
Received: May 22, 2019 130

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

Alternating Step Generator Using FCSR and LFSRs: A New Stream Cipher

Nagendar Yerukala1 Venu Nalla1 Padmavathi Guddeti1*

V. Kamakshi Prasad2

1C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science, UoH Campus, Hyderabad, India

2JNTUH College of Engineering, Hyderabad, India

* Corresponding author’s Email: padmagvathi@gmail.com

Abstract: Data encryption play major role in all communications via internet, wireless and wired media. Stream

ciphers are used for data encryption due to their low error propagation. This paper presents a new design of stream

cipher for generating pseudorandom keystream with two LFSR`s, one FCSR and a non-linear combiner function,

which is a bit oriented based on alternating step generator (ASGF). In our design two LFSR`s are controlled by the

FCSR . ASGF has two stages one is initialization and the other is key stream generation. We performed NIST test

suite for checking randomness on the keystream of length 1500000 generated by our design with 99% confidence

level. Keystream of ASGF passes almost all NIST tests for randomness and the results are tabulated. For fixed

extreme patterns of key and IV, ASGF is giving random sequence. Throughput of our proposed stream cipher ASGF

is 4364 cycles/byte. Throughput comparison of ASGF with existing stream ciphers A5/1, A5/2 and RC4 are

presented. It is not possible to mount brute force attack on ASGF due to large key space 2192. Security analysis of

ASGF against exhaustive search, Algebraic attack, distinguishing attack is also presented in this paper.

Keywords: Stream ciphers, Linear feedback shift register, Feedback with carry shift register, Randomness test,

Alternating step generator, Attacks.

1. Introduction

Stream Cipher (SC) produces pseudo random

keystream which is generated from a smaller secret

key. Several structures for stream ciphers have been

described in literature [1, 2] and they are of

continuing interest. This is because of their

advantage of lower computational complexity, and

lack of error propagation unlike block ciphers.

These however generate pseudo random sequences

since after the period, the sequence repeats. These

are Symmetric key ciphers since the key used for

both encryption and decryption is same. These need

a clock and at each end of the clock, a bit or word is

generated. Further, there is a need for

synchronization between the encryptor and

decryptor since both need to start at the same state.

Comparing with block ciphers, stream ciphers

can be implemented efficiently in Smart cards and

RFID tags where we have limited hardware

resources. In real world, stream ciphers are very

much useful for communication which requires high

throughput. In GSM communication message

lengths cannot be predetermined, in which case

stream ciphers work very efficiently. Synchronous

stream ciphers are used due to no error propagation

and better security feature. Re-sending of data

packet is no major issue in comparison of security

concerns due to very high speed and low error rate

of present day networks. Our stream cipher design is

synchronous stream cipher.

Synchronous Stream Cipher: A synchronous

stream cipher with key-space: {0,1}k and IV -space

{0,1}s consists of

• An internal state of n bits,

• A state initialization function (SIF): {0,1}k ×

{0,1}s
→{0,1}n

• A state update function (SUF): {0,1}n
→{0,1}n,

and

• An output function (OF): {0,1}n
→{0,1}m.

Received: May 22, 2019 131

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

Figure. 1 Phases of stream cipher

Figure. 2 General structure of stream cipher

It takes a key and an optional IV (initialization

vector) pair (K, IV) ∈ {0, 1}k × {0,1}s as input and

outputs a key stream z =(z1; z2,………), where zi ∈

{0,1}m is computed as follows:

Compute initial state S0 = SIF(K, IV) ∈ {0,1}n for

each iteration i=1, 2,…., output zi = OF(Si-1), and

update state Si = SUF(Si-1).

For m = 1, it is usually referred to as bit-oriented

stream cipher. It is called word-based stream cipher

if m > 1. Some examples are SOBER [3] and

SNOW [4]. From Fig. 1, one can understand

different phases involved in the cipher stream

generation.

Stream ciphers use a keystream generator to

generate keystream, which is added modulo-2

(XOR-ed) with the plain text message to encrypt the

message. At the receiving end, the same locally

generated key stream is XOR-ed with the received

cipher text to obtain back the plain text message (see

Fig. 2).

