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Abstract: Automatic segmentation of mandibular cortical bone is challenging due to the appearance of teeth that have 

similar intensity with the bone tissue and the variety of bone intensity. In this paper we propose a new method for 

automatic segmentation of mandibular cortical bone on cone-beam computed tomography (CBCT) images. The bone 

tissue is segmented by using Gaussian mixture model for histogram thresholding. The mandibular inferior cortical 

bone is obtained by incorporating several polynomial models to fit the structure of cortical bone on coronal slices. The 

buccal and lingual cortical plate is separated by using histogram thresholding for teeth elimination and polynomial 

fitting for shape extraction. After performing 3D reconstruction, the volumetric cortical bone is obtained. The proposed 

method gives average accuracy, sensitivity, and specificity value of 96.82%, 85.96%, 97.60%, respectively. This 

shows that the proposed method is promising for automatic and accurate segmentation of mandibular cortical bone on 

CBCT images.   

Keywords: Cone-beam computed tomography, Mandibular cortical bone, Histogram thresholding, Polynomial fitting, 

Segmentation. 

 

 

1. Introduction 

Cone-beam computed tomography (CBCT) has 

been used for wider applications in dentistry due to 

some limitations of conventional CT [1]. CBCT 

provides volumetric or three-dimensional (3D) 

reconstruction of the dento-maxillofacial area. It 

gives CBCT advantages of other two-dimensional 

(2D) imaging techniques of dento-maxillofacial area, 

including panoramic radiographs which is commonly 

used in dental imaging. Many examination that 

usually done using the aid of dental panoramic 

radiographs has been redirected to CBCT because the 

3D reconstruction CBCT provides more details to 

help the examiner do the required analysis. Recently, 

CBCT imaging usually has been used for implant 

surgery, treatment planning, orthodontic diagnoses, 

and dental forensics [2]. 

The measurement of mandibular cortical bone 

thickness in dental panoramic images has been used 

for the analysis of bone quality and it has been 

developed for osteoporosis detection [3-5]. 

Meanwhile, the analysis of bone quality and quantity 

in CBCT image is of major importance for the 

success of implant placement. The amount of cortical 

bone is responsible for the primary stability of the 

implant [6]. Therefore, accurate segmentation of 

mandibular cortical bone becomes a necessity. 

However, 3D image data such as CBCT generated 

large amount of 2D slices. The segmentation object 

in each slice have different position, intensity, and 

morphology. The large amount of slices in CBCT 

image presents a problem for manual and semi-

automatic segmentation approaches. Therefore, a 

method to segment the mandibular cortical bone 

automatically is needed. 
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Thresholding based on grayscale intensity is a 

commonly used method for segmentation of bone 

tissues on CBCT images [7, 8]. Loubele, et al. (2006) 

models the grayscale histogram of the selected region 

of interest (ROI) into a mixture of Gaussian 

distribution to obtain the threshold to segment bone 

tissues in multi-slice spiral computed tomography 

(MSCT) and CBCT images [9]. This approach has 

been utilized by Hassan, et al. (2010) on his research 

about influence of scanning and reconstruction on 

quality of 3D surface model on CBCT [10]. 

Barandiaran, et al. (2009) use multi-thresholding 

method by Otsu to separate the input CBCT images 

into three classes, one of them representing the 

mandibular structure [11]. However, the resulting 

segmented images contains not only the bone but also 

the teeth element. 

Nackaerts, et al. (2013) compares the use of 

global thresholding, which threshold is set manually, 

and adaptive thresholding for segmentation of 

trabecular jaw bone on CBCT images [12]. The result 

shows that adaptive thresholding, that calculates the 

average intensity around each voxels, generally can 

produces smaller errors in morphometric indices, 

while manual threshold selection results in smaller 

errors in trabecular thickness. Van Eijnatten, et al. 

(2016) assess the impact of manual threshold 

selection for medical additive manufacturing of skull 

model from CT images [7]. This research 

demonstrates that human factor influences the 

selection of manual threshold and that no single bone 

threshold value is applicable for all facial bones. 

Cuadros Linares, et al. (2018) use a manual selected 

threshold value to filter the bone and teeth structures 

on CBCT image [13]. This research aims to separate 

the mandible with the maxilla and reconstruct the 3D 

image. 

Segmentation of jaw bone tissues on CBCT 

images is challenging due to the appearance of teeth 

that usually have similar intensity with the bone 

tissues [14]. Moreover, intensity of bone tissues 

varies and using grayscale thresholding to separates 

the bone tissues with other elements of CBCT will 

gives a complete jaw bone tissues, not only the 

mandibular cortical bone, as the segmentation object 

[15]. To solve this problem, methods which 

incorporate prior information about the expected 

shapes and position of the segmentation objects have 

been proposed. 

