
Received: June 12, 2019 149

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

A Quality Framework to Improve IDS Performance Through Alert Post-

Processing

Ali Mohamed Riyad1* Mohammed Saleem Irfan Ahmed2 Husni Hamad Almistarihi2

1Departement of Computer Science, EMEA College of Arts and Science, Kondotty, Kerala, India

2Department of Computer and Information Sciences, College of Science and Arts, Al Ula, Madhina, Saudi Arabia
*Corresponding author’s Email: amriyad@gmail.com

Abstract: An intrusion detection system is one of the network security tools installed to monitor suspicious activity

in the network and act as a last line of defense. It normally notifies about the skeptical activity occurred in the network

using sensors by sending alarms to the administrator. However, the IDS present in the large network generates not

only a large number of alerts but also abundant false alerts. These generated alerts are very difficult to handle as it

increases the burden for the network administrator and also pulls down the performance of the defense system. In order

to overcome the issue, various countermeasures have been proposed. Commonly, to increase the quality of alerts, the

alerts are post-processed in such a way that the false alerts are filtered out thereby refining the performance of the IDS

defense. In this paper, we propose an IDS quality framework using alert post-processing techniques to separate out the

false alerts generated by various sensors in the network. At low level alert post-processing, the priority scores are

assigned based on the quality measures to filter the irrelevant alerts having less significance. At high level alert post-

processing, higher level operations such as alert aggregation, clustering, and hyper alert correlation have been carried

out to minimize the number of alerts and the high level report consisting of significant alerts is presented to the

administrator. Experiments have been conducted using DARPA 2000 dataset to assess the performance of the proposed

system. The system has produced pleasing results than many of the existing methods with 95% of alert reduction rate,

99% of completeness and 100% of soundness towards enlightening the quality of the alerts generated by the IDS.

Keywords: Intrusion detection system, False alert, Alert prioritization, Filtering, Alert aggregation, Alert clustering,

Alert correlation.

1. Introduction

Computer networks and devices are considered to

be an important asset for sharing files and other

information. Due to the increase in the usage of the

network, the security of these resources has become

a major concern in this digital era. Tremendously,

several critical activities are carried out through

computer networks. Abundant security tools exist in

protecting the computer networks and its resources

from undesirable harmful traffic.

Among these tools, intrusion detection systems

(IDS) play a significant role in protecting the network.

The ability of the IDS is to warn the network

administrator by generating alerts on identifying

suspicious activities in the network. These malicious

activities can be generally categorized as internal

(caused by authorized user intentionally or

unintentionally) and external (real alerts caused by

unauthorized users) [1]. As it is difficult for IDS to

differentiate the unintentional and intentional attacks,

it largely generates false alerts. Meanwhile, in some

cases, false alerts are also produced by

misconfiguration of network devices and duplicate

alerts generated by more than one sensors form the

underlying network [2].

As the alerts are massive in numbers, analyzing

and identifying the true alerts manually is certainly a

time-consuming process. Though several measures

have been taken in reducing false alerts, the most

effective way is to post-processing the generated

alerts [3]. Typically, IDS obtains input from various

sensors and hosts in the network. This generates a

Received: June 12, 2019 150

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

huge amount of alerts with low quality [4]. A

preliminary low level operation includes alert

filtering that filters out the enormous duplicate alerts

for the same event that are produced by various

numbers of sensors deployed in the network in a

distributed fashion.

After eliminating the low priority alerts, the alerts

are passed over to the higher level operations that

include various processes such as aggregation and

clustering to reduce the number of alerts by merging

a group of similar alerts, alert correlation to find real

attacks and to eliminate other alerts from further

processing. Several methods and tools have been

proposed by the researchers with the aim of

improving the quality of the alerts produced by the

IDS. However, the methods focus on specific needs

and constraints that drive on specific tasks such as

prioritization, fusion, and correlation. Also, the

performance of the existing systems highly depends

on the quality of the input given to the system.

In this paper, we proposed a comprehensive IDS

quality framework using two level post-processing

for improving the quality of the alerts produced by

the IDS. At a lower level, the alerts are normalized

and the priority score for the alerts are computed

based on which the low quality alerts are filtered out.

Higher level post-processing includes three

components. Aggregation and merging of alerts are

carried out in which similar alerts are aggregated and

the alerts having similar characteristics are clustered

together in the first and second component. The third

component correlates the alerts by computing the

correlation score between the alerts to find the

dependency between them. Finally, significant alerts

are presented to the administrator.

The paper is organized as follows. Section 2

discusses the solution from the literature related to the

problem specified. Section 3 explains the proposed

IDS quality framework along with all its components.

Experimental results are discussed in section 4 and

the paper is concluded in the conclusion section.

2. Related works

The idea of intrusion detection was first

introduced by James P. Anderson in his technical

report on intrusion detection systems [5]. From the

last decade, research in the field of IDS and its

security has attracted a number of researchers. Post-

processing of intrusion alerts is comparatively a new

field. There are various techniques used for

eliminating false positives during post-processing of

alerts. The most prominent solution is to apply a filter

to reduce the number of false alerts. A filter with

three components was proposed where each one

computes the score for the alerts, and based on the

combined score, the false alerts are filtered out [6-7].

However, the results depend on the quality of input

data. Neural networks and the fuzzy logic based

method was introduced in filtering low quality alerts

but the method requires necessary training [8].

Another idea was proposed wherein the quality of

the alerts are measured using network topology [9-

10]. The methods analyze the alerts using quality

parameters that include correctness, accuracy,

reliability, and sensitivity. The main demerit of this

method was that it employs inflexible parameter.

Aggregation and correlation operations had been

used as a component for handling IDS alerts [11].

Regrettably, the method is not tested with any

datasets. An alert management approach with

enhanced alert verification and alert aggregator

modules were proposed to reduce the alerts quantity

wherein the method produces inefficient clustering

[12]. A correlation based alert processing model was

introduced with an ample set of components. This not

only produces better results but also increases the

complexity and processing time of the system [13].