 Traditional stream ciphers take only single input

known as secret key which produces same key

stream. Later to solve the problem of key

management due to frequent re-keying, modern

stream ciphers are fed with two inputs, one being

public known as the initial vector (IV) and the

second input secret key. To decrypt the message, the

receiver must use the same key and IV to initialize

the keystream generator thereby producing the same

keystream. Keystream generator has two

components: initialization and key stream

generation.

Arrangement of the paper in different sections is

as follows: Section 2 discussed about literature

review of the proposed stream cipher (ASGF).

Section 3 deals with ASGF design and its

components. Section 4 deals with the analysis of

ASGF. Conclusion and future work follow in

Section 5.

2. Literature review

In this section we present the various previous

techniques used to generate cipher streams.

2.1 Linear Feedback Shift Register (LFSR)

LFSR of length L consist of L stages of one bit

memory (D Flip-Flop) and several bits are tapped

from the shift register and XOR-ed to produce a bit

which is fed back to the shift register. The bits to be

tapped are dependent on the chosen primitive

polynomial. Each stage has capacity of storing one

bit. Stage-0 (0s) is the first output of LFSR. Then

content of stage-0 is moved to stage-1, that is, stage

1 moved to stage 2 and stage L-1 is the feedback bit

denoted by SL. were L is the length of the shift

register (i.e. degree of the primitive polynomial).

The computation of feedback bit in two successive

steps is explained by the Eqs. (1), (2), and (3).

 SL=∑ (i=1 to L) CiSL-i

 = C1SL-1 + C2SL-2 +....+ CLS0 (mod 2) (1)

Keystream Generation Phase

Last round of state updation becomes input of key stream generator and updation of this is based on the design and it
produces key stream.

State Updation Phase

The goal of this phase is to provide proper diffusion to the internal state of the generator with a careful choice of
fixed number of iterations

Secret Key-IV Loading Phase

Here the key and IV are transferred into the internal state of the cipher by using some pre-defined fixed rule. Mostly
the secret key and IV are loaded into the state of the generator.

Received: May 22, 2019 132

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

 SL+1=∑ (i=1 to L) CiS(L+1)-i

 = C1SL + C2SL-1 +.....+ CLS1 (mod 2) (2)

In general,

 Sj=∑ (i=1 to L) CiSj-i

= C1Sj-1 + C2Sj-2 +.........+ CLSj-L (mod 2) (3)

PRNG: S0, S1, S2, , S(2
L

-1),

Every sequence produced from LFSR of length

L has a period 2L-1 if the connection polynomial is

primitive and of degree L. There are L shifted

sequences with one cock cycle delay. Note that

LFSR has to be loaded with a non-zero initial

condition in the L stages since otherwise the

feedback bit is zero and the state will not change

with the clock.

If any 2L consecutive bits taken at any tap are

given, then by using Berlekmap-Massey algorithm,

one can easily find the primitive polynomial. Thus,

we define Linear Complexity as the length of

consecutive bits sequence required to fully define

the Primitive polynomial. So LFSR alone cannot be

used for pseudorandom generator/stream cipher.

Several structures for increasing the linear

complexity have been described in literature [1, 5].

We will consider these in the next sub-section.

2.2 Nonlinear feedback shift register (NLFSR)

 NLFSR are generalizations of LFSRs which can

do some operations on the contents of the LFSR

which is known as non-linear filtering or shit

registers can use nonlinear functions in the feedback

loop while ensuing maximum period. One can

combine two or more LFSRs using non-linear

functions as well. Irregular clocking is also one

very interesting technique since this enables not

providing consecutive bits to the cryptanalyst. This

increase the linear Complexity enormously.

Analysis and its properties were discussed in [1, 5-

8].

2.2 Feedback with carry shift register

A Feedback with Carry Shift Register (FCSR)

can be seen as an alternative to an LFSR. Klapper

and Goresky [9, 10] initially proposed to use FCSRs

for generating pseudo-random sequences in

perspective of cryptographic applications. FSCR is

easily implementable. F-FCSR-H and F-FCSR are

some of the FCSR based stream ciphers developed

as part of the eSTREAM project [11].

 The integer q for FCSR must hold the following

conditions [12]:

Let q  Z --  -q is prime and is of bit size n+1

where Z – is set of negative integers and n is the size

of the main register.