Statistical shape model (SSM), which use 

samples of the object’s shape in the training set for 

generating the statistical model of the object, has 

been used for segmentation of bone tissues on CT 

images [16-18]. Abdolali, et al. (2017) proposed to 

segment mandibular canal in CBCT using 

conditional SSM and fast marching algorithm. Using 

120 CBCT data as the training and test set, the 

conditional SSM gives the average Dice’s coefficient 

and average symmetric surface distance (ASSD) as 

0.9138 and 0.7071 mm, respectively, for 

segmentation of mandibular bone [18]. Although 

SSM-based methods can solve the drawbacks of 

thresholding method, it need a good quality and high 

number of training datasets that affect the 

generalization ability and specificity of the method 

[8]. Other approaches such as using atlas-based 

registration [2] and machine learning are also facing 

the same problem [15]. Providing data in large 

quantities for the training set will be difficult, 

therefore another automatic method that does not 

need training data and consider the prior information 

about the object’s shape is needed. 

In this paper we propose a new method for 

automatic segmentation of mandibular cortical bone 

on CBCT images based on histogram thresholding 

and polynomial fitting. This method can segment the 

mandibular cortical bone into several parts 

automatically without the aid of training set. We 

extract the mandibular inferior cortical bone, buccal 

mandibular cortical plate, and lingual mandibular 

cortical plate from the coronal and axial slices of the 

CBCT image. The segmentation of mandibular 

cortical bone on CBCT slices are done automatically 

by using the global intensity of the image and  prior 

information about the shape of cortical bone, which 

is similar to a parabola. The grayscale intensity that 

gives best separation of the bone element from other 

elements on CBCT images, such as teeth, is obtained 

automatically and adaptively, depending on each 

CBCT images. The obtained volumetric cortical bone 

can be used for measuring the bone quality and 

quantity. This further can be developed to aid the 

process of implant placement and bone mineral 

density measurement. 

This paper is organized as follows. Section 2 

presents the CBCT dataset that was used for the 

experiments and the proposed methodology for 

segmentation of mandibular cortical bone on CBCT 

images. Section 3 describes the experiments that have 

been performed, such as the determination of 

parameter value and comparison with existing 

methods, and presents its results. The discussion of 

the experimental results with regards to the existing 

researches is explained in section 4. The conclusion 

and the future work of this research are presented in 

section 5. 
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Figure. 1 Flowchart of the proposed method

2. Material and Methods 

The proposed method consists of four main steps, 

which are the segmentation of bone tissues, 

extraction of data points, polynomial fitting, and 3D 

reconstruction. The flowchart of the proposed 

method is shown in Fig. 1. The segmentation of 

mandibular inferior cortical bone is performed on the 

coronal slices of CBCT image. The separation of 

buccal and axial cortical plate is performed on the 

axial slices. The segmentation process is done by 

incorporating histogram thresholding to obtain the 

jaw bone tissues and polynomial fitting to extract the 

shape of cortical bone. The segmentation results of 

the 2D slices is combined into 3D matrix and after 

performing 3D reconstruction the volumetric cortical 

bone is obtained. 

2.1 CBCT dataset 

The dataset that has been used in this research is 

CBCT scan of human's jaw. CBCT is a medical 

imaging technique that produces sequence of 2D 

images that can be reconstructed into a 3D image. 

During image acquisition process, the CBCT scanner 

rotates around the patient's head. According to the 

rotation of the scanner device, CBCT can be 

visualized using multiplanar reformation as coronal 

(anterior to posterior), sagittal (left to right), and axial 

(maxilla to mandibular) view. Fig. 2 shows the 

example of 3D CBCT image. Its visualization using 

multiplanar reformation is shown in Fig. 3. In general, 

CBCT image contains up to 4 elements, which are air, 

soft tissues, bone, and tooth [9]. The air and soft 

tissues element have low intensity while the bone and 

tooth element have high intensity on the grayscale 

histogram. 

We acquired the CBCT scan from the hospital 

Rumah Sakit Gigi dan Mulut, Universitas Airlangga 

(RSGM UNAIR), which used an 

ORTHOPANTOMOGRAPH™ OP300 3D X-ray 

unit. The field of view (FOV) width and height of the 

scanner are 79.8 mm and 60 mm, respectively. The 

dataset consisted of jaw images from 8 patients. The 

segmentation object was mandibular cortical bone, 

specifically the inferior cortical bone, buccal cortical 

plate, and lingual cortical plate as shown in Fig. 2. 

