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Abstract: Presently, the distributed Resource Description Framework (RDF) partition the data across several 

computer nodes. In that, many existing RDF systems results in expensive query evaluation and high start-up cost. To 

address these issues, a new optimization algorithm: modified Grey Wolf Optimization (GWO) has been developed in 

this research paper. In conventional GWO algorithm, after finding the best values of 𝐺𝛼 ,𝐺𝛽 and 𝐺𝛿 , stopping criteria 

is accomplished. In modified GWO algorithm, after finding the best values of 𝐺𝛼 ,𝐺𝛽 and 𝐺𝛿 , the alpha 𝛼 value once 

again encircles the possible solutions for obtaining an optimal solution. In RDF data, query optimization is a 

challenging task, which has been effectively handled by modified GWO algorithm. In the experimental phase, 

modified GWO showed good performance in terms of execution time and memory usage as compared to the existing 

methodologies:  Partial Evaluation and Centralized Assembly (PECA), Partial Evaluation and Distributed Assembly 

(PEDA), RDF-3X, Graph-Based SPARQL Query Engine (gStore), and Legato on Lehigh University Benchmark 

(LUBM) 10000 and DOREMUS 2017 datasets. Compared to these existing systems, the proposed system reduced 

the execution time around 2-5 minutes, and improves the precision, recall, and f-measure around 2-7%. 

Keywords: Grey wolf optimization, Lehigh university benchmark dataset, resource description framework, 

structural query language, web query optimization. 

 

 

1. Introduction 

In recent decades, the large quantity of available 

data sources makes the data representation and 

classification as a complex process, so it is essential 

to represent the data in a semantically structured 

way that mainly relied on the RDF data model [1]. 

Presently, the data representation in RDF data model 

constantly growing in size, so querying and storing 

the RDF graphs becomes a very challenging task [2, 

3]. Several approaches developed for increasing the 

efficiency of query retrieval. Most of the present 

approaches use map SPARQL queries and database 

management systems to structural query language 

for query retrieval [4, 5]. In addition, a few more 

approaches like RDF-3x, Jena, sesame, etc. 

developed for single node machines in the 

distributed environment [6]. These existing methods 

increase the storage space and delivers parallel 

query execution capabilities for managing the huge 

datasets [7]. The distributed environmental system 

utilizes a few Hadoop techniques: S2RDF, sempala 

on top of impala, rya on top of apache accumulo, 

SPARQLGX on top of apache spark, etc. [8]. These 

existing Hadoop systems optimized for a specific 

query pattern that may marginally improve the 

query performance.  

So, there is a need for distributed RDF store with 

better performance on an extensive range of query 

types without renouncing a rapid loading phase. 

Generally, the computational time of the query 

depends on the optimization algorithm and query 

path. The size of the query path increases with the 

size of queries, so it consumes less time to optimize 

the query path [9, 10]. Presently, numerous soft 

computing methodologies utilized to reduce the time 

consumption and query path optimization. In this 

research study, an effective methodology developed 
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for improving the performance of semantic web 

query join optimization. At first, the input data were 

collected from the datasets: LUBM 10000 and 

DOREMUS 2017. Then, the distributed query graph 

developed on the collected data and successively 

calculate the cost function. At last, the modified 

GWO algorithm was developed for solving the 

engineering optimization issues. The modified 

GWO algorithm attempts to solve the optimization 

issues, due to the multipurpose property. In 

modified GWO algorithm, after finding the best 

values of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿, the alpha 𝛼 again encircles 

the possible solutions for obtaining an optimal 

solution. This process effectively diminishes the 

computational time of the developed system 

compared to GWO algorithm. 

This research paper is arranged as follows. 

Several papers on semantic web query join 

optimization are reviewed in section 2. Detailed 

explanation about the proposed methodology is 

given in section 3. Section 4 illustrates about the 

quantitative and comparative analysis of proposed 

methodology. The conclusion is done in section 5. 

