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Abstract: The challenge of processing the Microarray datasets with its high dimensionality opened multiple research 

directions. Different feature selection techniques have been employed to reduce the dimensionality of such Microarray 

datasets before being attempted by classification algorithms. This study presents an ensemble feature selection 

approach based on t-test and Genetic Algorithm with five different classification algorithms as its fitness function: 

Support Vector Machine, Random Forest, Nearest Centroid, K Nearest Neighbour, and Maximum Likelihood with 5-

fold cross validation. The proposed approach has been applied on two different datasets for Lung cancer; Microarray 

Gene Expression and DNA methylation datasets aiming to find the Lung cancer biomarker genes. The experimental 

results showed that the three genes (DLX5, KRT5, and SELENBP1) resulted from processing both datasets have higher 

classification accuracy (92.31%) compared to separately processing the Gene Expression and the DNA methylation 

datasets with accuracies 90.38% and 86.54% respectively. Moreover, the classification accuracy achieved using the 

three aforementioned genes could not be achieved by other research studies unless by using more genes. 
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1. Introduction 

Cancer is a complex disease that results from 

abnormal biological processes. To understand these 

cancer processes, many measurement platforms have 

been developed and implemented in the field of 

bioinformatics [1]. One basic goal of the 

bioinformatics cancer systems is to infer the 

malignant drivers of those biological processes. 

Microarrays are one of the well-established tools 

used to identify and analyze the biological data. The 

main function of the Gene Expression Microarray 

experiments is to monitor the expression level of 

genes on the genome scale [2]. A Gene Expression 

matrix is the result of those experiments, where each 

row corresponds to a particular gene profile whereas 

each column represents the profile of an experimental 

condition. 

DNA methylation (DNAm) is a common 

epigenetic mechanism, which controls the regulation 

of Gene Expression and is useful for early detection 

of cancer. Fortunately, DNAm Microarrays have 

been developed to measure the methylation level on 

the genome scale.  

There are many databases, such as the Gene 

Expression Omnibus (GEO) and ArrayExpress, that 

serve as repositories of the resultant huge 

experimental data. Those databases contain data from 

Microarray experiments on a wide range of samples 

and under a variety of experimental conditions [3]. 

Moreover, the International Cancer Genome 

Consortium “ICGC” (http://icgc.org/) and the The 

Cancer Genome Atlas “TCGA” 

(http://cancergenome.nih.gov/) projects developed 

cancer-specific repositories that contain complete 

datasets related to many cancer types. For the cancer 

genome studies, those repositories are considered the 

main reference that offers the opportunity to test new 

computational approaches with real data [3]. 

The growing size of the biomedical data offers 

more research opportunities to analyze and discover 

new knowledge from this kind of data. Biomedical 

markers detection, diseases diagnosis, drug design 
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and classification of high-dimensional data are some 

of these research trends. Additionally, the high 

dimensionality is one of the main challenges in this 

biomedical data. More specific, a dataset consists of 

a small number of observations but with a large 

number of features that might be uninformative 

because they are either irrelevant or redundant [4]. In 

addition, the noise and variability of data add more 

complications. 

From the large number of genes in Microarray 

Gene Expression dataset, only a small number of 

genes strongly correlate to the targeted disease. Many 

studies suggested that a small number of genes could 

form sufficient markers for a specific disease [5, 6]. 

Those few genes are usually called biomarker genes. 

Using only the biomarker genes in the classification 

phase not only reduces the computational effort but 

also increases the classification accuracy. A 

biomarker problem can be defined as selecting an 

effective and more representative gene subset. That 

being said, applying Feature Selection (FS) 

techniques in bioinformatics has become an 

important prerequisite step for model building. That’s 

because most of the classification techniques were 

not designed to deal with huge number of irrelevant 

features. So, running them after FS techniques results 

in more efficient solutions [7]. 

Feature selection refers to selecting the most 

relevant features from the original feature space [4]. 