Inferior cortical bone is located at the bottom part of 

the jaw. Buccal cortical plate is located on the outer 

side of the jaw and near the face while lingual cortical 

plate is located on the inner side of the jaw and near 

the tongue. The manually annotated ground truth was 

confirmed by dental radiologist experts. Each data 

had sizes of 266 x 266 x 200 voxels. The data is sliced 

according to axial plane, hence for each 3D data there 

is 200 axial slices with size 266 x 266 pixels. 

 
Figure. 2 Volumetric CBCT image 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 3 Multiplanar reformation: (a) coronal slices, (b) 

sagittal slices, and (c) axial slices 
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2.2 Segmentation of bone tissues 

There are n slices of CBCT image in axial view 

with DICOM (Digital Imaging and Communications 

in Medicine) file format.  The depth of CBCT image 

is depend on the scanner. In case of the depth that is 

more than 8-bit (0-255 gray level), the CBCT image 

is converted into 8-bit image. Let max and min be the 

maximal and minimal intensity in all the n CBCT 

slices, respectively. The new 8-bit value 𝑥′  of the 

original pixel’s value 𝑥 can be calculated using Eq. 

(1). Besides converting the CBCT image into 8-bit, 

this formula also stretch the contrast of the image, 

therefore it will be easier to process. This enhanced 

8-bit CBCT slices is the one that will be processed 

further. 

 

𝑥′ =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
× 255                (1) 

 

The first step in the cortical bone segmentation 

process is segmentation of jaw bone that separates the 

bone element with other elements such as air and soft 

tissues. The jaw bone segmentation is done using 

histogram thresholding. This process is done to all of 

the axial and coronal slices. In general, CBCT image 

contains up to 4 elements, which are air, soft tissues, 

bone, and tooth that formed mixture of Gaussian 

distributions on histogram [9], as shown in Fig. 4. On 

Fig. 4, the first and second mode represents the air 

and soft tissues element, while the last mode 

represents the bone and tooth element. To separate 

the bone and tooth element from other elements, a 

threshold between the second and third mode must be 

determined. Gaussian Mixture Model (GMM) can be 

used to obtain the thresholds between each mode. 

Let 𝑘 be the number of Gaussian distributions in 

the data. For each gray level in the histogram, the 

responsibility of each Gaussian component is 

calculated using Expectation-Maximization (EM) 

algorithm. Using the responsibility value, the mean 

and standard deviation of each Gaussian distribution 

will be updated to maximize the likelihood of the 

gray levels assigned in each Gaussian component. 

This process is repeated until it converges to local 

optimum. The result is k Gaussian distributions with 

(𝑘 − 1)  thresholds ( 𝑡1, 𝑡2, … , 𝑡𝑘−1 ) that separates 

each of the Gaussian component. 

In this research, we assign 𝑘 = 4 according on 

the number of elements in CBCT image. The gray 

level that become the boundary of the second and 

third Gaussian component (𝑡2) is then selected as the 

bone threshold. For separating the bone and tooth 

element from the other elements, intensities that are  

 

 
Figure. 4 Grayscale intensity histogram of a CBCT slice 

 

lower than 𝑡2 are considered as the background while 

the remaining intensities are considered as the object 

2.3 Extraction of inferior cortical bone 

An approach based on second order polynomial 

curve fitting is used to separate the inferior cortical 

bone with the other part of jaw bone because its shape 

is similar with quadratic function. Separating lines is 

drawn in the coronal slices of CBCT image according 

to the polynomial function to separates the area of 

inferior cortical bone with the others. The area above 

the separating line will be preserved while the area 

below the separating line will be eliminated. The 

input coronal slices is obtained by slicing the 3D 

matrix of CBCT image I(x, y, z) according to the x-

axis. The result is 266 coronal slices with size 266 x 

200 pixels, as shown in Fig. 5 (a). The input slices is 

segmented by using the threshold 𝑡2  that was 

obtained by GMM method to obtain the bone and 

teeth element, as shown in Fig. 5 (b). Scanning 

process is then performed from the bottom to the top 

of the image to obtain the upper border of inferior 

cortical bone, which then called as data points. For 

each column in the image, a data point is defined as 

the first pixel that has higher intensity than the pixel 

above it. The example of obtained data points is 

shown in Fig. 5 (c).     

Given a set of data points 𝑃 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑀 , 𝑦𝑀)} , with M as the 

number of data points, and polynomial function 

𝑓(𝑥) = 𝑦 = ∑ 𝑎𝑟𝑥𝑟𝑛
𝑟=0 , with n as the order of the 

polynomial and 𝑎𝑟  as the variable parameters [19]. 