 Complex theory based approach for

hypothesizing missed security events was suggested

[14]. Two parameters such as prerequisites and

consequences of different types of attacks were

utilized to correlate alerts. This method works on the

predefined correlations between alerts for which

prior analysis must be carried out. An attribute

similarity clustering for reducing the alarms and

reverse causation algorithm for creating a complete

attack path centered on the attack association method

was anticipated that depends on the professional

knowledge base which increases the complexity [15].

Graph based IDS alert correlation method was

proposed by correlating the subattacks, unfortunately,

the method suffers from false alerts and also missed

several attack scenarios [16-17].

An ontology based framework with inference

language XSWRL was developed to correlate the

attack [18]. The method utilizes multiple agents and

sensors to convert the information to ontology. The

method is very difficult to deal with new attack types.

A similar hybrid approach was proposed using

semantic analysis and ontology [19]. While the

approach was considered to be novel, the work

undergoes a major inadequacy during online

correlation. A new alert correlation method based on

complex Bayesian network was introduced which

works without experts’ knowledge [20]. Conversely,

the method was computationally complex to

implement. Another post-processing method

comprising of prioritization and scalable distance-

based clustering steps was introduced. The method

Received: June 12, 2019 151

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

lacks in performance compared with other significant

existing algorithms and is compared only with the

DBSCAN clustering [21]. A multi-step attack

scenario reconstruction based method was offered

but the method runs on a predefined attack paradigm

[22].

Similar methods were proposed in detecting false

alerts using correlation wherein the methods execute

only with prior knowledge about the attacks [23, 24].

These methods fail to handle novel attacks as they do

not have any past experience. A new idea based on

attack scenario reconstruction using attack semantics

was suggested [25] with a major requirement of

mature ontology related to the intrusion detection

domain in which updating the ontology is a major

concern.

3. Proposed IDS quality framework

The proposed IDS quality framework is based on

applying post-processing steps on the alerts

generated from various IDS of the network. The main

aim of the post-processing is to reduce the false

positive of the underlying intrusion detection system.

This highly improves the quality of the results

produced, as the increase in the false positives is the

main issue that degrades the performance of an

intrusion detection system. The overall architecture

of the proposed work is divided into two broad

categories in which the first one is the low level alert

post-processing and the second is the high level alert

post-processing. Maximum elimination of false

positive alerts is the most challenging issue in

intrusion detection research as it contributes to the

quality alarms. This dual level mechanism has been

introduced for processing the received alerts further

collected from various IDS of the network and

thereby eliminating the false positive alerts in an

extensive way.

Instead of accepting the generated alerts as such,

the alerts are processed to analyze the trustworthiness

of the generated alerts and finally converts them into

valuable intrusion reports. Initially, the alerts are

normalized and duplicate alerts are filtered out based

on which the priorities are issued to the alerts in the

low level alert post-processing. In the high level alert

post-processing, similar alerts are aggregated based

on the alert attributes, then the similar aggregated

alerts are clustered and finally, the hyper alert

correlation carried out for extracting the useful alerts

and based on which the reports are given to the user.

The framework comprises of several components and

the detailed framework is depicted in Fig. 1.

Figure. 1 Detailed structure of IDS quality framework with alert post-processing

Set of Security
Alerts

High Level Alert Post-processing

Low Level Alert Post-processing

IDS Sensor 1 IDS Sensor n

Alert
Pre-processing

with
Normalization

 IDMEF Format

 Knowledge Base

Network and
Host

Information
Database

Vulnerability
Information

Database

Prioritization based Alert Filtering

Aggregation and Merging of Alerts

HyperAlert Correlation

Alert Reports for
Detected Intrusion

Precision
Score

Accuracy
Score

Reliability
Score

Integrity
Score

Relevancy
Score

Total Quality
Score

Clustering using Weight based
Similarity Measure

Fi
lt

er
in

g
Lo

w

Le
ve

l A
le

rt
s

H
ig

h
 P

ri
o

ri
ty

A

le
rt

s

Meta Alert

Attack Type

IP Address

Port Number

Detection Time

Received: June 12, 2019 152

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Vulnerability information database: The

vulnerability information database is formed mainly

using the National Vulnerability Database (NVD)

[26] which is primarily based on CVE (Common

Vulnerabilities and Exposures) [27]. These databases

are up to date. Vulnerability databases are freely

available for download. The databases are updated

regularly for the best performance of the relying

processes.

Network and host information database: Network

and host configuration collector gathers all the details

of the network and the devices installed in the

network and stores in the information in this database.

It contains the information about the devices, the

ports they listen and details of various software

installed including the operating systems. Details of

the vulnerabilities and exploits in the network and

hosts are stored in this database. It also monitors the

live hosts. Here, the destination IP, destination port

and the vulnerabilities in the target device software

and services are checked from the respective database

to identify whether it is an attack or not.

3.1 Alert pre-processing with normalization

The intrusion detection system implemented on

the network comprises of several sensors and

obviously, these sensors generate different alerts for

the same intrusion identified on the network or they

may generate different alerts for different intrusions.

These alerts collected from various IDSs in the

network may have different formats. However, for

further processing, the alerts are to be converted to a

common format for applying prioritization. Thus, the

primary goal of this step is to transform the collected

alerts into a common form which makes further

processing easy. The common format to be employed

in the system must be a standardized format. From

the literature, Intrusion Detection Message Exchange

Format (IDMEF) [28] is the most widely used data

format which is mainly used for exchanging the

information and for successful interaction between

the intrusion detection systems and the management

systems. It is designed in such a way that the alert

class sends the alerts from the analyzer to the

manager. Some of the significant attributes that

signify the alert information communicated between

the analyzer and the manager is listed in Table 1.

Based on the alert information, the alerts are encoded

with a common IDMEF format [29]. The main

parameters used to store the information about alerts

are the alert number, sensor number, time stamp,

attack type, IP addresses and port numbers of source

and destination machines.