2. Literature review 

The researchers in semantic web query join 

optimization developed numerous methodologies. In 

this literature review section, a brief discussion of 

some important contributions to the existing 

literatures is presented. 

P. Peng, L. Zou, M.T. Özsu, L. Chen, and D. 

Zhao, [11] presented a new technique for processing 

the SPARQL queries over a huge RDF graph in a 

distributed environment by adopting the “partial 

evaluation and assembly” system. At first, the 

developed technique simultaneously evaluates the 

queries on each graph fragment for identifying the 

local partial matches. In the second step, these local 

partial matches assembled for computing the 

crossing matches. In this research work, two 

dissimilar assembly strategies (centralized assembly 

and distributed assembly) were developed in order 

to minimize the edges and vertices in the 

intermediate results. The developed methodology 

effectively preservers the inter-connected RDF 

repositories as a virtually integrated distributed 

database. A few RDF repositories provide SPARQL 

endpoints and others may not have query capability. 

In real-time applications, queries in the same time 

usually overlapped.  

R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, 

Y. Ebrahim, and M. Sahli, [12] developed an AdPart 

distributed RDF system for addressing the short-

comings of existing works. Initially, AdPart 

distributed RDF system used lightweight portioning 

on the input data for distributing the triples by 

hashing on the subjects. Besides, locality-aware 

query optimizer was used on the AdPart distributed 

RDF system for minimizing the data communication. 

As a result, the communication cost of future 

queries reduced. The experimental result confirmed 

that the developed AdPart distributed RDF system 

works faster than all existing systems. In this 

research work, it was very hard to select and execute 

the queries by a single worker. 

E.G. Kalayci, T.E. Kalayci, and D. Birant, [13] 

presented an effective system to optimize the 

SPARQL queries with dissimilar graph shapes. In 

this research paper, ant colony optimisation 

algorithm was used to re-order the triple patterns 

that effectively decreases the execution time of 

SPARQL queries. This system mainly focused on 

in-memory models of RDF data, and optimized the 

SPARQL queries in terms of max-min ant system, 

elitist ant system and other ant system algorithms. 

The experimental outcome confirmed that this 

methodology delivered better performance in terms 

of execution time. In large datasets like LUBM, the 

developed algorithm includes two major concerns; 

additional computational load and the problem-

specific inapplicability. 

P. Peng, L. Zou, and Z. Qin, [14] developed a 

new hybrid query: SPARQL-Keyword (SK) for 

improving the performance of key word search and 

SPARQL. In this research, the developed query was 

integrated with the structural and distance based 

index for answering the SK queries effectively. 

Usually, the structural index works based on 

frequent start patterns in RDF data. Likewise, the 

distance based index works based on shortest path 

trees of selected pivots in the RDF graph. Here, the 

experiments were conducted on three large real RDF 

graphs and the outcomes demonstrate the efficiency 

of SK query. The keyword mapping consumed more 

time, because the inverted index keywords were 

hard to retrieve from the storage. In such 

circumstances, it was difficult for SK method to 

reduce the execution item. 

L. Zou, M.T. Özsu, L. Chen, X. Shen, R. Huang, 

and D. Zhao [15] developed a new method (gStore) 

to answer SPARQL queries efficiently. In developed 

system, the RDF data were stored in large graph for 

representing SPARQL query as query graph. In 

addition, an index with pruning rule was developed 

to achieve scalable and effective query processing. 

Also, an effective maintenance approach was used 

for handling online updates over RDF repositories. 

The experiment result shows that the efficiency of 

developed system was better related to the existing 
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systems. The developed system lag with the concern 

towards handling the missing attribute values in the 

dataset. 

M. Achichi, Z. Bellahsene, M.B. Ellefi, and K. 

Todorov, [16] developed a new system for semantic 

web query join optimization. The developed system 

includes four major phases: pre-processing, instant 

profiling, vector representation and post-processing. 