• Choose a q such that the order of 2 modulo q is

exactly T= (|q|-1) and hence the period

produced by any preliminary value p such that

0<p<|q| is exactly T .Here both q & T /2 must

be prime numbers

• Set d=(1+|q|)/2= ∑ 𝑑𝑖2
𝑖𝑘−1

𝑖=0

Here k is main register length. The

hamming weight W(d) of the binary expansion

of “d” is not too small. Typically, W(d) is

about n/2 or slightly greater.

Stream ciphers designs using FCSR were

discussed in [10, 12, 13]. Cryptanalysis of

stream ciphers using F- FCSR were discussed

in [14, 15]. Design principles of stream ciphers

using FCSR presented in [16-19].

Two basic types of FCSRs are Fibonacci and

Galois representations:

• In the Fibonacci representation, some feedback

bits chosen based on the connection integer will

decide on the new state of left most cell and the

contents are shifted right by one cell position

[20].

• In the Galois representation, a single feedback

bit will be fed to several intermediate cell based

on the connection integer [20].

Comparing Fibonacci and Galois representations,

Galois is more suitable for cryptographic

applications since it has quadratic transition function.

Survey related to stream ciphers used in wireless

communications can be found in [28]. A new stream

cipher design proposed in [29] which is based on

combiner generator. A chaotic based stream cipher

was presented in [30], in which session key changes

dynamically. Design for 5G technologies called

Espresso was designed by Debrova and Hell [31]. It

is based on nonlinear feedback shift register.

3. Proposed ASG using FCSR (ASGF)

The alternating step generator (ASG) presented

in [21] is shown in Fig. 2. Which uses three LFSRs.

The output bit of LFSR3 decides whether the

LFSR1 is clocked or LFSR 2 is clocked. The output

bit is XOR of outputs of LFSR1 and LFSR2. The

period of the ASG is the LCM of the periods of all

the LFSRs if they are chosen to be mutually prime.

Some excellent and important cryptographic

properties of the ASG, are (1) period (P) is very

Received: May 22, 2019 133

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

long,(2)linear complexity (L) is high, and (3)

established that almost uniform relative frequency of

small output patterns on a period, [21] (of period 2k).

More precisely, If m, n are degrees of the primitive

polynomials of two LFSRs respectively, it is proven

that the period of the output sequence generated by

this design is P=P1 .P2 .2k and (m+n)2k-1<

L≤(m+n)2k,

Several attacks on Gunther’s ASG have been

described in literature. A divide-and conquer attack

by guessing the content of LFSR3 has been

described [21].

In this paper, we suggest the use of FCSR in

place of LFSR3. It is predictable that alike

outcomes also hold if the period of FCSR is co-

prime to P1 .P2.We also introduce an additional

block in which we add the output bits of LFSR1 and

LFSR2 with memory.

The sum Sn= An ⨁ Bn ⨁ Cout,n-1 is the output bit

of the sequence whereas the carry bit is Cout,n=An

Bn+ Cout,n-1 (A+B) . This will destroy the correlation

of the final output with the output of LFSR2 and

LFSR3.

Both LFSR1 and LFSR2 have distinct primitive

connection polynomials of degrees 61 and 67

respectively. Both the LFSRs have co-prime periods.

Where p1 , the period of LFSR1 is p1= (261-1) and p2 ,

the period of LFSR2 is p2= (267-1). At every stage,

only one LFSR is clocked and the output bit is

produced in step-then-add fashion. Let the

clocking/control bit of the FCSR at time t, t>=1 be

denoted by Ct. If Ct=1, LFSR1 is clocked otherwise,

LFSR2 is clocked. The keystream bit zt at time t is

obtained by adding the output bits of LFSR1 and

LFSR2 at time t with carry.

 Notations:

|| -- concatenation

 ⊕--The bit-wise Exclusive –OR operation

+-- Addition

 ∃-- There exists

∈-- Belongs to

3.1 Description of various components

The feedback polynomial of LFSR-1 and LFSR-

2 are presented in Tables 1 and 2, respectively.

The bit length of the FCSR used in our design is

64. Thus we have chosen a negative prime q=-

33364594257439900859 and the size of q is 65 bits.

