
Received:  May 22, 2019                                                                                                                                                   130 

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019           DOI: 10.22266/ijies2019.1031.13 

 

 
Alternating Step Generator Using FCSR and LFSRs: A New Stream Cipher 

 

Nagendar Yerukala1        Venu Nalla1        Padmavathi Guddeti1*         

V. Kamakshi Prasad2 

 
1C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science, UoH Campus, Hyderabad, India 

2JNTUH College of Engineering, Hyderabad, India 

* Corresponding author’s Email: padmagvathi@gmail.com 

 

 
Abstract: Data encryption play major role in all communications via internet, wireless and wired media. Stream 

ciphers are used for data encryption due to their low error propagation. This paper presents a new design of stream 

cipher for generating pseudorandom keystream with two LFSR`s, one FCSR and a non-linear combiner function, 

which is a bit oriented based on alternating step generator (ASGF). In our design two LFSR`s are controlled by the 

FCSR . ASGF has two stages one is initialization and the other is key stream generation. We performed NIST test 

suite for checking randomness on the keystream of length 1500000 generated by our design with 99% confidence 

level. Keystream of ASGF passes almost all NIST tests for randomness and the results are tabulated. For fixed 

extreme patterns of key and IV, ASGF is giving random sequence. Throughput of our proposed stream cipher ASGF 

is 4364 cycles/byte. Throughput comparison of ASGF with existing stream ciphers A5/1, A5/2 and RC4 are 

presented. It is not possible to mount brute force attack on ASGF due to large key space 2192. Security analysis of 

ASGF against exhaustive search, Algebraic attack, distinguishing attack is also presented in this paper. 

Keywords: Stream ciphers, Linear feedback shift register, Feedback with carry shift register, Randomness test, 

Alternating step generator, Attacks. 

 

 

1. Introduction 

Stream Cipher (SC) produces pseudo random 

keystream which is generated from a smaller secret 

key. Several structures for stream ciphers have been 

described in literature [1, 2] and they are of 

continuing interest. This is because of their 

advantage of lower computational complexity, and 

lack of error propagation unlike block ciphers. 

These however generate pseudo random sequences 

since after the period, the sequence repeats.  These 

are Symmetric key ciphers since the key used for 

both encryption and decryption is same. These need 

a clock and at each end of the clock, a bit or word is 

generated. Further, there is a need for 

synchronization between the encryptor and 

decryptor since both need to start at the same state.    

Comparing with block ciphers, stream ciphers 

can be implemented efficiently in Smart cards and 

RFID tags where we have limited hardware 

resources. In real world, stream ciphers are very 

much useful for communication which requires high 

throughput. In GSM communication message 

lengths cannot be predetermined, in which case 

stream ciphers work very efficiently. Synchronous 

stream ciphers are used due to no error propagation 

and better security feature. Re-sending of data 

packet is no major issue in comparison of security 

concerns due to very high speed and low error rate 

of present day networks. Our stream cipher design is 

synchronous stream cipher.  

Synchronous Stream Cipher: A synchronous 

stream cipher with key-space: {0,1}k and IV -space 

{0,1}s consists of 

• An internal state of n bits, 

• A state initialization function (SIF): {0,1}k × 

{0,1}s
→{0,1}n  

• A state update function (SUF): {0,1}n
→{0,1}n, 

and 

• An output function (OF): {0,1}n
→{0,1}m. 
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Figure. 1 Phases of stream cipher 

 

 

 
Figure. 2 General structure of stream cipher  

 

It takes a key and an optional IV (initialization 

vector) pair (K, IV) ∈ {0, 1}k × {0,1}s as input and 

outputs a key stream z =(z1; z2,………), where zi  ∈ 

{0,1}m   is computed as follows: 

Compute initial state S0 = SIF(K, IV ) ∈ {0,1}n  for 

each iteration i=1, 2,…., output zi = OF(Si-1), and  

update state Si = SUF(Si-1). 

For m = 1, it is usually referred to as bit-oriented 

stream cipher. It is called word-based stream cipher 

if m > 1. Some examples are SOBER [3] and 

SNOW [4]. From Fig. 1, one can understand 

different phases involved in the cipher stream 

generation. 