Polynomial fitting search the set of variable 

parameters 𝑎𝑟 that gives minimal error when applied 

to the polynomial function with set of points 𝑃 as the 

x and y variable. Let 𝑤(𝑥𝑖) and 𝑤(𝑦𝑖) be the weights 

of perpendicular distance from the given data points 

(𝑥𝑖, 𝑦𝑖) to the curve, the error minimization is usually 

done by using least-square error method (LSE) that 

minimizes the sum of weighted difference S between 

the data points and the obtained points that lie on the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure. 5 Extraction of inferior cortical bone: (a) input 

coronal slices, (b) the segmented bone and teeth, (c) the 

extracted data points, (d) the polynomial curve, (e) the 

obtained inferior cortical bone, and (f) the ground truth 

 

polynomial curve (𝑥𝑖′, 𝑦𝑖′) , as in Eq. (2). In this 

research we set 𝑤(𝑥𝑖) = 𝑤(𝑦𝑖) = 1 for all data points i, 

thus gives equal weight for each data points and 

yields a polynomial curve that is not scale invariant. 

We assume that both 𝑥𝑖  and 𝑦𝑖  is subject to error, 

therefore the result of 
𝑤(𝑥𝑖)

𝑤(𝑦𝑖)
 should be a constant value 

[20]. For the second order polynomial fitting, the 

number of n is 2 hence the polynomial function of the 

curve is written as in Eq. (3). 

 

𝑆 = ∑ {𝑤(𝑥𝑖)(𝑥𝑖 − 𝑥𝑖′)2 + 𝑤(𝑦𝑖)(𝑦𝑖 − 𝑦𝑖′)2}𝑀
𝑖=1  (2) 

 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 (3) 

 

There is two kind of cortical bone’s structures in 

coronal slices. In the first part of coronal slices the 

cortical bone appears as one object at the bottom 

center of the image, while in the last slices the cortical 

bone appears as two objects at the left and the right 

side of the image. To recognize whether there are one 

or two objects in the image, we check whether there 

is a section of object located around the bottom center 

of the image and whether there are two objects of 

almost the same size in the image. If there are two 

objects in the image, the image will be split into two, 

namely the left image and right image. Then a 

separating line will be drawn on each image. The  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 6 Bone segmentation process: (a) input axial 

slices, (b) the segmented bone and teeth, (c) the 

segmented teeth, and (d) the obtained bone tissues 

example of separating line for one object is shown in 

Fig. 5 (d). The obtained inferior cortical bone and its 

ground truth is shown in Fig. 5 (e) and Fig. 5 (f), 

respectively. 

2.4 Separation of buccal and lingual cortical plate 

For separation of buccal and lingual cortical plate, 

we use axial slices, as shown in Fig. 6 (a). First, 

segmentation using threshold 𝑡2 that was obtained by 

GMM method is performed to segment the bone and 

teeth element, which result is shown in Fig. 6 (b).  To 

obtain the teeth element, the boundary of the third and 

fourth Gaussian component (𝑡3 ) is selected as the 

teeth threshold. The result of teeth segmentation 

using GMM is shown in Fig. 6 (c). The bone element 

is then obtained by subtract the bone and teeth image 

with the teeth image. The result of the bone 

segmentation on axial slice is shown in Fig. 6 (d). 

To separate the buccal and lingual cortical plate, 

polynomial fitting method is utilized. In axial slices, 

the buccal cortical plate is located at the top of the 

lingual cortical plate. To obtain the buccal cortical 

plate, data points P consist of points at the bottom 

edge of the buccal cortical plate must be obtained. 

Looping through all the column from the left to the 

right side of the object (cortical bone), scanning 

process is done from the top to the bottom of the 

image to obtain the data point at each column. A data 

point is defined as the first pixel that has higher 

intensity than the pixel below it. Using the obtained 

set of data points, polynomial fitting is used to drawn 

a separating line on the bottom edge of the buccal  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 7 Extraction of buccal cortical plate: (a) the 

obtained data points, (b) the polynomial curve, (c) the 

obtained buccal cortical plate, and (d) the ground truth 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 8 Extraction of lingual cortical plate: (a) the 

obtained data points, (b) the polynomial curve, (c) the 

obtained lingual cortical plate, and (d) the ground truth 

 

cortical plate to separate it from other part of the jaw 

bone. Area above the separating line will be 

preserved while area below the separating line will be 

eliminated. The process of extracting buccal cortical 

plate is shown in Fig. 7. 

To obtain the lingual cortical plate, by using the 

bone segmentation result, a separating line will be 

drawn at the upper edge of the lingual cortical plate. 