There are many FS techniques that differ in how each 

technique deals with the feature space to form a 

feature subset. In the classification problem context, 

these techniques can be divided into three categories: 

filter, wrapper, and embedded. The three categories 

differ in the way of combination between the feature 

selection search and the construction of the 

classification model. For more details about feature 

selection, the reader can refer to [7]. 

Obtaining a universally optimal feature subset 

requires using more than one FS technique [8]. For 

that, an ensemble FS approach runs different FS 

techniques where each technique produces a separate 

feature subset. Then, the ensemble FS approach 

combines the resulting feature subsets to form a final 

feature subset as its outcome. Ensemble FS 

approaches differ from each other in how they 

combine features. They may use averaging over 

multiple separate feature subsets [5, 9] that result 

from performing different runs of the same technique 

(for example, Genetic Algorithm) to assess the 

importance of each feature [10, 11], and using a 

collection of decision trees as random forest to assess 

the relevance of each feature [12, 13]. Ensemble FS 

approaches improve the robustness, stability, and 

generality but they require additional computations. 

The development of ensemble frameworks is a 

promising trend for improving the gene selection 

problem and the feature selection process in general 

because their flexibility and efficiency in dealing 

with high dimensional data [14]. 

Genetic Algorithm (GA) is one of evolutionary 

algorithms motivated by the biological theory of 

evolution and inspired by John Holland during the 

1970s [15]. A GA implements the natural selection 

process by producing sets of solutions (population), 

each one called chromosome and represents a 

candidate solution for the underlying problem. The 

chromosome contains a group of features (genes). 

GA repeatedly produces solutions, calculates their 

fitness and terminates when the predetermined 

stopping criteria is met. The implementation of a GA 

is characterized by the fitness function and the 

genetic operators. The fitness function is used to 

assign a probability to all chromosomes in the 

population. This probability reflects the goodness of 

that chromosome and controls the reproduction 

process for the next generation. 

The genetic operators are important to 

investigate the entire search space and to avoid the 

local minima. Crossover and mutation are the most 

popular operators. Crossover is used to swap genes 

between two randomly chosen chromosomes in one 

generation, producing two new chromosomes for the 

next generation. Crossover can be performed at single 

or multiple crossover points between chromosomes. 

It can be performed regardless the type of 

chromosome representation (binary or floating-point) 

[16]. A mutation means randomly flipping one or 

more gene in a chromosome according to a 

predetermined probability. The mutation process 

guarantees investigating all the search space of the 

underlying problem by altering gene values and so 

causing variations in the resultant solutions. There are 

many types of mutation; Binary Encoding mutation, 

Value Encoding mutation and Permutation Encoding 

mutation [17]. Elitism is a GA operator which allows 

keeping chromosomes with high fitness values to the 

next generation. A predefined probability is required 

to implement the elitism for number of generations. 

Support Vector Machine (SVM) is a supervised 

classification algorithm developed by Cortes & 

Vapnik [18]. SVM was originally presented for 

binary classification problems, after that several 

modifications of SVM have been proposed to deal 

with multiclass problems. SVM generates a high 

dimensional feature space based on the attributes of 

features in the original data. Then, it tries to define a 

hyperplane or boundary to divide the feature space 

into different parts where each part represents the 

data points of one class [19]. 
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The Maximum Likelihood (MLHD) algorithm 

finds the parameters’ values for a given statistic that 

make the known likelihood distribution a maximum. 

MLHD has fundamental importance in the theory of 

inference and it is a basis of many other techniques in 

statistics [20]. The likelihood for a set of data is the 

probability of obtaining that particular set of data, 

given the chosen probability distribution model. The 

values of the model parameters that maximize the 

sample likelihood are called the Maximum 

Likelihood Estimates. 

The K Nearest Neighbour (KNN) algorithm is 

considered from the simplest and most commonly 

used algorithm for classification, estimation and 

prediction. In KNN, to classify a new sample, find its 

K nearest neighbours from the dataset. The key is 

how to calculate the distance and how to choose the 

features to be used in the calculations. It is assumed 

that all features have the same impact on the distance. 