Stream ciphers use a keystream generator to 

generate keystream, which is added modulo-2 

(XOR-ed) with the plain text message to encrypt the 

message. At the receiving end, the same locally 

generated key stream is XOR-ed with the received 

cipher text to obtain back the plain text message (see 

Fig. 2). 

 Traditional stream ciphers take only single input 

known as secret key which produces same key 

stream. Later to solve the problem of key 

management due to frequent re-keying, modern 

stream ciphers are fed with two inputs, one being 

public known as the initial vector (IV) and the 

second input secret key. To decrypt the message, the 

receiver must use the same key and IV to initialize 

the keystream generator thereby producing the same 

keystream. Keystream generator has two 

components: initialization and key stream 

generation. 

Arrangement of the paper in different sections is 

as follows: Section 2 discussed about literature 

review of the proposed stream cipher (ASGF). 

Section 3 deals with ASGF design and its 

components. Section 4 deals with the analysis of 

ASGF. Conclusion and future work follow in 

Section 5. 

2. Literature review 

In this section we present the various previous 

techniques used to generate cipher streams.  

2.1 Linear Feedback Shift Register (LFSR) 

LFSR of length L consist of L stages of one bit 

memory (D Flip-Flop) and several bits are tapped 

from the shift register and XOR-ed to produce a bit 

which is fed back to the shift register.  The bits to be 

tapped are dependent on the chosen primitive 

polynomial. Each stage has capacity of storing one 

bit. Stage-0 ( 0s ) is the first output of LFSR. Then 

content of stage-0 is moved to stage-1, that is, stage 

1 moved to stage 2 and stage L-1 is the feedback bit 

denoted by SL. were L is the length of the shift 

register (i.e. degree of the primitive polynomial). 

The computation of feedback bit in two successive 

steps is explained by the Eqs. (1), (2), and (3).   

 

            SL=∑ (i=1 to L) CiSL-i  

    = C1SL-1 + C2SL-2   +....+ CLS0  (mod 2)    (1) 

 

Keystream Generation Phase

Last round of state updation becomes input of key stream generator and updation of this is based on the design and it 
produces key stream.

State Updation Phase

The goal of this phase is to provide proper diffusion to the internal state of the generator with a careful choice of 
fixed number of iterations

Secret Key-IV Loading Phase

Here the key and IV are transferred into the internal state of the cipher by using some pre-defined fixed rule. Mostly 
the secret key and IV are loaded into the state of the generator.
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        SL+1=∑ (i=1 to L) CiS(L+1)-i  

              = C1SL + C2SL-1 +.....+ CLS1 (mod 2)        (2) 

 

In general, 

       Sj=∑ (i=1 to L) CiSj-i  

= C1Sj-1 + C2Sj-2 +.........+ CLSj-L (mod 2)       (3) 

 

PRNG: S0, S1, S2, .... , S(2
L

-1), 

 

Every sequence produced from LFSR of length 

L has a period 2L-1 if the connection polynomial is 

primitive and of degree L. There are L shifted 

sequences with one cock cycle delay.  Note that 

LFSR has to be loaded with a non-zero initial 

condition in the L stages since otherwise the 

feedback bit is zero and the state will not change 

with the clock.  

If any 2L consecutive bits taken at any tap are 

given, then by using Berlekmap-Massey algorithm, 

one can easily find the primitive polynomial. Thus, 

we define Linear Complexity as the length of 

consecutive bits sequence required to fully define 

the Primitive polynomial.  So LFSR alone cannot be 

used for pseudorandom generator/stream cipher. 

Several structures for increasing the linear 

complexity have been described in literature [1, 5]. 

We will consider these in the next sub-section. 

2.2 Nonlinear feedback shift register (NLFSR) 

     NLFSR are generalizations of LFSRs which can 

do some operations on the contents of the LFSR 

which is known as non-linear filtering or shit 

registers can use nonlinear functions in the feedback 

loop while ensuing maximum period. One can 

combine two or more LFSRs using non-linear 

functions as well.  Irregular clocking is also one 

very interesting technique since this enables not 

providing consecutive bits to the cryptanalyst. This 

increase the linear Complexity enormously. 