(|q|-1)/2 is also prime. For good cryptographic

properties we have used “q” which is of the form

8k+3 where 0k  and also ensure that the number

of ones in (q+1)/2 is > 32. The positions of tapped

Table 1. LFSR-1

Length of LFSR-1 61

Primitive polynomial x61+ x40+ x39+ x37+ x36+ x35+

x32+ x31+ x19+ x17+ x13+ x11+

x9+ x5+ x4+ x3+ x2+ x+1

Tapping bits 0, 21, 22, 24, 25, 26, 29, 30,

42, 44, 48, 50, 52, 56, 57,

58, 59, 60

Table 2. LFSR-2

Length of LFSR-2 67

Primitive polynomial x67+ x35+ x34+ x32+ x19+ x18+

x16+ x11+ x10+ x8+ x7+ x6+1

Tapping bits 0, 32 , 33, 35, 48, 49, 51, 56,

57, 59, 60, 61

bits from the FCSR register bits must not be sparse /

clustered. The number of carry bits should be higher

than 32(64/2). The number of carry bits in our

design is 35.

3.1.1. Combiner function

The output of our design is obtained using a full-

adder:

C0=0

zi=xi  yi Ci 0 ≤ I ≤n

Ci= xi-1 yi-1  yi-1 Ci-1  xi-1 Ci-1 , 1 ≤ I <n

Note that the period of the sequence generated is

(|q|-1) × (261-1) × (267-1).

3.1.2. Parameters

 The key space and IV space are of 192-bit:

 K = {0,1}192

 IV Space: IV= {0, 1}64

 Output: one bit per iteration

3.1.3. Key and IV setup

The key and IV Setup procedure should satisfy

the following conditions:

• The transformation provided by the Key and IV

Setup procedure should be hard to invert in

order to prevent a direct key recovery attack.

• The number of iterations the generator is run

before producing any output should guarantee

Received: May 22, 2019 134

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

Figure. 3 Schematic of the proposed design – Alternating step generator

better diffusion in order to avoid

resynchronization attacks.

Key set up/Initialization of the ASGF procedure

is

• Key: K∈ {0,1}192 is divided into 24 bytes as

K=k0||k1|| k2||…………||k21|| k22||k23, where each

ki∈ {0,1}8

• Initial Vector: IV∈ {0,1}64 is divided into eight

bytes as IV=IV0|| IV1|| IV2||…………|| IV6|| IV7,

where each IV i∈ {0,1}8

• KEY Loading:

a. Main register of FCSR is loaded as follows:

i. M[63,….,0]=(k3IV5)|| k19 || (k9  IV7) || k13

|| (k15  IV2) || k7 || (k21  IV3) || k1

Carry register of FCSR is initially loaded by all

zeros.

b. The two LFSRs are represented as an array and

filled with the key and IV values as follows:

i. ARRAY[127,….,0]= k5 || (k20  IV4) || k11 ||

k14 || (k17  IV1) || k8 || k23 || k2 || k4 || k18 || k10

|| (k12  IV6) || k16 || k6 || (k22  IV0) || k0

ii. LFSR1[60,….,0]=ARRAY[60,….,0]

iii. LFSR2[66,….,0]=ARRAY[127,….,61]

• If All LFSR1 and LFSR2 bits loaded are zeros,

then we set LFSR1 [60] and LFSR2 [66] as 1.

• Next, iterate all two LFSRs and FCSR 70 times

without clocking (Regular Clocking) and ignore

the output.

3.1.4. Keystream generation

After the state initialization process, from the

71st iteration onwards, iterate the system in clock-

controlled manner to yield the keystream bits, which

will be XORed with plaintext bits to produce the

Ciphertext.

3.1.5. Encryption/decryption:

Let the ith plain text and cipher text bits be

denoted as Pi and Ci.

i. The Encryption process

Ci = Pi ⊕ zi, where zi denotes the ith

keystream bit, for i = 1, 2. ...

ii. The Decryption process

Pi = Ci ⊕ zi, where zi denotes the ith

keystream bit, for i = 1, 2. . .

From Fig. 3, one can understand Schematic of

the proposed design ASGF. Structure of new design

ASFG is simple and can be implemented efficiently

on hardware like Field Programmable Gate Array

(FPGA) boards, chips, and RFID tags etc.

4. Analysis of ASGF

In this section we discussed analysis of the

proposed stream cipher and possible attacks and

resistance to attacks.