The most commonly used distance measurements are 

Euclidean Distance, Minkowski Distance and 

Mahalanobis Distance [21]. 

The Nearest Centroid (Nearcent) classifier is one 

of the simplest and powerful classifiers. It has been 

shown to perform well with Gene Expression 

Microarrays [22]. The centroid for a set of samples is 

the mean or median value of features in these samples. 

Nearcent simply classifies an unknown sample to the 

class with training samples whose mean (centroid) is 

closest to this sample. So the nearest centroid for an 

unknown sample is the centroid with the minimum 

Euclidean distance. 

Random Forest (RF) [23] is a predictive model 

which is based on the classification trees. It uses an 

ensemble of decision trees to build a classification 

rule. By considering all trees in the forest, the final 

prediction is done by using a maximum vote scheme. 

Various research studies have been attempted to 

apply different feature selection techniques over 

Microarray data with various goals. Using five-fold 

cross-validation, Abusamra [4] compared the 

classification performance of different feature 

selection and classification methods on the Gene 

Expression data of Glioma. Multiple feature selection 

methods have been used with three classification 

algorithms; SVM, KNN, and RF. By using only Gene 

Expression datasets, the results showed that 

combining FS methods with classification algorithms 

improved the classification accuracy by using fewer 

genes. Because of the relatively low resultant 

accuracies, Abusamra concluded that it is better to 

work by wrapper methods that integrate feature 

selection and classification methods to select better 

features and to have higher accuracy.  

An ensemble-based feature selection technique 

was proposed in [24] to classify the Lung cancer 

subtypes based on DNAm data only. This technique 

produces three feature subsets from three separate 

methods (Multi-category Receiver Operating 

Characteristic (Multi-ROC), RF, Maximum 

Relevance and Minimum Redundancy (mRMR)). It 

then runs the Incremental Feature Selection (IFS) 

using multi-class support vector machines (Multi-

SVMs) over a subset of the features overlapped 

between these feature subsets. More specific, 

although the common features were 45 in total, they 

used just 16 features that resulted in accuracy 84% 

which would be improved in case of using all the 45 

features.     

In [25], a comparative study between GA with 

Constructive Neural Networks and the classical 

Stepwise Forward Selection (SFS) algorithm in 

predicting the cancer outcome is conducted. The 

Welch t-test filtering method is embedded into the 

two algorithms. Those two algorithms have been 

applied on six cancer Gene Expression datasets. The 

results showed that the accuracy of SFS has not been 

improved.  

A research was conducted by Garcıa [26] to 

analyze the effect of high-dimensional data on the 

classification of Gene Expression datasets. The Gain 

Ratio and ReliefF were used as gene ranking methods 

with six classifiers on four Gene Expression 

Microarray datasets. The results showed that 

regardless of the used gene ranking algorithm and 

classifier, the highest classification performance was 

achieved by using very few genes. Garcıa also proved 

that SVM has superior performance in cancer 

classification problems. 

A multi-stage feature selection (MSFS) approach 

was proposed in [27] to find the optimal CpG-sites 

from a Lung cancer DNAm dataset. The MSFS 

approach combined three different filter feature 

selection methods: Fisher Criterion, t-test and Area 

Under ROC Curve (AUC). Thereafter, it applied 

Genetic Algorithm as a wrapper feature selection 

with SVM Recursive Feature Elimination (SVM-

RFE) as a fitness function. By using the IFS strategy, 

subsets of 24, 13 and 27 optimal CpG-sites have been 

selected as biomarkers for the Breast, Colon and 

Lung cancer datasets respectively. Although the 

results were promising, the processing overhead of 

MSFS was enormous mainly because of the 

clustering step that MSFS begins with. This is in 

addition to using considerable CPG-sites in the 

classification process.  