Analysis and its properties were discussed in [1, 5-

8].  

2.2 Feedback with carry shift register  

A Feedback with Carry Shift Register (FCSR) 

can be seen as an alternative to an LFSR. Klapper 

and Goresky [9, 10] initially proposed to use FCSRs 

for generating pseudo-random sequences in 

perspective of cryptographic applications. FSCR is 

easily implementable. F-FCSR-H and F-FCSR are 

some of the FCSR based stream ciphers developed 

as part of the eSTREAM project [11]. 

 The integer q for FCSR must hold the following 

conditions [12]: 

Let q  Z --  -q is prime and is of bit size n+1 

where Z – is set of negative integers and n is the size 

of the main register. 

 

• Choose a q such that the order of 2 modulo q is 

exactly T= (|q|-1)  and hence the period 

produced by any preliminary value p such that 

0<p<|q|  is exactly T .Here both q & T /2 must 

be prime numbers 

• Set     d=(1+|q|)/2= ∑ 𝑑𝑖2
𝑖𝑘−1

𝑖=0  

Here k is main register length. The 

hamming weight W(d) of the binary expansion 

of “d” is not too small. Typically, W(d) is 

about n/2 or slightly greater. 

Stream ciphers designs using FCSR were 

discussed in [10, 12, 13]. Cryptanalysis of 

stream ciphers using F- FCSR were discussed 

in [14, 15]. Design principles of stream ciphers 

using FCSR presented in [16-19]. 

 

Two basic types of FCSRs are Fibonacci and 

Galois representations: 

 

• In the Fibonacci representation, some feedback 

bits chosen based on the connection integer will 

decide on the new state of left most cell and the 

contents are shifted right by one cell position 

[20]. 

• In the Galois representation, a single feedback 

bit will be fed to several intermediate cell based 

on the connection integer [20]. 

 

Comparing Fibonacci and Galois representations, 

Galois is more suitable for cryptographic 

applications since it has quadratic transition function. 

Survey related to stream ciphers used in wireless 

communications can be found in [28]. A new stream 

cipher design proposed in [29] which is based on 

combiner generator.  A chaotic based stream cipher 

was presented in [30], in which session key changes 

dynamically. Design for 5G technologies called 

Espresso was designed by Debrova and Hell [31]. It 

is based on nonlinear feedback shift register.   

3. Proposed ASG using FCSR (ASGF) 

The alternating step generator (ASG) presented 

in [21] is shown in Fig. 2.  Which uses three LFSRs. 

The output bit of LFSR3 decides whether the 

LFSR1 is clocked or LFSR 2 is clocked. The output 

bit is XOR of outputs of LFSR1 and LFSR2.  The 

period of the ASG is the LCM of the periods of all 

the LFSRs if they are chosen to be mutually prime. 

Some excellent and important cryptographic 

properties of the ASG, are (1) period (P) is very 
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long,(2)linear complexity (L) is high, and (3) 

established that almost uniform relative frequency of 

small output patterns on a period, [21] (of period 2k). 

More precisely, If m, n are degrees of the primitive 

polynomials of two LFSRs respectively, it is proven 

that the period of the output sequence generated by 

this design is P=P1 .P2 .2k and (m+n)2k-1< 

L≤(m+n)2k, 

Several attacks on Gunther’s ASG have been 

described in literature. A divide-and conquer attack 

by guessing the content of LFSR3 has been 

described [21].  

In this paper, we suggest the use of FCSR in 

place of LFSR3.  It is predictable that alike 

outcomes also hold if the period of FCSR is co-

prime to P1 .P2.We also introduce an additional 

block in which we add the output bits of LFSR1 and 

LFSR2 with memory. 

The sum Sn= An ⨁ Bn ⨁ Cout,n-1  is the output bit 

of the sequence whereas the carry bit is   Cout,n=An 

Bn+ Cout,n-1 (A+B)  . This will destroy the correlation 

of the final output with the output of LFSR2 and 

LFSR3.  