Scanning process is done from the bottom to the top 

of the image to obtain the data point, which is defined 

as the first pixel that has higher intensity than the 

pixel above it. Polynomial fitting is performed to 

obtain the separating line. Area below the separating  

 
 

(a) (b) 

  

(c) (d) 
Figure. 9 The 3D reconstruction of (a) mandibular 

inferior cortical bone, (b) mandibular buccal cortical 

plate, (c) mandibular lingual cortical plate, and (d) 

mandibular cortical bone 

 

line will be preserved while area above the separating 

line will be eliminated. The process of extracting 

lingual cortical plate is shown in Fig. 8. 

2.5 The 3D reconstruction 

CBCT image construct a 3-dimensional matrix 

I(x, y, z) with size l x m x n pixels where separation 

based on the x-axis will generate l coronal slices with 

size m x n pixels, separation based on the y-axis will 

generate m sagittal slices with size l x n pixels, and 

separation based on the z-axis will generate n axial 

slices with size l x m pixels. The 3D reconstruction of 

the coronal slices in Section 2.2 based on the x-axis 

will result in the segmented mandibular inferior 

cortical bone. The 3D reconstruction of the axial 

slices in Section 2.3 based on the z-axis will result in 

the segmented mandibular buccal and lingual cortical 

plate, separately. To obtain a complete mandibular 

cortical bone, we can combine the segmentation 

result of buccal and lingual cortical plate. This will 

eliminate the trabecular bone from the 3D image. Fig. 

9 shows the result of 3D reconstruction of the 

mandibular inferior cortical bone, buccal cortical 

plate, lingual cortical plate, and mandibular cortical 

bone. 

3. Experimental results 

The performance of the proposed method is 

measured using accuracy (Acc), sensitivity (Sen), 

and specificity (Spe) evaluation metrics. Confusion 

matrix that consist of four elements, namely true 

positive TP, true negative TN, false positive FP, and 

false negative FN, represents the possible overlap 

pair between the class of output image 𝐶𝑜 and class 
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of target image 𝐶𝑡 in binary segmentation [21]. Let 

𝑚𝑖𝑗 become the sum of agreement between each pair 

of pixels (𝑖, 𝑗) in the same coordinate where 𝑖 ∈ 𝐶𝑜 

Co and 𝑗 ∈ 𝐶𝑡. TP is the sum of agreement between 

output class 𝐶𝑜 = 1 and target class 𝐶𝑡 = 1 (𝑚11), 

TN is the sum of agreement between output class 

𝐶𝑜 = 0 and target class 𝐶𝑡 = 0 (𝑚00), FP is the sum 

of agreement between output class 𝐶𝑜 = 1 and target 

class 𝐶𝑡 = 0 (𝑚10), and FN is the sum of agreement 

between output class 𝐶𝑜 = 0 and target class 𝐶𝑡 = 1 

(𝑚01). 

Accuracy measures the percentage of the 

correctly classified pixels on the whole image, which 

formula is written in Eq. (4). Sensitivity or true 

positive rate measures the percentage of the correctly 

classified object pixels, which formula is written in 

Eq. (5). Specificity or true negative rate measures the 

percentage of the correctly classified background 

pixels, which formula is written in Eq. (6). The 

sensitivity value is not measured in the slices that 

contain no segmentation object. Segmentation result 

is considered as good if it gives high accuracy, 

sensitivity, and specificity value. High sensitivity 

value means that the method have good ability to 

detect object class, while high specificity means that 

the method have good ability to detect background 

class. 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                  (4) 

 

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (5) 

 

𝑆𝑝𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                               (6) 

3.1 Comparison of bone tissues segmentation 

methods 

The performance of the proposed method, that is 

using Gaussian mixture model for the segmentation 

of bone tissues, is compared with using Otsu’s multi-

thresholding [22] and histogram cluster analysis 

(HCA) [23] for the segmentation of bone tissues. 

Tables 1 - 3 show the performance comparison for the 

segmentation of mandibular inferior cortical bone, 

buccal cortical plate, and lingual cortical plate, 

respectively. The highest sensitivity value is obtained 

using GMM as the method for segmenting the bone 

tissues. The average accuracy, sensitivity, and 

specificity value of the proposed method using GMM 

are 96.82%, 85.96%, 97.60%, respectively. The 

average accuracy, sensitivity, and specificity value 

by using Otsu’s multi-thresholding are 96.40%, 

78.21%, 97.30%, respectively. The average accuracy, 

 

Table 1. Comparison of Bone Segmentation Methods for 

Segmentation of Mandibular Inferior Cortical Bone 

Method  Acc (%) Sen (%) Spe (%) 