4.1 Exhaustive search

In an exhaustive key search, an attacker attempts

all possible 2192 keys to determine which secret key

can appropriately decrypt an encrypted stream. A

brute-force attack is an inefficient form of attack

since it needs trying all 2192 possible keys to

determine which is the correct key is can take a long

time. Since ASGF key size is 192, trying 2192

possible keys is needed for Brute force attack.

4.2 Statistical analysis

Various tests of randomness occur in the

research contributions or literature [22, 23]. Golomb

[24] originally suggested three randomness related

properties (the balanced property, the runs property,

and the autocorrelation property) known as

Golomb’s postulates [25]. Many wide properties of

Received: May 22, 2019 135

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

randomness have since been established, such as

DIEHARD [26], and the NIST test suite [23]. In

those two, we selected to estimate the randomness

of the keystream produced by the stream ciphers

using the NIST SP 800-22. It consists of 15

randomness tests, which are tests (1) frequency test-

to find the zeros and ones percentage and both must

be closed to 0.5 (2) block frequency-frequency test

within a block (3) runs –to find the number of runs

or flips from 0 to 1 or 1 to 0 (4) longest run to find

the longest run in the sequence (5) matrix rank- to

find the some bit string has repetitive arrangements

through its whole sequence by separating the string

into blocks and making them into matrix to check

the linear dependency (6) spectral (DFT) – to obtain

the peak heights,(7)non-overlapping template- to

find the too many occurrences (8) overlapping

template- to find the number of occurrences,(9) a

“Universal Statistical” test based on compressibility,

(10) linear complexity-to find the length of LFSRs

and to test the complexity of the sequence

(11)serial- to find the possible pattern in the whole

sequence, (12) approximate entropy- test is based on

repetition of the occurrences in the sequence,(13)

cumulative sums- cumulative sum of the part of the

whole sequences happening in the verified sequence

is too big or too small, (14) random excursions tests

and (15) random excursions variant test.

Matrix rank, linear complexity, overlapping

template, non-overlapping template, approximate

entropy, block frequency, runs, longest run,

frequency, spectral (DFT), a “Universal Statistical”

test based on compressibility, serial, cumulative

sums, and two random excursions tests.

We have developed application in “C” to

compute the keystream sequences generated by our

proposed above design. Further, we performed NIST

tests on some sample sequences of length 1500000,

with 99% of confidence level generated by our

design. Results of these tests are presented in Table

3.

Except very few instances our sequences passed

all the NIST tests. No bias of the ASG key stream

sequence was found by any of 15 tests in the NIST

test suite. The keystream generated by ASG is

reported to have properties of random bit streams

and sufficient tolerance pertinent to these attacks.

We have also studied the sequences generated

for chosen keys with fixed patterns which are

presented in Table 4.

Table 3. NIST test suite results of ASGF

Sl.N

o

Test Name 1.5M Key stream bits

P value Success/Failure

1 Approximate

Entrophy

0.750906 SUCCESS

2 Block

Frequency

0.511781 SUCCESS

3 Cummulativ

e Sums

0.163447

(Forward)

0.192869

(Reverse)