Table 1. Significant alert information

Alert attribute Information

Analyzer (AID) Alert originated Analyzer ID

CreateTime (CT) Alert generated time

DetectTime (DT) Intrusion detected time

AnalyzerTime Alert sent time

Source Details about attacks’ origin

Target Details about attacks’ target.

Classification Name of the attack

Assessment Evaluation of attack severity

Additional Data Other information of the attack

However, the common names for the alerts are

taken from the vulnerability information database

that is maintained by the framework. Though the

alerts are converted to the common format, there is a

possibility of incomplete information on the

significant attributes. Basically, time related details

along with the source and target are most important

for processing the alerts. Thus the main goal is to pre-

process the alerts by cleaning the alert database in

such a way that the incomplete details or missing

values are filled with appropriate values [13]. The

missed alert created can be filled with attack

detection time if it is not null, else filled with analyzer

time at which the alert is sent. Similarly, the detection

time can be filled with the creation time, a source and

a target can be filled with analyzer ID.

3.2 Prioritization based alert filtering

The alerts are analyzed based on the quality

measures. The score is computed for each alert and

based on the scores, the low level alerts are filtered

out. The significant alerts are prioritized based on the

scores computed through quality measures [9]. Some

of the quality measures employed in the proposed

work are precision, accuracy, reliability, integrity,

and relevance of the alerts.

Precision (P): It verifies the status of the destination

host at the time of alert creation and assigns the score

0 or 1.

Accuracy (A): It validates whether the destination is

vulnerable to attack specified by the alert and assigns

the score 0 or 1 accordingly.

Reliability (R): It verifies whether the rules and the

attack signatures specified in the sensor are

frequently updated and assigns the score 0 or 1.

Integrity (I): It identifies the past history of the alerts

generated from the particular sensor and assigns the

score 0 or 1.

Relevancy (Re): It is verified by identifying the

evidence of the attack (particular attack pattern) in the

particular destination host [30] and assigns the score

0 or 1.

Received: June 12, 2019 153

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Once the scores are assigned for all the criteria,

the weights are assigned for each criterion and based

on which the total quality scores are computed for the

alerts. Among these criteria, the precision and

relevancy are most significant as it specifies the

generated alert is true. So the weights can be assigned

equally as 1. The accuracy plays second significant

as it partially signifies the created alert is true as it

depicts whether the destination host is vulnerable to

attack and the score can be assigned as 0.6. Finally,

reliability and integrity are less significant as the

value 1 may also lead to false alarm rate and thus the

weights are assigned as 0.2 each. Thus the final score

can be computed using the formula given in Eq.(1) in

which the total score (TS) is scaled between 0 and 1.

𝑇𝑆 =
𝑃 + (𝐴 × 0.6) + (𝑅 × 0.2) + (𝐼 × 0.2) + 𝑅𝑒

3
 (1)

where, P, A, R, I and Re represent the scores of

precision, accuracy, reliability, integrity, and

relevancy respectively.

The pseudocode for computing the final score

using prioritization based filtering of the alerts are

given in Fig. 2. The input parameters are accessed

form vulnerability information database and network

and host information database. Based on the total

quality score, the priority can be assigned for the

alerts. If the total alert score is 0 which implies the

alert is completely false positive and if the total alert

score is 1 which implies that the alert is completely

true positive. However, if the value lies above 0 and

0.3 then it is almost false alert whereas if the score

lies above 0.3 and 0.6 then the alert is feasibly true

positive and if the score lies above 0.6 and below 1,

then the alert is almost true positive. Thus the true and

almost true alerts are given as an input for the high

level alert post-processing steps.

3.3 Aggregation and merging of identical alerts

One of the major issues is that the occurrence of

the same attacks may be identified by several

analyzers in which they produce similar identical

alerts. These similar alerts are grouped into

representative alerts and are also known as meta

alerts. Similar alerts are aggregated only if they have

same Source_IP (SIP), Target_IP (TIP) and

Attack_type (AID) with the closer time period as it

belongs to the same event. Thus, the temporal data

and other information pertaining to the alerts are

compared for aggregation. The maximum closer

period can be set with a threshold based on which the

alerts can be aggregated.

Figure. 2 Prioritization based alert filtering pseudocode

However, if the difference between the detection

time of alert crosses the given threshold, then the

alerts are considered as different.

The aggregation can be done by replacing the

similar alerts with an aggregated alert that contains

SIP, TIP, AID and the earliest time of the detection

time along with the number of alerts (NOA) in the

aggregated alert. This is because, as the alert belongs

to the same event, the later time indicates that the

event is identified with a time delay. In the proposed

work, the threshold value for the detection time is set

as 3 seconds. The pseudocode for the alert

aggregation is given in Fig. 3. Each alert a in the input

alert set A is compared with all the other alerts. A new

single alert is created if they have same Source_IP

(SIP), Target_IP (TIP) and Attack_type (AID) with

the closer time period of 3 seconds. Here NOA

represents the number of alerts in the aggregated alert.

Global Vul_Info_db, NW_Host_Info_db

Function Score_Computation (alert parameters)

//Precision Score

If a destination host at the time of alert is ‘online'
 Assign a precision score as 1 else 0.

//Accuracy Score

If a destination host network is vulnerable
 Assign accuracy score as 0.25.

If a destination host running OS is vulnerable

 Assign accuracy score as 0.25.

If a destination host opened port is vulnerable

 Assign accuracy score as 0.25.

If destination host running application is vulnerable

 Assign accuracy score as 0.25.

//Reliability Score

If the attack signature is updated before 12hrs of alert

 Assign reliability score as 1.

Elseif attack signature is updated before 24hrs of alert

 Assign reliability score as 0.75.

Elseif attack signature is updated before 7days of alert

 Assign reliability score as 0.5.

Else Assign reliability score as 1.

//Integrity Score

 If the past history contains true alert for the attack

 Assign integrity score as 1.

 Elseif past history contains more no. of true attacks

 Assign integrity score as 0.5.

 Else Assign integrity score as 1.

//Relevancy Score

 If an attack pattern is found in a destination host

 Assign relevancy score as 1.