Gaussian 

Mixture Model 
92.98 85.26 95.19 

Otsu’s Multi-

thresholding 
92.83 84.68 95.27 

Histogram 

Cluster 

Analysis 

93.40 67.94 97.98 

 

Table 2. Comparison of Bone Segmentation Methods for 

Segmentation of Mandibular Buccal Cortical Plate 

Method  Acc (%) Sen (%) Spe (%) 

Gaussian 

Mixture Model 
99.00 87.81 99.03 

Otsu’s Multi-

thresholding 
98.76 66.41 98.93 

Histogram 

Cluster 

Analysis 

99.60 79.26 99.69 

 

Table 3. Comparison of Bone Segmentation Methods for 

Segmentation of Mandibular Lingual Cortical Plate 

Method  Acc (%) Sen (%) Spe (%) 

Gaussian 

Mixture Model 
98.49 84.81 98.57 

Otsu’s Multi-

thresholding 
97.62 83.53 97.71 

Histogram 

Cluster 

Analysis 

99.30 72.98 99.48 

 

sensitivity, and specificity value by using HCA are 

97.43%, 73.39%, 99.05%, respectively. 

Otsu’s thresholding method select the gray level 

k in the histogram that gives the maximum inter-class 

variance 𝜎𝐵
2(𝑘) according to Eq. (7) as the threshold 

that gives the best separability between the clusters of 

image intensity. The separation between cluster 0 

(background) and cluster 1 (object) is calculated 

based on the probability of the cluster occurrence (𝜔0 

and 𝜔1) and the average gray level in the cluster (𝜇0 

and 𝜇1 ). Maximizing the inter-class variance is 

equivalent to minimizing the intra-class variance, 

which is equivalent to the maximization of the 

likelihood of the Gaussian distribution with a 

common variance [24]. In this experiment we use 

Otsu’s method to choose three thresholds that 

separates the grayscale intensity histogram into four 

clusters. 

 

𝜎𝐵
2(𝑘) = 𝜔0𝜔1(𝜇1 − 𝜇0)2           (7) 
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HCA assume the gray level histogram with non-

zero element as cluster. The inter-class variance (𝜎𝐼
2) 

and intra-class variance (𝜎𝐴
2) of each cluster (𝐶𝑘1 and 

𝐶𝑘2) then calculated according to Eq. (8) to determine 

which cluster to be merged. Hierarchical clustering is 

then carried out until there are only k number of 

clusters left. In this experiment, we set the number of 

final cluster k for the HCA method as four to give an 

equal comparison with GMM and Otsu’s 

thresholding method that separates the histogram into 

four clusters. Fig. 12 – Fig. 14 shows the obtained 

threshold between each Gaussian distributions on the 

image histogram using GMM, Otsu’s multi-

thresholding, and HCA method, respectively. 

 

𝐷𝑖𝑠𝑡(𝐶𝑘1, 𝐶𝑘2) = 𝜎𝐼
2(𝐶𝑘1 ∪ 𝐶𝑘2) 𝜎𝐴

2(𝐶𝑘1 ∪ 𝐶𝑘2) (8) 
 

 
Figure. 10 Image histogram and the obtained Gaussian 

threshold using GMM with k=4 

 

 
Figure. 11 Image histogram and the obtained Gaussian 

threshold using Otsu multi-thresholding 

 

 
Figure. 12 Image histogram and the obtained Gaussian 

threshold using HCA 

Table 4. Segmentation performance with the different 

number of Gaussian distribution 

k Acc (%) Sen (%) Spe (%) 

3 92.91 85.06 96.02 

4 92.98 85.26 95.19 

5 93.13 85.13 95.32 

6 93.10 85.22 95.06 

7 93.48 72.06 97.50 

 

3.2 Effect of the number of Gaussian model 

In this experiment we try different value of k, a 

parameter in the Gaussian mixture model that 

represent the number of Gaussian distribution in the 

image. The GMM method will resulting in {𝑡𝑖|𝑖 =
1,2, … , 𝑘 − 1}  thresholds. The value of i that was 

selected for each k, in which 𝑡𝑖  will be used to 

separate the bone element, is chosen based on our 

observation of the obtained separation border 

between each Gaussian distribution on the image 

histogram. The performance of the proposed method 

using the selected k value for segmentation of 

mandibular inferior cortical bone is presented on 

Table 4. The highest sensitivity is obtained using four 

as the number of Gaussian distribution in the image. 

3.3 Image registration for refinement 

We try to add refinement process using image 

registration in our methodology. The refinement 

process is added before 3D reconstruction process. 

Taking into account that CBCT consisted of sequence 

of 2-dimensional images, the image on adjacent slices 

are almost similar. It means that the segmentation 

result of adjacent slices should not be much different. 

