateral and longitudinal jerks on the GG 

diagram. 

As shown in Fig. 3, the optimal temporal speed 

profile was successfully obtained by satisfying the 

DPM constraints for a cautious driving style. The 

entire optimization process was conducted with an 

Intel core i7–2710Q processor with 8 GB memory. 

In this case, the expended computational time was 

approximately 0.09s for the entire optimization 

process. 

3.3 Combined lateral and longitudinal controller 

The combined longitudinal and the lateral 

controller is required to track the planned trajectory 

with the desired speed for various driving states of 

the autonomous vehicle. Fig. 4 shows the simplified 

system block diagram of the combined longitudinal 

and lateral controller based on prior studies [23–26]. 

The proposed combined vehicular control system is 

based on the PID control and generates input signals 

such as steering, accel and brake pedal position in 

order to perform simultaneous path and speed 

tracking, while ensuring the dynamic stability and 

tracking performance of an autonomous vehicle. 

More details on the integrated longitudinal and 

lateral control system, can be invoked from [23–26]. 

4. Experiments and results 

4.1 On-vehicle hardware system 

For the experimental test of the proposed control 

system on a real road, we modified the commercial  

 

 
Figure. 4 Simplified system block diagram of the 

combined longitudinal and lateral controller 
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Figure. 5 Photograph of the autonomous vehicle used for 

the conducted road experiments 

 

 
Figure. 6 Architecture of an autonomous vehicle 

equipped with the proposed control system 

 

vehicle RAY from Kia motor company to an 

autonomous vehicle that was equipped with the 

multiple cameras, range sensors, actuators, and the 

proposed control scheme, as shown in Fig. 5 and Fig. 

6. In spite of the compactness of the car, the 

modified test vehicle provided enough space for all 

on-board equipment. This vehicle has a gasoline-

powered engine, front-wheel drive, and motor-

driven power steering (MDPS). 

We developed the distributed computing system 

architecture that consists of the central processing 

unit (CCU) and pre-processing unit (PPU), as shown 

in Fig 6. A fan-less embedded computer (UMS–

5301 model) with an Intel Core i7–2710Q central 

processing unit was used as the central controller, 

and had enough computing power to perform path 

planning, and execute the overall control algorithm 

described in the previous sections. The proposed 

driver’s preference setting interface has been 

implemented by NI LabVIEW with MATLAB script 

engine interacting with an in-vehicle touch monitor 

for the fast prototyping.  

PPU consists of an Intel Core i7 2.1GHz central 

processing unit, and it was mainly used for image 

processing to extract the meaningful environmental 

information for the vehicle using the stereo vision, 

and the around view monitoring camera system. 

The vehicle’s instantaneous state of speed, 

PRND gear position, angular speed of engine 

rotation, and steering wheel angle, were gathered 

from the in-vehicle CAN bus, and were then 

transferred to the CCU. The control commands of 

the steering angle and throttle maneuver of the 

vehicle were input to the vehicle through the CAN 

gateway network to control the vehicular actuators, 

such as the MDPS, a brake and an accel pedal 

position value. There was a separated actuator 

interface, but it was controlled by the CCU for 

maneuvering the gear shift lever and pressing the 

brake pedal. 

The GPS antenna was mounted on the roof of 

the vehicle at the center of the rear axle, and it was 

also equipped with an IMU sensor (IG-500A model) 

to measure the dynamic motion of the vehicle, 

including the yaw angle, the lateral acceleration and 

longitudinal acceleration. We used the Novatel 

FlexFak6 GPS sensors which can support the 

Network–RTK to achieve high performance in terms 

of position accuracy, so that the position error 

tolerance was within 2.0cm. All data from vehicle-

mounted sensors were synchronized at 10Hz. 

4.2 Results of on-road experimental test 

We conducted an experimental test at the testing 

route, as shown by the satellite image map (Fig. 7 

(a)). This testing course was approximately 1.3km 

long, and included four intersections without 

interruptions from traffic lights. The route was 

suitable for the evaluation of the performance of the 

proposed DPM-based control system. In the real-

road test, we set the DPM criterion to match the 

various driver’s driving styles, while the specific 

DPM criterion selected for the test drive was 

appropriate for the normal driving style (labeled 

using the symbol #FT), expressed as, 

𝐷𝑃𝑀#𝐹𝑇 = {0.6,−0.6, |1.5|, |0.6|, |0.6|} (9) 

Fig. 7 and Table 1 show the measured results of 

the field test for autonomous driving experiments. 

The acceleration data were acquired by the IMU 

sensor, and velocity and steering angle data were 

obtained through a CAN interface during the test. 