Both LFSR1 and LFSR2 have distinct primitive 

connection polynomials of degrees 61 and 67 

respectively. Both the LFSRs have co-prime periods. 

Where p1 , the period of LFSR1 is p1= (261-1) and p2 , 

the period of LFSR2 is p2= (267-1). At every stage, 

only one LFSR is clocked and the output bit is 

produced in step-then-add fashion. Let the 

clocking/control bit of the FCSR at time t, t>=1 be 

denoted by Ct. If Ct=1, LFSR1 is clocked otherwise, 

LFSR2 is clocked. The keystream bit zt at time t is 

obtained by adding the output bits of LFSR1 and 

LFSR2 at time t with carry. 

 

    Notations: 

|| -- concatenation 

    ⊕--The bit-wise Exclusive –OR operation 

+-- Addition 

   ∃-- There exists 

∈-- Belongs to 

3.1 Description of various components 

The feedback polynomial of LFSR-1 and LFSR-

2 are presented in Tables 1 and 2, respectively.   

The bit length of the FCSR used in our design is 

64. Thus we have chosen a negative prime q=-

33364594257439900859 and the size of q is 65 bits. 

(|q|-1)/2   is also prime. For good cryptographic 

properties we have used “q” which is of the form 

8k+3 where 0k    and also ensure that the number 

of ones in (q+1)/2    is > 32. The positions of tapped 

 

Table 1. LFSR-1 

Length of LFSR-1 61 

Primitive polynomial x61+ x40+ x39+ x37+ x36+ x35+ 

x32+ x31+ x19+ x17+ x13+ x11+ 

x9+ x5+ x4+ x3+ x2+ x+1 

Tapping bits 0, 21, 22, 24, 25, 26, 29, 30, 

42, 44, 48, 50, 52, 56, 57, 

58, 59, 60 

 
Table 2. LFSR-2 

Length of LFSR-2 67 

Primitive polynomial x67+ x35+ x34+ x32+ x19+ x18+ 

x16+ x11+ x10+ x8+ x7+ x6+1 

Tapping bits 0, 32 , 33, 35, 48, 49, 51, 56, 

57, 59, 60, 61 

 

bits from the FCSR register bits must not be sparse / 

clustered. The number of carry bits should be higher 

than 32(64/2). The number of carry bits in our 

design is 35. 

3.1.1. Combiner function 

The output of our design is obtained using a full-

adder:  

 

C0=0 

zi=xi  yi Ci  0 ≤ I ≤n 

Ci= xi-1 yi-1  yi-1 Ci-1   xi-1 Ci-1 ,  1 ≤ I <n 

 

Note that the period of the sequence generated is 

(|q|-1) × (261-1) × (267-1). 

3.1.2. Parameters     

     The key space and IV space are of 192-bit: 

          K = {0,1}192 

          IV Space: IV= {0, 1}64 

         Output: one bit per iteration 

3.1.3. Key and IV setup 

The key and IV Setup procedure should satisfy 

the following conditions: 

 

• The transformation provided by the Key and IV 

Setup procedure should be hard to invert in 

order to prevent a direct key recovery attack. 

• The number of iterations the generator is run 

before producing any output should guarantee 
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Figure. 3 Schematic of the proposed design – Alternating step generator 

 

 

better diffusion in order to avoid 

resynchronization attacks. 

 

Key set up/Initialization of the ASGF procedure 

is  

 

• Key: K∈ {0,1}192 is divided into 24 bytes as 

K=k0||k1|| k2||…………||k21|| k22||k23, where each 

ki∈ {0,1}8 

• Initial Vector: IV∈ {0,1}64 is divided into eight 

bytes as IV=IV0|| IV1|| IV2||…………|| IV6|| IV7, 

where each IV i∈ {0,1}8 

 

• KEY Loading: 

a. Main register of FCSR is loaded as follows: 

i. M[63,….,0]=(k3IV5)|| k19 || (k9  IV7) || k13    

|| (k15  IV2) || k7 || (k21  IV3) || k1 

Carry register of FCSR is initially loaded by all 

zeros. 