SUCCESS

SUCCESS

4 Fast Fourier

Transform

0.435839 SUCCESS

5 Frequency 0.167122 SUCCESS

6 Linear

Complexity

0.022844 SUCCESS

7 Largest Run

of Ones

0.380281 SUCCESS

8 Non-

Overlapping

Template

Matchings

- 134/14

9 Overlapping

Template

Matchings

0.949191 SUCCESS

10 Random

excursions

INSUFFICIE

NT

NUMBER

OF CYCLES

-

11 Random

excursions

Variant

INSUFFICIE

NT

NUMBER

OF CYCLES

-

12 Rank 0.466215 SUCCESS

13 Runs 0.505196 SUCCESS

14 Serial 0.885314,

0.467906

SUCCESS,

SUCCESS

15 Universal

Statistical

0.695265 SUCCESS

Table 4. Extreme patterns of key and IV inputs of ASGF

Sl.No Parameters Values

1 Input

Keystream

0X000000000000000000000

000000000000000000000000000

 IV 0X0000000000000000

 Output

Keystream

0x9c8d1c408f082513f0655a

3160a987d8cd39181ca5c1e1bf

2 Input

Keystream

0X8000000000000000000000

00000000000000000000000000

 IV 0X8000000000000000

Received: May 22, 2019 136

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

 Output

Keystream

0x3f5de388eb5f0bc3c885

c939806917fb6d198783b60e51bf

3 Input

Keystream

0X0123456789abcdef01234567

89abcdef0123456789abcdef

 IV 0X0123456789abcdef

 Output

Keystream

0xfd7f5d7a0e989342b5e3ecb50

d052c6566b467ca9b6357a5

4 Input

Keystream

0Xffffffffffffffffffffffff

ffffffffffffffffffffffff

 IV 0Xffffffffffffffff

 Output

Keystream

0x243ee-

704b8b71da2997169710d2

0ea8daf2d7ee8f7c0f2b5

In the above cases, all the NIST tests have been

observed to pass.

4.3 Distinguishing attack

Distinguisher: A distinguisher takes as input a

sequence of n bits and outputs whether the sequence

is uniformly random or whether it the keystream

sequence output by a particular stream cipher. If the

probability with which the output distinguisher is

correct is greater than ½ then we say that it is

possible to launch a distinguishing on the stream

cipher in consideration.

That is, the output keystream of a stream cipher

can be statistically distinguished from a random

sequence, then we can say that the cipher is not

strong sufficient or weak for cryptographic

applications. ASG is designed with complex

initialization and update function. It has no linear

covering and therefore ASG is resistant to

distinguishing attacks [27].

4.4 Algebraic attack

In Algebraic Attack, cryptosystem is represented as a

system of equations and then known values are replaced

in the variables. Solving these over defined system of

multivariate equations, we can recover secret key. These

attacks exploit the fact that even if a function may have

higher degree, it may have a low degree multiple.

Let x0 be the least significant bit of the main register in

the FSCR, which is also the output of FCSR.

The transition function of FCSR can be expressed by the

Eqs. (4) and (5):

 xt+1
i = xt

i+1 + di . ct
i + di . xt

0 (mod 2) (4)

 ct+1
i = di (xt

i+1. ct
i + xt

0. ct
i + xt

0. xt
i+1) (mod 2) (5)

where i denotes the
thi cell of the register and “t” denotes

the iteration number/ clock number/time.

Let the output of FCSR be xt-1
0, where t >=1. Let the

outputs of LFSR-1 and LFSR-2 be pt
0 and qt

0 respectively.

Then pt
0 and qt

0 can be expressed by the Eqs. (6) and (7):

pt
0 = pt-1

0 (xt-1
0 +1) + pt-1

1 . xt-1
0 (mod 2) (6)

qt
0 = qt-1

1 (xt-1
0 +1) + qt-1

0 . xt-1
0 (mod 2) (7)

The ASG generated keystream sequence bit at time “t” is

given by Eqs. (8) and (9):

 zt
 = pt

0 + qt
0 + carryt (mod 2) (8)

carryt+1 = pt
0 . qt

0 + pt
0 . carryt + qt

0 . carryt (mod 2)

 (9)

 where carryt = 0.

The equation can have maximum degree 2(64+1) as

the length of the controlling register is 64, which is

incorporated into the internal states of two LFSRs.

Since length of the internal state is 192, we have to

assign those many number of variables to produce system

of equations. We will get nonlinear equations and

solving them is NP complete. So algebraic cryptanalysis

is not possible on ASGF.

4.4 Throughput analysis

We have picked some popular and standard

stream ciphers for the comparison of throughput of

our ASGF. This calculation has been done in two

abstract parameters. The first throughput calculation

is keystream generated per second by these ciphers.

Secondly, first throughput result and processor’s

speed are used to calculate throughput in cycles of

system clock.

All these implementations are done using C

language, the processor Intel Core i7 CPU 860 @

2.4 Ghz X 8, along with 8 GB RAM and 64-bit

Ubuntu 14.04 LTS.

Throughput of ASGF is comparable to the

established stream ciphers can be observed from

Table 5.