 Else Assign integrity score as 0.

Compute total score as in Eq. (1)

End Function

Received: June 12, 2019 154

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Figure. 3 Pseudocode for alert aggregation

After Aggregation, the process of merging

identical alerts from different analyzers at various

point of time is carried out. The alerts having similar

attributes but different detection time with the

threshold of 3 minutes which is relaxed when

compared to aggregation are merged together to form

hyper alerts. Thus the merging of two alerts is

possible only if the following condition is met.

If (a1.SIP==a2.SIP ˄ a1.TIP==a2.TIP)

 If (a1.DT ≠ a2.DT ˄ a1.AID ≠ a2.AID)

 Merge(a1, a2);

where a1 and a2 are alerts, SIP and TIP represent the

source and the target machines, AID represents the

attack ID and DT represents the attack detection time.

3.4 Clustering using weighted similarity measure

The clustering component is employed to group

similar alerts into groups. The feature based

similarity is used to group similar alerts. In the

proposed method, the features or alert attributes used

for computing the similarity value are Attack_type

(AID), Source_IP (SIP), Target_IP (TIP),

Source_port (SP) and Target_port (TP). The

agglomerative clustering is applied to group similar

alerts. Each alert is considered as the singleton cluster

and based on which the similarity between the

clusters is computed. The pseudocode for clustering

is given in Fig. 4.

The similarity score is computed by aggregating

the similarity score of alert attributes where the final

score always lies between 0 and 1. Only the

similarities that are greater than the given threshold is

considered in which the cluster having a maximum

similarity score is merged. The process continues

until the similarity scores between all the clusters are

less than the threshold value. The similarity between

Figure. 4 Pseudocode for clustering

the cluster having more than one alert is computed by

taking the mean value.

The similarity measures between the alert

attributes are computed based on the similarity

between the attack type, IP address, and port used by

the attack in of the alerts.

Similarity between attack: The similarity between

the attack_type or AID of the alerts is computed by

comparing the attack classes. This can be represented

as in Eq. (2).

𝑠𝑖𝑚𝐴𝐼𝐷(𝐴1, 𝐴2) = {
1, 𝐴1(𝐴𝐼𝐷) ≡ 𝐴2(𝐴𝐼𝐷)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

𝐴1 and 𝐴2 represent the two alerts or singleton

clusters. If the clusters have more than one alert, then

each alert in one cluster is compared with all the alert

in the other cluster under comparison and the final

score is the average of all the scores. Here for

simplicity, the formula is given for the singleton

clusters having single alerts.

Similarity between port number: For computing the

similarity measure between the port number, they are

grouped according to Internet Assigned Numbers

Authority (IANA) [31]. The listing has three

categories such as well-known ports (0-1023),

registered ports (1024-49151), and dynamic or

private ports (49151-65535). Port numbers within the

same group are considered to be closer than the port

numbers of a different group. Thus, well-known ports

are closer to registered ports than private ports as the

service provided by them are similar. The formula to

compute the similarity score between the source ports

𝑠𝑖𝑚𝑆𝑃(𝐴, 𝐵) is given in Eqs. (3) and (4).

Function Alert_Aggregation (alert set A)

For each alert a in the input alert_set A

//compare the alert attributes of a and other alerts A[i]

 If (a.SIP=A[i].SIP ˄ a.TIP=A[i].TIP ˄ a.AID=A[i].AID)

 If (Time_diff(a, A[i])< threshold) then

 New_alert r; r.NOA=1;

 For each attribute attr

 If attr=detect_time then

 r.detect_time = min(a.detect_time, A[i].detect_time)

 r.attr = a.attr;

 r.NOA = r.NOA+1;

 End For

End For

End Function

Function Clustering (aggregated alert set A)

Let each aggregated alert as a Singleton Cluster

While True do

 For each pair of clusters

 Compute the similarity value

 End For

 Find the cluster pair having max. similarity score

 If sim(Ci, Cj)> threshold then

 Merge Ci and Cj

 Else Terminate loop

End While

End Function

Received: June 12, 2019 155

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

 𝑠𝑖𝑚𝑆𝑃(𝐴, 𝐵) =

 {

1, 𝐴(𝑆𝑃) = 𝐵(𝑆𝑃)
0.75, 𝛿𝑝(𝐴(𝑆𝑃)) = 𝛿𝑝(𝐵(𝑆𝑃))

0.5, 𝛿𝑝(𝐴(𝑆𝑃) ∧ 𝛿𝑝(𝐵(𝑆𝑃)) ∈ {0,1}
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

𝛿𝑝(𝑆𝑃) = {

0, 𝑆𝑃 ∈ [0,1023]
1, 𝑆𝑃 ∈ [1024,49151]

2, 𝑆𝑃 ∈ [49152,65535]
 (4)

Here, A and B are two alerts, SP represents the source

port ID. 𝛿𝑝(𝑆𝑃) represents the port numbers of different

groups. Similarly, the similarity score can be

computed for the target port (TP) as 𝑠𝑖𝑚𝑇𝑃(𝐴, 𝐵).

Similarity between IP address: As port numbers, the

IP address has several hierarchies of categories such

as unicast that includes public and private, multicast,

broadcast, etc. Accordingly, assigning the similarity

scores based on these categories are very difficult.

Thus, the hamming distance between the IP address

is computed for the measuring the similarity. As a

scaling factor, the distance is divided by the total

number of bits compared. The formula to compute

the similarity score between the source IP address of

two alerts A1 and A2 𝑠𝑖𝑚𝑆𝐼𝑃(𝐴1, 𝐴2) is in Eq. (5).

𝑠𝑖𝑚𝑆𝐼𝑃(𝐴1, 𝐴2) =
𝑑𝐻(𝐴1(𝑆𝐼𝑃),𝐴2(𝑆𝐼𝑃))

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑏𝑖𝑡𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑
 (5)

here, SIP represents source IP addresses. The same

formula can be applied for the target IP address (TIP)

if two alerts A1 and A2 𝑠𝑖𝑚𝑇𝐼𝑃(𝐴1, 𝐴2) for

computing similarity.