Initially, data cleaning process was carried-out for 

removing the irrelevant data. Then, the instant 

profiling was used to represent each resource for the 

comparison task. To reduce the false positives rate, 

instant vector representation compares the resources. 

Finally, post-processing phase was carried-out by 

using key ranking methodology and hierarchical 

clustering for disambiguating highly not identical 

instances. The major disadvantage of the developed 

system was the creation of post-processing phase 

that decreases the system performance in light of 

recall, precision, and f-measure. 

A new optimization algorithm (modified GWO) 

has been developed for improving the performance 

of semantic web distributed RDF and to overcome 

the above-mentioned problems. 

 

 
Figure.1 Work flow of proposed methodology 

3. Proposed methodology 

In semantic web query optimization, the 

modified GWO comprises of four major phases such 

as; data collection, triple store, cost value 

computation and query optimization using modified 

GWO. Fig. 1 represents the block diagram of the 

proposed methodology. The detailed explanation 

about the proposed methodology is given below. 

3.1 Dataset description 

At first, the input data is collected from LUBM 

10000 and DOREMUS 2017 datasets. LUBM 10000 

dataset is developed for facilitating the estimation of 

semantic web repositories in a systematic and 

standard way. The benchmark dataset evaluates the 

performance of repositories on the basis of 

extensional queries over a huge dataset, which 

promises a single realistic ontology. The LUBM 

10000 dataset contains a repeatable synthetic data, 

customizable synthetic data, a university domain 

ontology, a set of test queries and numerous 

performance measures. The number of triples in 

LUBM 10000 dataset is 1,334,481,197, RDF N3 file 

size is 153,256,699, and the number of entities is 

217,006,852. The other components of LUBM 

10000 dataset are given below,  

Ontology: The benchmark ontology is called as 

Univ-bench: Web Ontology Language (OWL) 

version. 

Data generator: It generates synthetic data over 

Univ-bench ontology. The generated data are 

customizable and repeatable that allows users to 

specify the starting index of universities. 

Test queries: Currently, the benchmark comprises 

of fourteen test queries. The file contains all queries 

in SPARQL 1.0 syntax format, which is separated 

by blank lines for identifying the comments. In 

LUBM 10000 dataset, the visualization of the 

queries in SVG and JPG format. 

Test module: It comprises of both query test and 

data loading test with configurable test plans. 

     In addition, DOREMUS 2017 comprises of two 

important sections: Heterogeneities (HT) and False 

Positive Trap (FPT).  

HT: It comprises of two datasets (BnF-1 and PP-1), 

containing 238 instances. It includes dissimilar types 

of HTs, which are collected from different degree of 

description, differences in spelling, multilingualism, 

and differences in catalogues. 

FPT: It includes two datasets (BnF-2 and PP-2) that 

contains 75 instances each. 
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3.2 Detailed explanation about SPARQL and 

query graph 

After the data collection, distributed query graph 

is built for semantic queries with edges, nodes and 

properties to represent and store data. Generally, 

RDF data utilize in several applications, where the 

RDF tuples data are very suitable for semantic web 

query join optimization. In a few circumstances, the 

data table increases rapidly if the number of tuples 

data are high. Whereas, the complex queries have 

more connection operations that degrade the query 

execution performance. The connections in RDF is 

explained below in the form of the query graph and 

SPARQL. In SPARQL query, the query engine 

starts with constructing a representation that is 

named as query graph. Each query triple pattern is 

turned into a node of the query graph. The two 

nodes connect only if the related triple patterns share 

a common variable or there is a FILTER condition 

related to the two triple patterns. 

Theoretically, the query graph node analyses the 

datasets based on variable bindings, and the edges 

related to the join possibilities in the query. 