 

b. The two LFSRs are represented as an array and 

filled with the key and IV values as follows:  

i. ARRAY[127,….,0]= k5 || (k20  IV4) || k11 ||  

k14 || (k17  IV1) || k8 || k23 || k2 || k4 || k18 || k10  

|| (k12  IV6) || k16 || k6 || (k22  IV0) ||  k0  

ii. LFSR1[60,….,0]=ARRAY[60,….,0] 

iii. LFSR2[66,….,0]=ARRAY[127,….,61] 

 

• If All LFSR1 and LFSR2 bits loaded are zeros, 

then we set LFSR1 [60] and LFSR2 [66] as 1. 

• Next, iterate all two LFSRs and FCSR 70 times 

without clocking (Regular Clocking) and ignore 

the output. 

3.1.4. Keystream generation 

After the state initialization process, from the 

71st iteration onwards, iterate the system in clock-

controlled manner to yield the keystream bits, which 

will be XORed with plaintext bits to produce the 

Ciphertext. 

3.1.5. Encryption/decryption: 

Let the ith plain text and cipher text bits be 

denoted as Pi and Ci.  

 

i. The Encryption process  

Ci = Pi ⊕ zi, where zi denotes the ith  

keystream bit, for i = 1, 2. ... 

ii. The Decryption process  

Pi = Ci ⊕ zi, where zi denotes the ith  

keystream bit, for i = 1, 2. . . 

 

From Fig. 3, one can understand Schematic of 

the proposed design ASGF. Structure of new design 

ASFG is simple and can be implemented efficiently 

on hardware like Field Programmable Gate Array 

(FPGA) boards, chips, and RFID tags etc. 

4. Analysis of ASGF 

In this section we discussed analysis of the 

proposed stream cipher and possible attacks and 

resistance to attacks. 

4.1 Exhaustive search 

In an exhaustive key search, an attacker attempts 

all possible 2192 keys to determine which secret key 

can appropriately decrypt an encrypted stream. A 

brute-force attack is an inefficient form of attack 

since it needs trying all 2192 possible keys to 

determine which is the correct key is can take a long 

time. Since ASGF key size is 192, trying 2192 

possible keys is needed for Brute force attack.  

4.2 Statistical analysis 

Various tests of randomness occur in the 

research contributions or literature [22, 23]. Golomb 

[24] originally suggested three randomness related 

properties (the balanced property, the runs property, 

and the autocorrelation property) known as 

Golomb’s postulates [25]. Many wide properties of 
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randomness have since been established, such as 

DIEHARD [26], and the NIST test suite [23]. In 

those two, we selected to estimate the randomness 

of the keystream produced by the stream ciphers 

using the NIST SP 800-22. It consists of 15 

randomness tests, which are tests (1) frequency test-

to find the zeros and ones percentage and both must 

be closed to 0.5 (2) block frequency-frequency test 

within a block (3) runs –to find the number of runs 

or flips from 0 to 1 or 1 to 0 (4) longest run to find 

the longest run in the sequence (5) matrix rank- to 

find the some bit string has repetitive arrangements 

through its whole sequence by separating the string 

into blocks and making them into matrix to check 

the linear dependency (6) spectral (DFT) – to obtain 

the peak heights,(7)non-overlapping template- to 

find the too many occurrences (8) overlapping 

template- to find the number of occurrences,(9) a 

“Universal Statistical” test based on compressibility, 

(10) linear complexity-to find the length of LFSRs 

and to test the complexity of the sequence  

(11)serial- to find the possible pattern in the whole 

sequence, (12) approximate entropy- test is based on 

repetition of the occurrences in the sequence,(13) 

cumulative sums- cumulative sum of the part of the 

whole sequences happening in the verified sequence 

is too big or too small, (14) random excursions tests 

and (15) random excursions variant test. 

Matrix rank, linear complexity, overlapping 

template, non-overlapping template, approximate 

entropy, block frequency, runs, longest run, 

frequency, spectral (DFT), a “Universal Statistical” 

test based on compressibility, serial, cumulative 

sums, and two random excursions tests. 

We have developed application in “C” to 

compute the keystream sequences generated by our 

proposed above design. Further, we performed NIST 

tests on some sample sequences of length 1500000, 

with 99% of confidence level generated by our 

design. Results of these tests are presented in Table 

3. 