Based on the attribute significance, the weights

are assigned to them. The attribute weights and

attribute similarity scores are used to compute the

total similarity between the alerts. The weights are

assigned in such a way that the values lie between 0

and 1 with a constraint that the sum of weights must

be 1. As the attack type is most significant, the weight

assigned for the attribute 𝑤𝐴𝐼𝐷 is 0.3. The next

important attributes are SIP and TIP and thus the

weights assigned for the attributes 𝑤𝑆𝐼𝑃 and 𝑤𝑇𝐼𝑃 are

0.2 each. Finally, the least important attributes SP and

TP are assigned a weight 𝑤𝑆𝑃 and 𝑤𝑇𝑃 as 0.15 each.

The final similarity score based on AIP, SIP, TIP, SP

and TP for the alerts A1 and A2 is given in Eq. (6).

𝑠𝑖𝑚(𝐴1, 𝐴2) = ∑ 𝑠𝑖𝑚𝑖 × 𝑤𝑖

5

𝑖=1

 (6)

where i value represents the alert attributes AID, SIP,

TIP, SP, TP. Thus the alerts are clustered based on

the computed similarity score and in the proposed

method the threshold value for clustering is set as 0.4

as it provides optimal results.

3.3 Hyper alert correlation

Generally, hyper alerts provide high level

abstraction or patterns about attacks identified by the

generated alerts. Hyper alert correlation tries to

identify the relationship between the generated hyper

alerts in the form of cluster. The clustered alerts are

correlated to gather knowledge about the alerts. To

compute the correlation between the alerts four

parameters such as the number of common SIP pairs

(A), common TIP pairs (B), common SIP & TIP pairs

(C) and common TIP & SIP pairs (D) are employed.

The correlation represented as Corr between any two

clusters containing hyper alerts A1 and A2 as given by

[32] is given in Eq. (7).

𝐶𝑜𝑟𝑟(𝐴1, 𝐴2) =
𝐴 + 𝐵 + 𝐶 + 𝐷

2(𝑚 + 𝑛)
 (7)

Here, 𝐴 = 𝑈𝐼𝑃𝑎𝑖𝑟(𝐴1(𝑆𝐼𝑃), 𝐴2(𝑆𝐼𝑃)) implies the

unique identical pairs of source IP address that are

common for the alerts A1 and A2. 𝐵 =
𝑈𝐼𝑃𝑎𝑖𝑟(𝐴1(𝑇𝐼𝑃), 𝐴2(𝑇𝐼𝑃)) implies the unique

identical pairs of the target IP address that are

common for A1 and A2. C =
UIPair(A1(SIP), A2(TIP)) implies the unique

identical pairs where the source IP address in A1 and

target IP address in A2 are same. D =
UIPair(A1(TIP), A2(TIP)) implies the unique

identical pairs in alerts A1 and A2 where the target IP

address in A1 is the same as the source IP address in

A2. The variable m and n is the total number of alerts

in the clusters. Each pair of clusters are compared to

compute the correlation score and finally, the total

correlation score is computed by summing the

correlation score of the cluster with all the other

cluster. Obviously, the correlation between the same

cluster can be set as 0. The pseudocode for hyper alert

correlation is shown in Fig. 5 where CM represents

the correlation matrix and C represents the set of

clusters.

Based on the total correlation value and the

individual correlation score, the score of the cluster

that deviates more than other clusters can be

neglected and the other cluster having higher

correlation value can be presented to the

administrator. Based on the correlation value, the

correlation graph can also be generated. The clusters

can be arranged in such a way that their scores are

arranged in descending order. Each cluster is

Received: June 12, 2019 156

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Figure. 5 Pseudocode for hyper alert correlation

removed and the correlation with other cluster are

compared in which the cluster having maximum

correlation value is related to the first cluster. This

process continues until all the clusters are mapped.

4. Experimental analysis

Experimental analysis has been carried out to

justify the improved performance of the proposed

system.

4.1 Experimental setup

The hosts in the network are configured with core

i7 3.4Ghz with 8GB RAM. Operating system used is

64 bit Windows 8.1. The network is connected to the

outside network through the router and firewall. We

use IDS in the form of mobile agents which employs

the ensemble classification technique [33]. The

multiple sensors collect the data and store it in the

databases where mobile analysis agents in JADE

environment [34] analyses the events. The generated

alerts are normalized and prioritization based

filtering is applied to the collected alerts. The quality

alerts with higher priorities are aggregated using the

alert aggregation algorithm. These hyper alerts were

served to the correlation process for generating

correlated attack graphs. Alert post-processing

programs are written in Java and SQL Server

database is used for storage purpose.

4.2 Dataset used

The DARPA 2000 1.0 dataset is used for the

evaluation process which contains network traffic

data from two sensors (inside and DMZ) with two

LLDOS 1.0 and LLDOS 2.0.2 scenario specific

datasets which were created by MIT Lincoln Labs

[35]. In order to experiment the two scenarios,

Tcpreplay 2.3.2 [36] is used as the replay tool to feed

the sensors in the network which are eventually

processed by various phases ending with

identification of significant alert and alert correlation

graphs. The dataset contains attack with multiple

steps. The steps are as follows.

1. In the initial stage, the attacker scans the whole

network to obtain the active hosts.

2. The attacker use ping to exploit sadmint on the

hosts found in the previous step.

3. Now, the attacker uses the sadmint vulnerability

to attain the root privilege.

4. After getting the root access, the attacker installs

the DDOS malware in the compromised hosts

and makes the machine DDOS master.

5. The master machine launches the DDOS attack.

4.3 Experimental Results

The experiments are performed using inside and

DMZ traffic of LLDOS 1.0 and LLDOS 2.0.2

datasets. The prioritization based filtering of alerts

has been performed and are analyzed by varying the

threshold value from 0.5 to 0.8. The number of alerts

filtered (false positive) and the number of high

priority alerts (true positive) selected for the next

phase along with their rates are shown in Table 2.