Additionally, the query graph node defines the query 

graph of SPARQL related to traditional query graph 

from relational query optimization, where the nodes 

are interconnected and joins predicates from the 

edges. In addition, SPARQL query is also 

represented as a graph structure, which is called as 

SPARQL graph. The query nodes state the query 

variables, where the triple patterns form edges 

between the nodes. The SPARQL uses W3C 

standard in order to extract and query the data from 

RDF graphs. This procedure denotes counter-part to 

select the project to join queries in the relational 

model that depends on the powerful graph-matching 

scheme by allowing the binding variables in the 

RDF graph. Operators correspond to relational 

projections, joins, selections, unions, and left outer 

joins are hybridized for developing the more 

expensive queries.  

Each triple pattern comprises of subject, 

predicate, and object, which are either literal or 

variable. The query represents the known and 

unknown literal variables in multiple patterns for 

compounding the join operations. Additionally, a 

query processor requires in order to analyse the 

possible connections between the given patterns, 

which provides bindings to the application. 

Relational database management systems have 

continuously shown the scalability, efficiency and 

execution in hosting type data that previously not 

been predicted in the relational databases. Further, 

the powerful indexing tool use in the relational 

database management systems in order to manage 

the huge amount of data very effectively. 

Instinctively, this process describes the sub-graphs, 

which need to be extracted from the datasets. A few 

major challenges faced by the researchers in 

semantic web query join optimization is detailed in 

the following section. 

3.3 Challenges in semantic web query join 

optimization 

Detecting the order of optimal join in SPARQL 

query is very critical, due to the nature of RDF data. 

Secondly, query optimization complexity is 

exponential in the number of joins. For instance, 

LUBM 10000 dataset comprises of SPARQL 

queries with more than twelve joins, so the 

undertaken optimizer cannot analyse the full search 

space, which potentially misses the best plan. The 

SPARQL query plans have 𝐹 times more joins than 

correspondent SQL plans, where 𝐹 is denoted as the 

average size of a start pattern. In real-time 

applications, SPARQL queries with joins involve a 

hundred index scans. Secondly, the lack of schema 

leaves the essential information, which is readily 

available to any relational optimizer such as, set of 

tables, foreign keys, etc. The relational optimizer 

keeps the statistics on the attributes and foreign keys, 

and uses it result for size estimation. All this 

information implicitly present in RDF data, where 

the attributes and foreign keys become structurally 

correlates in the RDF graph.  

The simplest correlation corresponds to the 

attributes of similar entities, which are captured by 

the characteristic sets. However, the dynamic 

programming algorithm computes the characteristic 

sets based estimation for every non-empty sub-graph 

of the query. This process significantly increases the 

performance of the dynamic programming algorithm, 

and characteristic sets do not identify the relevance 

between the different sub graphs in RDF. Besides, 

the characteristics of RDF data creates the following 

challenges in the query optimizer.  

• The approximate size of search space for 

more SPARQL queries does not allow the 

standard dynamic programming algorithm 

exploration, since it has to look at all the 

valid plans for identifying the cheapest one. 

• Secondly, even in the mid-sized query 

graphs, the dynamic programming algorithm 

ignores the structure of query and it 

considers many a priori sub-optimal sub 

plans during the plan construction. 

• The optimizer under the independence 

assumption fails to estimate the result sizes 
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of most partial plans. The independence 

assumption leads to a significant 

underestimation of the cost function, since 

the optimizer merely multiplies the 

frequencies of two predicates to obtain the 

join selectivity.  

• The real cost of the partial plans is much 

worse than the optimizer’s expectation. 

Hence, the cost estimation of the query 

should be evaluated for finding query 

optimization. 

3.4 Cost value computation 

In this sub-section, bind join ∀𝑏 and symmetric 

hash join ∀ℎ are applied for query planning between 

the two cost estimations [17], which is 

mathematically represented in the Eq. (1), (2), and 

(3). 