5. Conclusion and future work

In this paper, a new design of stream cipher

Alternative Step Generator using FCSR (ASGF) is

proposed, which is a software oriented stream cipher

to generate pseudorandom sequence with 2LFSRs

Received: May 22, 2019 137

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

Table 5. Throughput of ASGF

Stream

Cipher

Type Key size Throughput per

sec (MB/sec)

Throughput in

cycles (Cycles/

byte)

Brute force

attack

complexity

A5/1[33] LFSR based 64 0.79 3038 264

A5/2[33] LFSR based 64 0.44 5455 264

ASGF Combination of

FCSR and two

LFSRs

192 0.55 4364 2192

RC4[32] byte Array based 40 to 128 14.2 169 240 or 2128

and one FCSR and one nonlinear combiner function

with 192 bit key size and 64 bit IV. ASGF is bit

oriented stream cipher. ASGF has two stages:

initialisation and key stream generation. Using

ASGF, we generated keystream of length 15,00,000

and tested for randomness using NIST test suites

with 99% confidence level. Key stream of ASGF

passes almost all NIST tests for randomness used

tests. Throughput of our proposed stream cipher

ASGF is 4364 cycles/byte. Throughput comparison

of ASGF with A5/1, A5/2 and RC4 are presented.

And brute force attack complexity of ASGF is 2192 .

This complexity is very high when compared to

popular ciphers. In ASGF, key size and combination

of LFSRs, FCSR and nonlinear combiner function

play a major role in resistance to several attacks.

ASGF is secure enough against exhaustive search,

algebraic and distinguishing attacks. For fixed

extreme patterns of key and IV inputs ASGF

producing completely random output. The

correlations between keystream and key &

keystream and IV have to be performed and exploit

other attacks as future work.

Acknowledgments

The authors would like to thank Dr. P.V. Ananda

Mohan, CDAC, Bangalore for his valuable

suggestions. Our special thanks to anonymous

reviewers for their valuable reviews.

References

[1] A.J. Menezes, P. C. V. Oorschot, and S. A.

Vanstone, Handbook of Applied Cryptography,

CRC Press, ISBN. 0-8493-8523-7, 1996.

[2] W. Stallings, Cryptography and Network

Security principles and Practice, fifth edition,

Prentice Hall, 2011.

[3] P. Hawkes, and G. G. Rose, Primitive

Specification for SOBER-128, 2003.

https://eprint.iacr.org/2003/081.pdf.

[4] SNOW Specification of the 3GPP

Confidentiality and Integrity Algorithms UEA2

& UIA2, Document 2: SNOW 3G Specification,

ETSI/SAGE Specification, and Version: 1.1,

2006.

[5] B. Schneier, Applied Cryptography: Protocols,

Algorithms, and Source Code in C, Wiley, 1996.

[6] K. Zeng, C. H. Yang, and T. R. N. Rao, “Large

Primes in Stream Cipher Cryptography”,

AUSCRYPT-1990, 194-205, 1990.

[7] K. Zeng, C. H. Yang, D. Y. Wei and T. R. N.

Rao, “Pseudorandom Bit Generators in Stream

Cipher Cryptography”, IEEE Computer, Vol.

24, No. 2, pp. 8-17, 1991.

[8] R. A. Rueppel, Analysis and Design of Stream

Ciphers, Springer, 1986.

[9] M. Goresky and Klapper, “Large Periods

Nearly de Bruijn FCSR Sequence”, In: Proc. of

Advances in Cryptology-Eurocrypt’95, LNCS,

Berlin: Springer Verlag, pp.263-273, 1995.

[10] A. Klapper and M. Goresky, “Feedback Shift

Registers 2-Adic Span and Combiners with

Memory”, Journal of Cryptology, Vol. 10, No.

2, pp. 111-147, 1997.

[11] eSTREM, http://www.ecrypt.eu.org/stream/,

2008.

[12] A. Klapper and B. Preneel, “Feedback with

Carry Shift Registers Over Finite Fields

(extended abstract)”, In: Proc. of FSE, Lecture

Notes in Computer Science, Vol. 1008, pp.170-

178, 1995.

[13] A. Klapper, “A Survey of Feedback with Carry

Shift Registers”, T. SETA 2004, Springer-

Verlag Berlin Heidelberg, LNCS 3486, pp.56–

71, 2005.

[14] É. Jaulmes and F. Muller, “Cryptanalysis of the

F-FCSR stream cipher family”, In: Proc. of the

Received: May 22, 2019 138

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.13

12th International Conference on Selected

Areas in Cryptography, Springer-Verlag Berlin,

Heidelberg, pp. 20-35, 2005.

[15] F. Arnault, T.P. Berger, and C. Lauradoux,

“Update on F-FCSR Stream Cipher”, In: Proc.

of Network of Excellence in Cryptology

(ECRYPT), Call for stream Cipher Primitives –

Phase 2, 2006.