A Nested Genetic Algorithm (NestedGA) was 

proposed in [28] to define the biomarker gene subset 

by utilizing two types of data; Microarray Gene 
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Expression data and DNAm data. NestedGA 

consisted of two Genetic Algorithms (GAs); outerGA 

with SVM fitness function and innerGA with Neural 

Network fitness. The t-test filter method has been 

used as a preprocessing step before running the 

NestedGA as a wrapper feature selection method. 

NestedGA was applied on Colon cancer data with the 

aim to reach a gene subset representing the 

biomarkers for Colon cancer. NestedGA was also 

used to differentiate between the Lung cancer 

subtypes. The results showed that NestedGA 

noticeably outperformed InnerGA and OuterGA. 

Although the results of NestedGA are interesting, it 

suffers from huge processing overhead that cannot be 

avoided by parallelization due to the dependency 

between the nested GAs.  

Except NestedGA, the aforementioned research 

studies targeted only one type of Microarray data 

(either Gene Expression or DNAm data), neglecting 

the biological relationship between those types of 

data in getting robust biomarkers.  In addition, these 

studies generally have low accuracies and a 

considerable number of selected features that need 

more scientific validation. 

This study aims to overcome the aforementioned 

shortcomings by constructing an ensemble feature 

selection approach to determine biomarkers for 

cancer diagnosis by utilizing two different types of 

Microarray data; Gene Expression data and DNAm 

data. Experimentally, the approach has been applied 

on Lung cancer datasets to differentiate between the 

lung cancer subtypes. The proposed approach 

combines filter and wrapper feature selection 

techniques. The t-test is used as filter feature 

selection technique, whereas, GA is used as wrapper 

feature selection technique with five different 

algorithms (KNN, MLHD, SVM, Nearcent, RF) as its 

fitness function. At last, IFS is applied individually 

on the five GAs to result in five different feature 

subsets. The resultant feature subsets are combined, 

and ranks are assigned for the features to produce a 

feature pool by using feature pool generation 

technique. The aforementioned steps are applied on 

Gene Expression data and DNAm datasets resulting 

in Gene pool and CpG-site pool respectively. The 

mapping between the Gene Expression data and 

DNAm data is used to obtain the genes related to all 

the CpG-sites in the CpG-site pool forming a new 

mapped gene pool. Finally, the common genes from 

the two gene pools are used in classifying the Lung 

cancer subtypes. 

The rest of this paper is organized as follows. 

Section 2 describes in detail the used datasets and the 

main components and steps of the proposed approach. 

 

Table 1. Lung cancer dataset description 
Dataset 

Type 

Gene 

Expression data 

DNA Methylation 

data 

Dataset 

Variables 
17,813 genes 27,578 CpG-sites 

Dataset  

Function 

• 66 samples for 5-

fold cross 

validation training 

• 122 samples for 

testing 

• 300 samples for 

5-fold cross 

validation training  

• 11 samples for 

testing 

Sample 

Type 

• LUAD: 33 

samples 

• LUSC: 155 

samples  

• LUAD: 151 

samples  

• LUSC: 160 

samples  

 

In section 3, the experiments with their results are 

stated and discussed. Finally, section 4 concludes the 

paper.  

2. Materials and methods 

2.1 Datasets 

The results presented in the next section are based 

on a Lung cancer Gene Expression dataset 

downloaded from The Cancer Genome Atlas 

(TCGA) https://tcga-data.nci.nih.gov/tcga/ and a 

TCGA DNAm dataset based on the Illumina IHM27k 

platform. These Lung cancer datasets contain two 

different cancer subtypes; LUAD and LUSC. Table 1 

shows more details of the used datasets. 

2.2 The proposed approach 

Fig. 1 shows the pipeline of the proposed 

approach. First, the data is preprocessed before 

applying feature selection. After that, feature filtering 

is applied using t-test to select a subset of the top 

ranked features. The filtered feature subset is then fed 

as an input to the five GAs with different fitness 

functions (MLHD, RF, KNN, Nearcent, and SVM). 