Except very few instances our sequences passed 

all the NIST tests. No bias of the ASG key stream 

sequence was found by any of 15 tests in the NIST 

test suite. The keystream generated by ASG is 

reported to have properties of random bit streams 

and sufficient tolerance pertinent to these attacks.  

We have also studied the sequences generated 

for chosen keys with fixed patterns which are 

presented in Table 4. 

 

 

 

Table 3. NIST test suite results of ASGF 

Sl.N

o 

Test Name 1.5M Key stream bits 

P value Success/Failure 

1 Approximate 

Entrophy 

0.750906 SUCCESS 

2 Block 

Frequency 

0.511781 SUCCESS 

3 Cummulativ

e Sums 

0.163447 

(Forward) 

0.192869 

(Reverse) 

SUCCESS 

SUCCESS 

4 Fast Fourier 

Transform 

0.435839 SUCCESS 

5 Frequency 0.167122 SUCCESS 

6 Linear 

Complexity 

0.022844 SUCCESS 

7 Largest Run 

of Ones 

0.380281 SUCCESS 

8 Non-

Overlapping 

Template 

Matchings 

- 134/14 

9 Overlapping 

Template 

Matchings 

0.949191 SUCCESS 

10 Random 

excursions 

INSUFFICIE

NT 

NUMBER 

OF CYCLES 

- 

11 Random 

excursions 

Variant 

INSUFFICIE

NT 

NUMBER 

OF CYCLES 

- 

12 Rank 0.466215 SUCCESS 

13 Runs 0.505196 SUCCESS 

14 Serial 0.885314, 

0.467906 

SUCCESS, 

SUCCESS 

15 Universal 

Statistical 

0.695265 SUCCESS 

 

Table 4. Extreme patterns of key and IV inputs of ASGF 

Sl.No Parameters Values 

1 Input 

Keystream 

0X000000000000000000000 

000000000000000000000000000 

 IV 0X0000000000000000 

 Output 

Keystream 

0x9c8d1c408f082513f0655a 

3160a987d8cd39181ca5c1e1bf 

2 Input 

Keystream 

0X8000000000000000000000 

00000000000000000000000000 

 IV 0X8000000000000000 
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 Output 

Keystream 

0x3f5de388eb5f0bc3c885 

c939806917fb6d198783b60e51bf 

3 Input 

Keystream 

0X0123456789abcdef01234567 

89abcdef0123456789abcdef 

 IV 0X0123456789abcdef 

 

 Output 

Keystream 

0xfd7f5d7a0e989342b5e3ecb50 

d052c6566b467ca9b6357a5 

4 Input 

Keystream 

0Xffffffffffffffffffffffff 

ffffffffffffffffffffffff 

 IV 0Xffffffffffffffff 

 Output 

Keystream 

0x243ee-

704b8b71da2997169710d2 

0ea8daf2d7ee8f7c0f2b5 

 
In the above cases, all the NIST tests have been 

observed to pass.  

4.3 Distinguishing attack 

Distinguisher: A distinguisher takes as input a 

sequence of n bits and outputs whether the sequence 

is uniformly random or whether it the keystream 

sequence output by a particular stream cipher. If the 

probability with which the output distinguisher is 

correct is greater than ½ then we say that it is 

possible to launch a distinguishing on the stream 

cipher in consideration. 

That is, the output keystream of a stream cipher 

can be statistically distinguished from a random 

sequence, then we can say that the cipher is not 

strong sufficient or weak for cryptographic 

applications. ASG is designed with complex 

initialization and update function. It has no linear 

covering and therefore ASG is resistant to 

distinguishing attacks [27]. 

4.4 Algebraic attack 

In Algebraic Attack, cryptosystem is represented as a 

system of equations and then known values are replaced 

in the variables. Solving these over defined system of 

multivariate equations, we can recover secret key. These 

attacks exploit the fact that even if a function may have 

higher degree, it may have a low degree multiple. 

Let x0 be the least significant bit of the main register in 

the FSCR, which is also the output of FCSR. 