The rates of reduction for the proposed method

with the threshold value as 0.5, 06, 0.7 and 0.8 are

nearly 70%, 80%, 87%, and 93%. Thus, if the

threshold is set with a minimum value as 0.5, the high

priority alerts include false positive.

At the same time, if the threshold is set with

maximum value as 0.7 and 0.8, then higher priority

alerts (true positive) will get filtered out. Thus for

implementation, the threshold is set as 0.6 which

provide optimum reduction rate. The detailed report

on a varying range of alert scores (AS) for the four

datasets LLDOS 1.0 Inside, LLDOS 1.0 DMZ,

LLDOS 2.0.2 Inside, LLDOS 1.0 DMZ with 0.6 as

threshold is given in Table 3. The number of alerts

filtered at each step such as priority based filtering

during low level alert post-processing and

aggregation & merging, clustering and hyper alert

correlation during high level alert post-processing are

analyzed. A detailed picture is given in Table 4. The

number of input and output alert with detection rate

at each stage for the four datasets LLDOS 1.0 Inside,

LLDOS 1.0 DMZ, LLDOS 2.0.2 Inside, LLDOS 1.0

DMZ are given in Table 4. Thus, the total alert

reduction rates for the four datasets such as LLDOS

1.0 Inside, LLDOS 1.0 DMZ, LLDOS 2.0.2 Inside,

LLDOS 1.0 DMZ are 94.98%, 94.05%, 93.48%, and

94.60% respectively.

Function Correlation (C number of clusters A[])

 Create 2D correlation matrix CM[][]

 //For each pair of clusters

 For i=1 to C do

 For j=1 to C do

 If i != j then

 CM[i][i] = Corr(Ai,Aj)

 End IF

 End For

 End For

 Compute Total Correlation Values for the cluster

 Present Top most cluster to the administrator

 Create correlation graph based on correlation score

End Function

Received: June 12, 2019 157

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Table 2. Separation of low and high priority alerts by varying threshold value

Dataset

No. of Input

Alerts

No. of Low

priority Alerts

No. of High

priority Alerts

Reduction

Rate

Accepted

Rate

Threshold value for High Priority Alerts = 0.5

LLDOS 1.0 Inside 578 405 173 70.07% 29.93%

LLDOS 1.0 DMZ 941 654 287 69.50% 30.50%

LLDOS 2.0.2 Inside 276 188 88 68.12% 31.88%

LLDOS 2.0.2 DMZ 389 271 118 69.67% 30.33%

Threshold value for High Priority Alerts = 0.6

LLDOS 1.0 Inside 578 466 112 80.62% 19.38%

LLDOS 1.0 DMZ 941 743 198 78.96% 21.04%

LLDOS 2.0.2 Inside 276 221 55 80.07% 19.93%

LLDOS 2.0.2 DMZ 389 313 76 80.46% 19.54%

Threshold value for High Priority Alerts = 0.7

LLDOS 1.0 Inside 578 511 67 88.41% 11.59%

LLDOS 1.0 DMZ 941 819 122 87.04% 12.96%

LLDOS 2.0.2 Inside 276 242 34 87.68% 12.32%

LLDOS 2.0.2 DMZ 389 342 47 87.92% 12.08%

Threshold value for High Priority Alerts = 0.8

LLDOS 1.0 Inside 578 548 30 94.81% 5.19%

LLDOS 1.0 DMZ 941 882 59 93.73% 6.27%

LLDOS 2.0.2 Inside 276 258 18 93.48% 6.52%

LLDOS 2.0.2 DMZ 389 361 28 92.80% 7.20%

Table 3. A detailed report on a varying range of alert scores

Dataset

No. of

Input

Alerts

No. of Low Priority Alerts No. of High Priority Alerts

False Alert

AS = 0

Almost False

Alert 0<AS<0.3

Possibly False

 Alert 0.3≤AS<0.6

Almost True

Alert 0.6≤AS<1

True Alert

AS = 1

LLDOS 1.0 Inside 578 21 211 234 100 12

LLDOS 1.0 DMZ 941 11 333 399 190 8

LLDOS 2.0.2 Inside 276 8 96 117 46 9

LLDOS 2.0.2 DMZ 389 9 128 176 59 17

Table 4. Alert reduction rate at each stage for DARPA datasets

Stages Dataset
Input

Alerts

Output

Alerts

Reduction

Rate
Dataset

Input

Alerts

Output

Alerts

Reduction

Rate

Prioritization
LLDOS

1.0

Inside

578 112 80.62%
LLDOS

2.0.2

Inside

276 55 80.07%

Aggregation 112 76 32.14% 55 37 32.73%

Clustering 76 48 36.84% 37 24 35.14%

Alert correlation 48 29 39.58% 24 18 25.00%

Total Alert Reduction Rate 94.98% Total Alert Reduction Rate 93.48%

Prioritization

LLDOS

1.0 DMZ

941 198 78.96%
LLDOS

2.0.2

DMZ

389 76 80.46%

Aggregation 198 127 35.86% 76 52 31.58%

Clustering 127 87 31.50% 52 38 26.92%

Alert correlation 87 56 35.63% 38 21 44.74%

Total Alert Reduction Rate 94.05% Total Alert Reduction Rate 94.60%

The clustering of meta alerts are carried out and

the threshold value is fixed as 0.4 which has effective

results when compared with other values. The

clustered hyper alerts are correlated and the

correlation matrix is created in which the correlation

value between the clusters will be the elements of the

matrix. Based on the correlation values, the final

correlation is computed by summing the values and

the value that deviates from other values will be

removed. Thus the performance of the proposed

method is evaluated using completeness (Cm) and

soundness (Sm) measures [16]. The performance of

the alert correlation is analyzed for the DARPA

datasets and are presented in Table 5.