 

 𝐶𝑜𝑠𝑡 (𝐵1 ∀ℎ  𝐵2) =
(1+𝑇𝐶)

𝑇𝐶
× 𝐶𝑆𝑄 + 𝐶2ℎ + 𝐶3ℎ  

(1) 

 

Where,  

 

 𝐶2ℎ = 𝐶(𝐵2) × 𝐶𝑅𝑇     (2) 

 

 𝐶3ℎ = (𝐶(𝐵1) + 𝐶(𝐵2)) × 𝐶𝐻𝑇    (3) 

 

Where, 𝐶2ℎ is denoted as cost of receiving the 

largest tuple set, and 𝐶3ℎ is represented as the cost 

of intersecting received sets. The query planning of 

bind join ∀𝑏  is mathematically denoted in the Eq. 

(4), (5), and (6). 

 

 𝐶𝑜𝑠𝑡 (𝐵1 ∀𝑏 𝐵2) = 𝐶𝑆𝑄 + 𝐶2𝑏 + 𝐶3𝑏   (4)  

 

Where,  

 

 𝐶2𝑏 = 𝐶(𝐵1) × 𝐶𝑅𝑇     (5)  

 

 𝐶3𝑏 = 𝐶𝑆𝑄 ×
(

𝑐(𝐵1)+𝐵𝑆𝑍−1

𝐵𝑆𝑍
)+𝐶𝑇𝐶−1

𝐶𝑇𝐶
    (6) 

 

Where, 𝐶2𝑏  is denoted as cost of receiving 𝐵1 

set, 𝐶3𝑏 is represented as cost of sending bound 𝐵2 

requests, 𝐶𝑆𝑄  is stated as cost of sending a 

SPARQL query, 𝐶𝑅𝑇 is denoted as cost of receiving 

a single result tuple, 𝐶𝐻𝑇  is signified as cost of 

handling a single result tuple, 𝐵𝑆𝑍 is represented as 

binding block size, and 𝑇𝐶 is specified as number of 

threads utilized to query SPARQL end-points. The 

estimated cost function is given as the input for 

modified GWO in order to find the optimized cost 

value of the query. The explanation about modified 

GWO is detailed in the below section. 

3.1. Web query join optimization using modified 

grey wolf optimization 

Grey wolf optimization is a swarm intelligence 

optimization method that mimics the leadership 

hierarchy of wolves, which are known for group 

hunting. Generally, the grey wolfs belongs to the 

Canidae family, which mostly wish to live in group. 

The grey wolves have a strict social dominant 

hierarchy (leader may be a male or female) that is 

theoretically named as alpha (𝛼). Mostly, the alpha 

is accountable for decision making and the orders of 

the dominant wolf follow the pack. Respectively, 

beta (𝛽) represents the sub-ordinate wolves that help 

alpha in decision making. Beta(𝛽) acts as an advisor 

to alpha and discipliner for the pack. The low 

ranking grey wolves are named as omega (𝜔) that 

submits all other dominant wolves. If a wolf is 

neither an omega or alpha nor beta, it is called delta 

(𝛿). Delta wolves dominate the omega wolves and 

report the status to alpha and beta wolves. 

The hierarchy of wolves is theoretically 

modelled for developing GWO and accomplish 

optimization. The GWO approach is tested with the 

test functions that represent the exploitation and 

exploration characteristics compared to other swarm 

intelligence algorithms. Further, the GWO algorithm 

is successfully employed to solve several 

engineering optimization issues. Due to the 

multipurpose property, the modified GWO 

algorithm attempts to solve the optimization issues. 

3.5.1. Overview of modified grey wolf optimization 

algorithm 

The GWO approach mimics the social hierarchy 

and hunting behaviour of grey wolves. In addition to 

the hunting behaviour of grey wolves, group hunting 

is another appealing societal action of grey wolves. 

The GWO algorithm includes three main segments 

such as, encircling, hunting and attacking of prey. 