Measured experimental data illustrate that 

vehicular velocity followed the planed velocity 

during driving. The measured acceleration and 

velocity profiles of the self-driving vehicle indicate 

a driving style that is similar to the heuristic pattern 

of deceleration-steering-acceleration. Fig. 7 (b) 

shows the recorded longitudinal and lateral 

accelerating profiles, where the vehicle decelerates 

while it approaches an intersection, and makes a 

turn before it accelerates again. 

The measured lateral acceleration profile shows 

four overshoots coincident with the events  
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Figure. 7 Experimental results of the autonomous vehicle in accordance to the DPM criterion for a typical normal driver 

(DPM#FT={0.6, -0.6, |1.5|, |0.6|, |0.6|}): (a) Satellite image map of the test route, (b) measured accelerations of the 

vehicle using the in-vehicle IMU (IG–500A) sensor, (c) measured front-steering angle, and (d) plots of time optimum 

velocity profile (𝑣𝑇), threshold speed of Reymond’s model (𝑣𝑐𝑐) and experimental data of vehicular speed (𝑣𝑐) as a 

function of time obtained from in-vehicle CAN during real-road tests 
 

Table 1. Measured peak lateral accelerations in turning 

section during the real experiment 

 
Measured peak 

acceleration (m/s2) 

Deviation from 

given DPM (m/s2) 

1st turning 1.93 -0.43 

2nd turning 1.52 -0.02 

3rd turning 1.55 -0.05 

4th turning 1.48 0.02 

 

associated with changing steering angles for right 

turns at intersections. Table 1 shows measured peak 

lateral acceleration values and deviations from the 

DPM criterion. The peak value of deviation from the 

DPM criterion was -0.43m/s2 at the first turn, but 

after the first turn, the proposed system controlled 

the vehicle less than the 3.3% deviation from the 

specified criteria of normal driving style in the 

experiment. 

The measured value of the lateral acceleration 

seemed to be limited, but the values exceeded the 

given DPM criterion during turning maneuvers. 

Additionally, there were glitches in the measured 

longitudinal acceleration, but the overall values 

were regulated within the given criterion. This 

measured trend of the longitudinal and lateral 

acceleration values at the curved section of the route 

was consistent with the simulated results since only 

the lateral acceleration results slightly exceeded the 

criterion limit, while the longitudinal acceleration 

was within DPM boundary. Owing to a latency in 

the vehicle’s velocity response with respect to the 

desired input velocity, the vehicular speed during 

turning was slightly higher than the planned velocity 

required to meet the criterion of lateral acceleration. 

This might be the main reason for which the lateral 

acceleration value was marginally outside the border 

line. 

5. Discussions 

The DPM criterion included constant lateral and 

longitudinal jerk value. However, we could not 

measure jerk in the experiments using the IMU 

sensor because of the measurement noise in the 

acceleration data acquisition. Jerk is the derivative 

of acceleration, and even low-noise amplitudes in 

the acceleration data can cause spikes in the 

estimation of jerk owing to the temporal derivative 

of the data. Although various studies have been 

conducted for the improvement of the online jerk 

sensor [27], or the estimation method [28], to the 

best of our knowledge, on-vehicle lateral or 

longitudinal jerk sensors for robust data acquisitions 

have not been commercialized thus far. Therefore, 

in the proposed controller, the jerk term can be taken 

into account only at the stage of the planning of the 

desired velocity.  
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The limitation in the implementation of the 

proposed work is the in-situ jerk measurement on-

vehicle, and the consideration of other factors that 

influence ride quality of drivers other than 

acceleration and jerk (i.e., distance to the car ahead, 

and complexity of surroundings). Since the 

implementation of the complete DPM-aware 

controller requires an advancement in-vehicle 

sensors, detection and perception technologies, so 

this topic remains a theme for further research. 

6. Conclusions 

This study has been described a method to meet 

the driver’s driving preference for a personalized 

and a comfortable automated driving experience for 

each user. For this purpose, we had investigated 

about the individual driving style and defined a 

driver’s driving preference metric (DPM), which is 

specified preferred lateral and longitudinal 

acceleration region.  

We also proposed a vehicular controller with 

combined lateral and longitudinal controller that 

utilized the DPM control parameters through the 

interacting with GG diagram interface for the 

customization, and aimed to provide DPM-aware 

control in autonomous vehicles. The overall 

structure of the proposed occupant’s metric control 

system is simple and easy concept to implement in 

autonomous vehicles. The performance of the 

proposed control system was verified with the on-

road experimental tests. The experimental result 

shows that the proposed DPM-aware system can 

control the lateral and longitudinal acceleration of 

autonomous vehicle within 28.7% of peak error 

tolerance from the specified criterion of DPM. 

As a further research, we will improve the 

overall system performance to enable a robust speed 

control and to ensure the safety even in high speed 

conditions. 
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