Received: June 12, 2019 158

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Table 5. Performance analysis for alert correlation for

DARPA datasets

Details
LLDOS 1.0 LLDOS 2.0.2

Inside DMZ Inside DMZ

Correlated

alerts
29 56 18 21

Correctly

correlated alerts
29 56 18 20

Incorrectly

correlated alerts
0 0 0 1

Related alerts 29 57 18 22

Missed alerts 0 1 0 1

Completeness 100% 99.11% 100% 90.94%

Soundness 100% 100% 100% 95.24%

Table 6. Alert reduction rate comparison using DARPA

datasets

Methods Alert

reduction

Intrusion alert quality framework [10] 98.03%

Intrusion detection alert correlation [13] 53.00%

Correlation based alert detection [14] 81.21%

Inverse causal correlation [15] 86.77%

Correlation, prioritization clustering [21] 89.50%

Proposed work 94.28%

The proposed method provides better results with

100% completeness for LLDOS 1.0 Inside, LLDOS

2.0.2 Inside and produces 99.11% completeness for

LLDOS 1.0 DMZ and 90.94 % completeness for

LLDOS 2.0.2 DMZ. Also, the method produces

100% soundness for LLDOS 1.0 Inside and DMZ and

LLDOZ 2.0.2 Inside and 95.24% soundness for

LLDOS2.0.2 DMZ.

The number of alerts used for the study differs

from one researcher to another and therefore it is not

possible to compare the proposed method with other

methods. However, the existing low level alert post-

processing methods and high level post-processing

methods are compared individually with the

proposed method based on the percentage of values.

The final rate of high priority alerts filtered by the

proposed method is compared with the final rate of

high priority alerts filtered by the various existing

methods. The alert reduction rate for the proposed

method and existing methods are listed in Table 6.

From the analysis, the proposed method has

better alert reduction rate of 94.28% than all the

existing methods under comparison except Intrusion

alert quality framework having the false reduction

rate of 98.03%. This is because the several true alerts

are get filtered out in Intrusion alert quality framework.

Though the proposed method has better performance,

few of the true alerts having alert scores less than 0.5

Table 7. Performance comparison

Techniques Cm (%) Sm (%)

Correlation based [14] 93.96 95.06

Abstracted correlation graph [16] 86.5 100

Grammar-based Approach [17] 96.41 100

Ontology based method [18] 92.2 NA

Ontology based method [19] 100 99.7

Iterative alert correlation [20] 96.72 100

Attack pattern modelling [22] 87.1 86.27

Ontology based method [25] 100 97.22

Proposed Technique 99.11 100

is also considered as false alert with the error rate of

0.4%. Thus additional quality measures have to be

incorporated to increase the accuracy. Similarly, the

correlated alerts of the proposed method are

compared with existing methods based on the

completeness and soundness measures using DARPA

LLDOS 1.0 dataset. The comparison is presented in

Table 7.

From the analysis, the soundness of 100% is

produced by the proposed method which is highly

promising than the existing techniques. Meanwhile,

the 99.11% completeness of the proposed method is

better than many of the existing methods except

ontology based methods.

Thus, the method has to be analysed in such a way

to improve its performance towards 100%

completeness. Though the proposed method provides

better theoretical results for the alerts generated by

the IDS, the method lacks in providing visual

representation about the attack scenario and

correlation graph has to be implemented. Also, the

method does not handle the attacks missed by the IDS

and the system must be implemented in the real

environment. These limitations provide a room for

enhancement of the work in the future.

5. Conclusion

Due to the large size of networks, the IDS has

been installed with several sensors and many of them

will generate alerts for the same suspicious activity

which ends up with the low quality results. Post-

processing of alerts is thus become more substantial

as it improves the quality of results produced by the

IDS. In this paper, an IDS quality framework using

alert post-processing techniques to filter out the false

alerts generated by various sensors have been

proposed. The post-processing operations such as

priority based filtering, aggregation, clustering, and

correlation have been employed to analyze the

quality of alerts and to remove the trivial alerts. Our

implementation converts the large set of alerts with

false positive into a reasonable amount of quality

alerts. Experimental analysis has been made with

Received: June 12, 2019 159

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

DARPA datasets in which the proposed system

produced 94.28% of alert reduction thereby

increasing the completeness and soundness to 99%

and 100% respectively. From the results, it is found

that the proposed approach is highly promising and

capable of producing good results. The future study

aims at improving the proposed method in achieving

the 100% completeness.

References

[1] D. Nandasana and V. Barot, “A Framework for

Database Intrusion Detection System”, In: Proc.

of International Conf. on Global Trends in

Signal Processing, Information Computing and

Communication, pp.74-78, 2016.

[2] X. Lu, X. Du, and W. Wang, “Network IDS

Duplicate Alarm Reduction using Improved

SNM Algorithm”, In: Proc. of International

Conf. on Image, Vision and Computing, pp.767-

774, 2018.

[3] G.P. Spathoulas and S.K. Katsikas, “Enhancing

IDS Performance through Comprehensive Alert

Post-processing”, Computers & Security, Vol.

37, pp.176-196, 2013.

[4] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert

Prioritization in Intrusion Detection Systems”,

In: Proc. of Network Operations and

Management Symposium, pp.33-40, 2008.

[5] J.P. Anderson, Computer Security Threat

Monitoring and Surveillance, Technical report,

James P.Anderson Company, Fort Washington,

Pennsylvania, 1980.

[6] G.P. Spathoulas and S.K. Katsikas, “Reducing

False Positives in Intrusion Detection Systems”,

Computers & Security, Vol.29, No.1, pp.35-44,

2010.

[7] T. Chyssler, S. Nadjm-Tehrani, S. Burschka, K.

Burbeck, “Alarm Reduction and Correlation in

Defence of IP Networks”, In: Proc. of

International Workshops on Enabling

Technologies: Infrastructure for Collaborative

Enterprises, pp.229–34, 2004.

[8] R. Alshammari, S. Sonamthiang, M. Teimouri,

and D. Riordan, “Using Neuro-Fuzzy Approach

to Reduce False Positive Alerts”, In: Proc. of

Conf. on Communication Networks and Services

Research, pp. 345–349, 2007.