The step by step procedure of modified GWO is 

described below. 

Step 1: At first, initialize the GWO parameters like 

design variable size 𝐺𝑑, search agents 𝐺𝑠, maximum 

number of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, and vectors 𝑎, 𝐴, 𝐶 that 

is mathematically denoted in the Eq. (7) and (8). 

The value �⃗� linearly decreases from two to zero over 

the course of iterations. 

 

 𝐴 = 2�⃗�. 𝑟𝑎𝑛𝑑1 − �⃗�     (7) 
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 𝐶 = 2. 𝑟𝑎𝑛𝑑2      (8) 

 

      Where, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are denoted as random 

vectors, which ranges between [0, 1].  

 

Step 2: Then, randomly generate the wolves based 

on pack that is represented in the Eq. (9). 

 

 𝑊𝑜𝑙𝑣𝑒𝑠 =

[

𝐺1
1 𝐺2

1 𝐺3
1

𝐺1
2 𝐺2

2 𝐺3
2

.
𝐺1

𝐺𝑠
.

𝐺2
𝐺𝑠

.
𝐺3

𝐺𝑠

 

… . 𝐺𝐺𝑑−1
1 𝐺𝐺𝑑

1

… . 𝐺𝐺𝑑−1
2 𝐺𝐺𝑑

2

… .
… .

.
𝐺𝐺𝑑−1

𝐺𝑠
.

𝐺𝐺𝑑
𝐺𝑠

]    (9) 

 

Where, 𝐺𝑗
1 is denoted as initial value of the 𝑗𝑡ℎ 

pack of the 𝑖𝑡ℎ wolves. 

Step 3: Calculate the fitness value of each hunt 

agent using the Eq. (10) and (11). 

 

 �⃗⃗⃗� = |𝐶. �⃗�𝑝(𝑡) − �⃗�(𝑡)|               (10) 

 

 �⃗�(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴. �⃗⃗⃗�               (11) 

         

       Where, 𝑡  is denoted as number of iteration, 𝐴 

and 𝐶  are represented as coefficient vectors, �⃗�𝑝  is 

stated as position vector of the prey, and  �⃗� is stated 

as position vector of a grey wolf. 

 

Step 4: Determine the best hunt agent 𝐺𝛼 , second 

and third best hunt agents 𝐺𝛽  and 𝐺𝛿  by using the 

Eqs. (12)-(17). 

 

 �⃗⃗⃗�𝛼 = |𝐶1. �⃗�𝛼 − �⃗�|                (12) 

 

 �⃗⃗⃗�𝛽 = |𝐶2. �⃗�𝛽 − �⃗�|                (13) 

 

 �⃗⃗⃗�𝛿 = |𝐶3. �⃗�𝛿 − �⃗�|                (14) 

 

 �⃗�1 = �⃗�𝛼 − 𝐴1. (�⃗⃗⃗�𝛼)               (15) 

 

 �⃗�2 = �⃗�𝛽 − 𝐴2. (�⃗⃗⃗�𝛽)               (16) 

 

 �⃗�3 = �⃗�𝛿 − 𝐴3. (�⃗⃗⃗�𝛿)               (17) 

 

Step 5: Update the location of the present hunt 

agent by using the Eq. (18). 

 

 �⃗� (𝑡 + 1) =
�⃗�1+�⃗�2+�⃗�3

3
               (18) 

 

Step 6: Evaluate the fitness value of all hunts. 

Step 7: Update the value of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿. 

Step 8: By using the best values of 𝐺𝛼,𝐺𝛽  and 𝐺𝛿 , 

alpha once again encircles the current solutions to 

obtain a possible solution. 

Step 9: Check the stopping criteria, whether the 

𝑖𝑡𝑒𝑟 reaches 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 or not, if yes, print the current 

best value, or else again go to step 5. 