The transition function of FCSR can be expressed by the 

Eqs. (4) and (5): 

 

 xt+1
i = xt

i+1 + di . ct
i + di . xt

0     (mod 2)              (4) 

 

 ct+1
i = di (xt

i+1. ct
i + xt

0. ct
i + xt

0. xt
i+1 ) (mod 2)  (5) 

 

where i denotes the 
thi cell of the register and “t” denotes 

the iteration number/ clock number/time. 

Let the output of FCSR be xt-1
0, where t >=1. Let the 

outputs of LFSR-1 and LFSR-2 be pt
0 and qt

0 respectively. 

Then pt
0 and qt

0 can be expressed by the Eqs. (6) and (7): 

 

pt
0 = pt-1

0 (xt-1
0 +1) + pt-1

1 . xt-1
0    (mod 2)        (6) 

 

qt
0 = qt-1

1 (xt-1
0 +1) + qt-1

0 . xt-1
0    (mod 2)       (7) 

 

The ASG generated keystream sequence bit at time “t” is 

given by Eqs. (8) and (9): 

 

 zt
 = pt

0 + qt
0 + carryt    (mod 2)                     (8) 

 

carryt+1 = pt
0 . qt

0 + pt
0 . carryt + qt

0 . carryt    (mod 2) 

 (9) 

 where carryt = 0. 

 

The equation can have maximum degree 2(64+1) as 

the length of the controlling register is 64, which is 

incorporated into the internal states of two LFSRs.  

Since length of the internal state is 192, we have to 

assign those many number of variables to produce system 

of equations. We will get nonlinear equations and   

solving them is NP complete. So algebraic cryptanalysis 

is not possible on ASGF. 

4.4 Throughput analysis 

We have picked some popular and standard 

stream ciphers for the comparison of throughput of 

our ASGF. This calculation has been done in two 

abstract parameters. The first throughput calculation 

is keystream generated per second by these ciphers. 

Secondly, first throughput result and processor’s 

speed are used to calculate throughput in cycles of 

system clock. 

All these implementations are done using C 

language, the processor Intel Core i7 CPU 860 @ 

2.4 Ghz X 8, along with 8 GB RAM and 64-bit 

Ubuntu 14.04 LTS. 

Throughput of ASGF is comparable to the 

established stream ciphers can be observed from 

Table 5. 

5. Conclusion and future work  

In this paper, a new design of stream cipher 

Alternative Step Generator using FCSR (ASGF) is 

proposed, which is a software oriented stream cipher 

to generate pseudorandom sequence with 2LFSRs  
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Table 5. Throughput of ASGF 

Stream 

Cipher 

Type Key size Throughput per 

sec (MB/sec) 

Throughput in 

cycles (Cycles/ 

byte) 

Brute force 

attack 

complexity 

A5/1[33] LFSR based 64 0.79 3038 264 

A5/2[33] LFSR based 64 0.44 5455 264 

ASGF Combination of 

FCSR and two 

LFSRs 

192 0.55 4364 2192 

RC4[32] byte Array based 40 to 128 14.2 169 240 or 2128 

 

 

and one FCSR and one nonlinear combiner function 

with 192 bit key size and 64 bit IV. ASGF is bit 

oriented stream cipher. ASGF has two stages: 

initialisation and key stream generation. Using 

ASGF, we generated keystream of length 15,00,000 

and tested for randomness using NIST test suites 

with 99% confidence level. Key stream of ASGF 

passes almost all NIST tests for randomness used 

tests. Throughput of our proposed stream cipher 

ASGF is 4364 cycles/byte.  Throughput comparison 

of ASGF with A5/1, A5/2 and RC4 are presented. 

And brute force attack complexity of ASGF is 2192 . 

This complexity is very high when compared to 

popular ciphers. In ASGF, key size and combination 

of LFSRs, FCSR and nonlinear combiner function 

play a major role in resistance to several attacks. 

ASGF is secure enough against exhaustive search, 

algebraic and distinguishing attacks. For fixed 

extreme patterns of key and IV inputs ASGF 

producing completely random output. The 

correlations between keystream and key & 

keystream and IV have to be performed and exploit 

other attacks as future work. 
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