[9] N.A. Bakar and B. Belaton, “Towards

Implementing Intrusion Alert Quality

Framework”, In: Proc. of International Conf. on

Distributed Frameworks for Multimedia

Applications, pp.198-205, 2005.

[10] N.A. Bakar, B. Belaton, and A. Samsudin,

“False Positives Reduction Via Intrusion Alert

Quality Framework”, In: Proc. of International

Conf. on Networks Jointly held with

International Conf on Communication, Vol.1,

pp.547-552, 2005.

[11] H. Debar and A. Wespi, “Aggregation and

Correlation of Intrusion-Detection Alerts”, In:

Proc. of International Sym. on Recent Advances

in Intrusion Detection, 2001.

[12] T.H. Nguyen, J. Luo, and H.W. Njogu, “An

Efficient Approach to Reduce Alerts Generated

by Multiple IDS Products”, International

Journal of Network Management, Vol.24, No.3,

pp.153-180, 2014.

[13] F. Valeur, G. Vigna, C. Kruegel, and R.A.

Kemmerer, “Comprehensive Approach to

Intrusion Detection Alert Correlation”, IEEE

Transactions on Dependable and Secure

Computing, Vol.1, No.3, pp.146-169, 2004.

[14] P. Ning, Y. Cui, D.S. Reeves, and D. Xu,

“Techniques and Tools for Analyzing Intrusion

Alerts”, ACM Transactions on Information and

System Security, Vol.7, No.2, pp.274-318, 2004.

[15] J. Liu, S. Li, and R. Zhang, “Algorithm of

Reducing the False Positives in IDS based on

Correlation Analysis”, In: IOP Conference

Series: Materials Science and Engineering,

Vol.322, No.6, pp.1-5, 2018.

[16] S.O. Al-Mamory and H.L. Zhang, “Scenario

Discovery using Abstracted Correlation Graph”,

In: Proc. of International Conf. on

Computational Intelligence and Security,

pp.702-706, 2007.

[17] S.O. Al-Mamory and H. Zhang, “IDS Alerts

Correlation using Grammar-Based Approach”,

Journal in Computer Virology, Vol.5, no.4,

p.271, 2009.

[18] W. Li, S. Tian, “An Ontology based Intrusion

Alerts Correlation System”, Expert Systems with

Applications, Vol.37, pp.7138–7146, 2010.

[19] S. Saad and I. Traore, “Semantic Aware Attack

Scenarios Reconstruction”, Journal of

Information Security and Applications, Vol.18,

No.1, pp.53-67, 2013.

[20] R. Anbarestani, B. Akbari, and F. Fathi, “An

Iterative Alert Correlation Method for

Extracting Network Intrusion Scenarios”, In:

Iranian Conf. on Electrical Engineering,

pp.684-9, 2012.

[21] J. Andrew and G.J.W. Kathrine, “An Intrusion

Detection System using Correlation,

Prioritization and Clustering Techniques to

Mitigate False Alerts”, Advances in Big Data

and Cloud Computing, pp.257-268, 2018.

[22] Z. Liu, C. Wang, and S. Chen, “Correlating

Multi-Step Attack and Constructing Attack

Received: June 12, 2019 160

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.15

Scenarios based on Attack Pattern Modelling”,

In: Proc. of International Conf. on Information

Security and Assurance, pp.214-219, 2008.

[23] Z. Zali, M.R. Hashemi, and H. Saidi, “Real-time

Intrusion Detection Alert Correlation and Attack

Scenario Extraction based on the Prerequisite-

Consequence Approach”, International Journal

of Information Security, Vol. 4, No. 2, pp.125-

36, 2013.

[24] A. A. Ramaki and A. Rasoolzadegan, “Causal

Knowledge Analysis for Detecting and

Modeling Multi-Step Attacks”, Security

Communications Networks, Vol.9, No.18, pp.

6042-65, 2016.

[25] M. Barzegar and M. Shajari, “Attack Scenario

Reconstruction using Intrusion Semantics”,

Expert Systems with Applications, Vol. 108,

pp.119-133, 2018.

[26] https://nvd.nist.gov/vuln/data-feeds

[27] Common Vulnerabilities and Exposures,

http://www.cve.mitre.org/, 2003.

[28] D.Curry and H. Debar, Intrusion Detection

Message Exchange Format Data Model and

extensible Markup Language (XML) Document

Type Definition, Internet draft, 2002.

[29] M.H. Bhuyan, D.K. Bhattacharyya, and J.K.

Kalita, Network Traffic Anomaly Detection and

Prevention: Concepts, Techniques, and Tools,

Springer, 2017.

[30] C. Kruegel, W. Robertson, and G. Vigna, “Using

Alert Verification to Identify Successful

Intrusion Attempts”, Praxis der

Informationsverarbeitung und Kommunikation,

Vol.27, No.4, pp.219-227, 2004.

[31] S.E. Coull, F. Monrose, and M. Bailey, “On

Measuring the Similarity of Network Hosts:

Pitfalls, New Metrics, and Empirical Analyses”,

In NDSS, 2011.

[32] N. Hoque, D.K. Bhattacharyya, and J.K. Kalita,

“An Alert Analysis Approach to DDoS Attack

Detection”, In: Proc. of International Conf on

Accessibility to Digital World, pp.33-38, 2016

[33] A.M. Riyad and M.S. Irfan Ahmed, “An

Ensemble Classification Approach for Intrusion

Detection”, International Journal of Computer

Applications, Vol. 80, pp. 37-42, 2013.

[34] JADE Board, JADE Security Add-On Guide,

Administrator's Guide of the Security Add-On,

Version 28-February-2005, sJADE 3.3, TILAB.

http://jade.tilab.com/download/jade/license/jade

-download/

[35] MIT Lincoln Laboratory, DARPA 2000

Intrusion Detection Scenario Specific Data Sets,

2000, https://www.ll.mit.edu/r-d/datasets.

[36] A Turner, “Tcpreplay: Pcap Editing and Replay

Tools for *nix 2010”, http://tcpreplay.appneta.

com/wiki/tcpreplay-man.html