3.5.2. Pseudo-code of modified GWO optimization 

algorithm 

• Generate initial search agents 𝐺𝑖(𝑖 =
1,2, … , 𝑛) 

• Initialize the vectors 𝑎, 𝐴 and 𝐶  
• Evaluate the fitness value of each 

hunt agent 
 

𝐺𝛼 → Best hunt agent 

𝐺𝛽 → Second best hunt agent 

𝐺𝛿 → Third best hunt agent 

𝐼𝑡𝑒𝑟 = 1 

• Repeat  

• For 𝑖 = 1: 𝐺𝑠 (grey wolf pack size) 

• Update the location of current hunt 

agent 

• End for 

• Evaluate the fitness value of all hunt 

agents 

• Update the value of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿. 

• 𝐺𝛼 = min( 𝐺𝛼, 𝐺𝛽 and 𝐺𝛿) 

• Update the vectors 𝑎, 𝐴 and 𝐶 

• 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1 

• Unit 𝐼𝑡𝑒𝑟 ≥= maximum number of 

iterations (stopping criteria) 

• Output 𝐺𝛼 

• End 

4. Experimental result and discussion 

In this research study, eclipse java 1.8 apache 

Jena was used for experimental simulation with 3.2 

GHz and i5 processor. In order to analyse the 

effectiveness of proposed methodology (modified 

GWO), the performance of proposed methodology 

was compared with the existing methodologies: 

PECA [11], PEDA [11], RDF-3X [11], gStore [15], 

and Legato [16] on LUBM 10000 and DOREMUS 

datasets. The performance of the proposed 

methodology was evaluated in terms of execution 

time and memory usage. The performance metric 

determined as the regular measurement of outcome 

that creates the reliable information about the 

effectiveness of the proposed methodology. Here, 
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the relationship between the input and output 

variables of the proposed modified-GWO 

methodology is understood by using the 

performance measures like execution time, precision, 

recall, and f-measure. 

4.1 Performance measure 

Performance measure is determined as the 

measurement of experimental outcome that develops 

reliable information about the effectiveness of 

proposed system. The relationship between the input 

values and output values of the proposed system was 

understood by utilizing the performance measures 

like execution time, precision, recall, and f-measure. 

The formula to evaluate precision, recall, and f-

measure are given in the Eqs. (19), (20), and (21). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                            (19)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                              (20) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
100             (21)                                      

 

Where, 𝐹𝑃  is specified as false positive, 𝑇𝑁  is 

indicated as true negative, 𝑇𝑃  is stated as true 

positive, and 𝐹𝑁 is represented as false negative. 

4.2 Quantitative analysis on LUBM 10000 dataset 

by means of execution time 

In this section, LUBM 10000 dataset is used for 

evaluating the performance of proposed and existing 

methodologies. The LUBM 10000 dataset consists 

of repeatable synthetic data, customizable data, 

university domain ontology and a set of test quires 

(fourteen). In Table 1, the proposed methodology 

performance evaluated in light of execution time 

and compared with the existing methodologies such 

as PECA [11], PEDA [11], and RDF-3X [11]. Table 

1 shows that the proposed methodology works faster 

than the existing methodologies even when the 

query graph is complex such as, query 1, query 2, 

query 3, and query 7. Since, these queries do not 

contain any selective triple patterns, query graph 

structure is complex and the search space of these 

queries is very large. 

The modified GWO has the advantage of 

parallel processing and reduce query response time 

effectively related to a centralized system. If the 

queries (4, 5 and 6) contains selective triple patterns, 

the search space becomes small. The centralized 

system of RDF-3X, PECA, and PEDA is faster than 

the proposed methodology in a few queries, since 

the proposed methodology spends more 

communication cost between the dissimilar 

machines. These queries only spend less than three 

seconds in both the existing and proposed method. 

However, for some challenging queries (1, 2, 3 and 

7), the modified GWO outperformed the existing 

methodologies significantly. The graphical 

comparison of proposed and existing methodology 

is denoted in Fig. 2. 