To improve the segmentation result, refinement 

process using demon registration as in [25] is done. 

In this experiment, registration process is done to 

the input grayscale CBCT slices to obtain the 

transformation matrix between each slices. Those 

transformation matrices are implemented to the 

resulting binary images from segmentation process, 

sequentially, to improve the similarity between slices 

that are obtained from segmentation process. The 

transformation matrix between each slices is 

calculated on the grayscale image. By using a binary 

template image of the middle slice i as the starting 

reference image, the registration process is moving 

towards the adjacent upper and bottom slice. The 

binary segmentation image of slice i act as the 

reference image while the binary segmentation image 

of slice i-1 for the upper slices and the binary image 

of slice i+1 for the bottom slices act as the target 

image, iteratively. This process will refine the 
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(a) (b) 

Figure. 13 (a) Input axial slices and (b) its segmentation 

result by using U-Net 

 

segmentation result so that the difference of cortical 

bone shape between adjacent slices is much smaller. 

The average accuracy, sensitivity, and specificity of 

the proposed method for segmentation of mandibular 

lingual cortical bone using image registration for 

refinement process are 93.21%, 89.01%, and 96.71%, 

respectively.  

3.4 Comparison with deep learning techniques 

In this evaluation, we compared the proposed 

methodology with U-Net [26], one of deep learning 

architecture for medical image segmentation. The U-

Net architecture consists of contracting path (left 

side) and expansive path (right side). The contracting 

path consist of repeated convolutions process, each 

followed by a rectified linear unit (ReLU) and max 

pooling operation. The expansive path consist of 

repeated up-convolution process and concatenation 

with the correspondingly cropped feature map from 

the contracting path. 

The experiment is conducted using training data 

from 6 patients, in which each patient has 200 images 

from axial slices, and testing data from 2 patients. 

Data augmentation is not used for the training process 

so that it will not disturb the sequence of the 3D data. 

We set the training epoch as 50 and the batch size as 

16. The size of the input image is 256 x 256 pixels, 

according to the size of axial slices on CBCT images. 

The size of the convolution filter is 3 x 3 pixels and 

the convolution process result in 16 feature maps. 

The cost function for the network is sigmoid cross-

entropy because we treat segmentation as 

classification problem instead of regression. The 

average accuracy, sensitivity, and specificity value 

by using U-Net for segmentation of mandibular 

inferior cortical bone are 99.49%, 48.52%, 99.89%, 

respectively. The example of input axial slice and its 

corresponding segmentation result by using U-Net is 

shown in Fig. 13. 

 

 

4. Discussion 

In this research, a method for segmentation of 

mandibular inferior cortical bone on CBCT images 

has been presented. The method incorporates prior 

information of global intensity in CBCT images and 

cortical bone shape to segment the bone 

automatically. Thresholding based on the global 

intensity of the images is the most common approach 

for detecting elements in CBCT image, such as air, 

soft tissues, bone, and teeth. This is because CBCT 

imaging uses Hounsfield Unit (HU) to represent its 

image intensity values and each of CBCT element has 

different range value of HU unit. However, CBCT 

have no absolute HU calibration because it varies 

between scanners and scans [27]. Intensity values of 

CBCT images are not as uniform or reproducible as 

the intensity values of other computed tomography 

imaging technique, such as MSCT images [12]. 

Human factor on selecting the threshold value may 

influence the outcome of the segmentation process on 

CBCT [7]. Therefore, selecting threshold for bone 

segmentation on CBCT images automatically is a 

challenging task. 

In this paper, Gaussian mixture model with 

expectation-minimization algorithm is used for 

segmentation of bone tissues on CBCT image. We 

choose to select four as the number of Gaussian 

distribution in the image based on the number of 

elements in CBCT images. Based on our experiments, 

separating the image grayscale intensity histogram 

into four Gaussian distribution also gives the highest 

sensitivity value. This is in accordance with the 

research of Loubele, et al. (2006) that said that up to 

five Gaussian distribution is needed to represent the 

bone and soft tissue element in CBCT image [9].   

We compared the bone segmentation method in 

the proposed methodology with Otsu’s multi-

thresholding [22] and histogram cluster analysis [23]. 

Those methods search the thresholds in the grayscale 

intensity histogram that separates the intensity of the 

CBCT images into four cluster, thus provide an equal 

comparison with the GMM method.  The highest 

sensitivity value is achieved by using GMM. Higher 

sensitivity value means that the proposed method has 

more success in detecting the object, which is cortical 

bone, than the compared methods. The obtained 

threshold value by using GMM and Otsu’s multi-

thresholding is similar, although the obtained 

threshold values using Otsu’s method have slightly 

lower grayscale value than the obtained threshold 

values using GMM. This is because both methods 

model the intensity histogram into Gaussian 

distributions. 
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Otsu’s multi-thresholding is used in [11] for 

separate the bone element on CBCT image. 