[16] F. Arnault, T.P. Berger, C. Lauradoux, and M.

Minier, “X-FCSR – A New Software Oriented

Stream Cipher Based Upon FCSRs”, In: Proc.

of Progress in Cryptology (INDOCRYPT 2007),

Lecture Notes in Computer Science, Vol. 4859,

Springer, Berlin, Heidelberg, 2007.

[17] F. Arnault, T. P. Berger, C. Lauradoux, M.

Minier, and B. Pousse, “A new approach for

FCSRs”, In: Proc. of Select. Areas in Cryptog.

SAC 2009, Revised Selected Papers, Vol. 5867,

pp. 433-448, 2009.

[18] A. Ali, “Oppel-2: A New Family of FCSR-

based Stream Ciphers”, In: Proc. of IEEE

International Conference on Emerging

Technologies (ICET), pp. 75-80, 2014.

[19] A. Ali, “Feedback with carry shift registers and

(in-depth) security of ciphers based on this

primitive”, In: Proc. of the 15th International

Bhurban Conference on Applied Sciences and

Technology (IBCAST), 2018.

[20] M. Goresky and A. M. Klapper, “Fibonacci and

Galois Representations of Feedback-With-

Carry Shift Registers”, IEEE Transactions on

Information Theory, Vol. 48, No. 11, 2002.

[21] C.G. Günther, “Alternating step generators

controlled by deBruijn sequences”, In: Proc. of

Advances in Cryptology (EUROCRYPT '87),

Lecture Notes in Computer Science, Vol. 304,

D. Chaum and W. L. Price eds., Springer-

Verlag, pp. 5-14, 1988.

[22] B.Y. Zhang and G. Gong, “Randomness

properties of stream ciphers for wireless

communications”, In: Proc. of the Sixth

International Workshop on Signal Design and

Its Applications in Communications, 2013.

[23] NIST National Institute of Standards and

Technology, A Statistical Test Suite for

Random and Pseudorandom Number

Generators for Cryptographic Applications,

Special publication, 2010.

[24] S. Golomb, Shift Register Sequences, Aegean

Park Press, Laguna Hills (CA), Revised

edition,1982.

[25] L. Chen and G. Gong, Communication System

Security, Boca Raton, FL: CRC Press, 2012.

[26] G. Marsaglia, DIEHARD Battery of Tests of

Randomness [Online], 2010.

[27] D. Coppersmith, S. Halevi, and C. Jutla,

“Cryptanalysis of Stream Ciphers with Linear

Masking”, In: Proc. of Advances in Cryptology

— CRYPTO 2002, Yung M. (eds). Lecture

Notes in Computer Science, Vol. 2442.

Springer, Berlin, Heidelberg, 2002.

[28] Y. Nagendar, V. Kamakshi Prasad, A. Appa

Rao, and G. Padmavathi, “Applications of

Stream ciphers in wireless communications”,

International Journal of Computer Sciences

and Engineering, Vol. 6, No. 6, pp.1121-1126,

2018.

[29] N. Yerukala, G. Padmavathi, V. Nalla, and V.

Kamakshi Prasad, “LFL- A New Stream Cipher

for Secure Communications”, In: Proc. of IEEE

International Conference on Computational

Intelligence and Computing Research (IEEE

ICCIC), 2018.

[30] A. S. Alshammari, M. I. Sobhy, and P. Lee,

"Secure digital communication based on

Lorenz stream cipher", In: Proc. of the 30th

IEEE International System-on-Chip Conference

(SOCC), pp. 23-28, 2017.

[31] E. Dubrova and M. Hell, “Espresso: A stream

cipher for 5g wireless communication systems”,

Cryptography and Communications, Vol. 9, No.

2, pp. 273-289, 2017.

[32] G. Paul and S. Maitra, RC4 Stream Ciphers and

its variants, CRC Press, Taylor & Francis

Group, 2012.

[33] E. Barkan, E. Biham, and N. Keller, “Instant

Ciphertext-Only Cryptanalysis of GSM

Encrypted Communication”, Journal of

Cryptology, Vol. 21, No. 3, pp.392–429, 2008.

https://link.springer.com/journal/145
https://link.springer.com/journal/145