 
Table 1. Comparative analysis of proposed and existing 

system by means of execution time 

Execution time (milliseconds) 

Number of 

queries 

RDF-3X 

[11] 

PECA 

[11] 

PEDA 

[11] 

Proposed 

method 

(modified-

GWO) 

1 10,840,47 3,26,167 3,09,361 45 

2 81,373 23,685 23,685 60 

3 72, 257 10,239 10,368 38 

4 7 753 753 33 

5 6 125 125 43 

6 355 3388 1914 79 

7 1,46,325 1,43,779 46123 82 

 

 

 
Figure.2 Graphical comparison of proposed and existing methodology 
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Figure.3 Graphical comparison of proposed and existing methodology 

 

Table 2. Comparative analysis of proposed and existing 

system by means of execution time 

Execution time (milliseconds) 

Number of 

query joins 

gStore 

[15] 

Proposed method 

(modified-GWO) 

1 43832 45 

2 1563 60 

3 1491 38 

4 680 33 

5 131 43 

6 828 79 

7 8301 82 

 
Table 3. Performance comparison of proposed and 

existing method in terms of precision, recall, and f-

measure 
Methods Data Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Legato [16] HT 98 87 90 

FPT 90 78 83 

Proposed 

method 

(modified-

GWO) 

HT 100 95 90 

FPT 90 85 90 

 

Similarly, Table 2 depicts about the performance 

of proposed methodology (modified GWO) and 

existing methodology (gStore [15]) in terms of 

execution time by using the number of query joins. 

The execution time of proposed approach (modified 

GWO) is very low compared to the existing 

methodologies because the proposed method 

quickly evaluates the join order and also optimizes 

the join cost effectively that reduces the complexity 

of the system. The graphical representation of the 

execution time is denoted in Fig. 3. The 

experimental result demonstrates that the modified 

GWO achieved better execution time for a number 

of queries. The execution time decreases for a small 

number of queries, but after some certain optimal 

point, the execution time increases when the number 

of queries increases.   

4.3 Quantitative analysis on DOREMUS 2017 

dataset by means of precision, recall and f-

measure 

In this sub-section, performance of the proposed 

methodology (modified GWO) is compared with an 

existing methodology (Legato [16]) in terms of 

precision, recall, and f-measure. Table 3 states that 

the proposed method achieved a better result by 

means of precision, recall, and f-measure related to 

an existing system. The DOREMUS 2017 dataset 

contains two important sections: HT and FPT, where 

the result is averagely calculated. In HT phase, the 

proposed system achieved 100% precision, 95% 

recall, and 90% f-measure, which is superior related 

to the existing system. Similarly, in FPT phase, the 

proposed system attained 90% of precision, 85% of 

recall, and 90% of f-measure. Compared to existing 

system (Legato [16]), the proposed system achieved 

good performance. From Tables 1, 2, and 3, it is 

clear that the proposed method achieved low 

execution time, precision, recall, and f-measure than 

the other existing methodologies in LUBM 10000 

and DOREMUS 2017 datasets. 

5. Conclusion  

In this research study, a new query optimization 

algorithm (modified GWO) was developed to 

improve the performance of query evaluation and 

start-up cost. In addition, this research paper also 

detailed about the query optimization based on 

reordering the triple pattern in the main memory of 

RDF data. Compared to the existing methodologies, 

the proposed method delivered an effective 

performance by means of quantitative and 

comparative analysis. From the experimental 

investigation, the proposed methodology improved 
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the execution time (2-5 minutes) related to the 

existing methodologies on LUBM 10000 dataset. 

Similarly, the proposed methodology improved 

precision, recall, and f-measure around 2-7% related 

to the existing system. In future work, a hybrid 

optimization algorithm will be developed in order to 

extend the current framework on dissimilar query 

engines and triple patterns. 
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