According to Kurita, et al. (1992) the Otsu’s 

thresholding method is best used on histogram 

consist of Gaussian distributions with uniform 

variance [24]. However, since we cannot assume that 

the Gaussian distributions on the histogram of CBCT 

image have uniform variance, the obtained thresholds 

using Otsu’s thresholding may be less precise than if 

the distributions have uniform variance. The obtained 

thresholds using HCA method tend to give higher 

value than the obtained thresholds using GMM and 

Otsu’s multi-thresholding. Therefore, by using HCA 

method, many of the bone tissues are missing and not 

be segmented properly, resulting in low sensitivity 

value for the segmentation of inferior cortical bone 

and lingual cortical plate. Moreover, because CBCT 

images have much larger background area (non-bone 

element) than the object area (bone element), the 

accuracy of HCA method is slightly better than GMM 

method even though the HCA method is failed to 

recognize the segmentation object in images.   

Image registration has been widely used for 

medical image analysis because it can determine the 

corresponding feature between images that collected 

at different times [28]. It find the best match between 

two images and find its transformation models. 

Demon registration is categorized as non-rigid 

registration technique. It is an approximation to fluid 

registration, which treat the image as a viscous fluid 

model that allows large and highly localized 

deformation [28]. This method is based on pixel 

velocities, which is caused by edge-based forces, and 

filter it using Gaussian kernel for global registration 

[25]. Demon registration gives high precision and 

computationally efficient compared to other non-

rigid registrations [29]. Therefore we choose to 

integrate it into the proposed method in our 

experiment. In case of 3D medical images, such as 

CBCT images, refinement using image registration 

provides additional information from neighbouring 

slices. By incorporating the information from 

neighbouring slices, the incorrect segmentation result 

of a slice may be refined and the performance of the 

segmentation method increased. However, because 

of the image registration method has high 

computational complexity, using refinement will 

effect on increment of running time. Therefore, 

because of the difference of segmentation 

performance is not very high, using image 

registration for refinement process is not 

recommended. 

Recent researches have shown that deep 

learning techniques are useful in medical image 

analysis, such as image segmentation and computer-

aided diagnosis [30, 31]. We compared the proposed 

methodology with U-Net [26] that provides good and 

fast performance for segmentation of neuronal 

structures in electron microscopic stacks and 

segmentation of cell in light microscopic images. 

However, the segmentation result using U-Net gives 

low sensitivity value. Low sensitivity means that the 

method failed to recognize the inferior cortical bone 

as the object. However, the U-Net method still gives 

high accuracy value because the number of pixels that 

is categorized as the object is relatively small than the 

number of pixels in the whole image. Therefore, the 

failure to recognize the object does not have a major 

effect on the overall accuracy of the method. This 

support the statement that deep learning techniques 

required large-scale dataset for the training process to 

achieve good segmentation result [15, 30-31]. 

5. Conclusion 

In this paper we propose a new method for 

automatic segmentation of mandibular inferior 

cortical bone on CBCT images. The segmentation is 

done by incorporating histogram thresholding to 

obtain the jaw bone tissues and polynomial fitting to 

extract the shape of cortical bone. The mandibular 

inferior cortical bone can be separated into buccal and 

inferior plate according to the axial slices of CBCT 

image. After performing 3D reconstruction, 

volumetric cortical bone is obtained. The proposed 

segmentation method that use Gaussian mixture 

model with k=4 for histogram thresholding gives the 

average accuracy, sensitivity, and specificity for 

segmentation of cortical bone of 96.82%, 85.96%, 

97.60%, respectively. 

The high performance of the proposed method 

shows that it is promising for automatic and accurate 

segmentation of mandibular cortical bone on CBCT 

images. The 3D reconstruction of cortical bone can 

provide specific details of the cortical bone, such as 

its volume. The separation of buccal and lingual plate 

of mandibular cortical bone in the proposed method 

allows for visualization and examination of buccal 

and lingual cortical plate separately. The obtained 

volumetric cortical bone is useful for many kind of 

analysis and applications, such as the measurement of 

bone density, bone thickness, and bone volume for 

implant surgery, dental treatment, and orthodontic 

diagnoses. For future work, since CBCT image is 

considered as noisy, the use of image enhancement 

method such as noise reduction should be analyzed to 

improve the performance of the bone segmentation 

process. 
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