By running each GA N times, the features resulting 

from the N runs are ranked in descending order based 

on their frequency. Next, the top-ranked features are 

incrementally accumulated producing incremental 

subsets of features that are ready for evaluation using 

classification. Eventually, the five different GAs 

result in five different feature subsets that are 

combined by removing the redundant features to 

generate a ranked feature pool. This pipeline is 

applied separately on both the Gene Expression and 

the DNAm datasets. So, the input features for the 

pipeline in Fig. 1 are either genes that result in a 

ranked Gene Pool, or CpG-sites that result in a ranked 

CpG-site Pool. 
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Using the annotation data that annotates genes to 

CpG-sites is important to combine the ranked Gene 

pool and the ranked CpG-site Pool. Initially, genes 

are mapped to CpG-sites by using the minfi and 

IlluminaHumanMethylation27kanno:ilmn12:hg19 R 

packages. Each gene can be mapped to h (h = 0 : 50) 

CpG-sites. After that, an annotation table is built to 

maintain the reverse relationship so that CpG-sites in 

the ranked CpG-site Pool can be mapped to their 

corresponding genes forming another Gene Pool. 

Finally, the intersection between the two Gene Pools 

is obtained as shown in Fig. 2. 

2.2.1. The preprocessing step 

In the Gene Expression dataset, genes that have 

missing values are removed which result in 

decreasing the genes from 17,813 to 17,504. 

Similarly, for the DNAm dataset, CpG-sites 

decreased from 27,578 to 24,396. 

2.2.2. Filter feature selection 

Within the huge Gene Expression data, there are 

hundreds of genes that are redundant or irrelevant to 

the diagnosis of the targeted disease. So, it is 

important to reduce the number of genes in order to 

get good accuracy by the classification process. The 

Student’s t-test is one of the most successful filter 

feature selection methods in terms of the quality of 

the ranked features [29]. The Student’s t-test is 

applied on the two datasets using the t.test() R 

function as follows: 

 

1. Divide samples into two classes; normal and 

tumour. 

2. Calculate p-value for each feature reflecting how 

this feature is effective in separating classes. 

3. Sort all the features according to their p-value 

ascending. 

4. Select the best features (with lowest p-value). 
 
For the Gene Expression dataset, the first 3,000 

gene are selected, whereas, in the DNAm dataset the 

first 10,000 CpG-sites are selected. 

2.2.3. Wrapper feature selection (GA) 

A simple GA starts with initializing a population 

and running multiple iterations. Each iteration 

consists of some steps, which are known as GA 

operators (selection, crossover and mutation). At the 

end of each iteration, a new generation is created to 

be entered to the next iteration. The algorithm 

terminates when reaching the maximum number of 

iterations or finding the best solution. The flowchart 

of the GA algorithm is depicted in Fig. 3. 

 

GA Chromosome Structure: 

 A chromosome ch with n features is represented 

as ch= (g1, g2, … , gn). These n features are randomly 

selected from the reduced feature set F produced 

from the previous stage. Each feature gi is represented 

as an integer value that refers to the index of this 

feature in F. The chromosome structure is shown in 

Fig. 4. 

The Steps of GA are as follow: 

1. Initialize the GA initial population pi with Y 

chromosomes each contains y feature selected 

from the filtered features (F) produced from the 

previous stage. Each chromosome is 

represented as an array of y indices that refer to 

the selected features. In first iteration the 

chromosomes are randomly initialized. For 

iteration i (i= 2, ... , maxIter), the chromosomes 

are initialized by using the best chromosomes 

from previous iteration i-1. 

2. Calculate the fitness value fi for each 

chromosome in the current generation using the 

determined fitness function.  

3. Check if the termination conditions have been 

reached. The algorithm terminates with two 

conditions; reaching a solution with a 

predefined fitness value or reaching a 

predetermined number of iterations. In this case 

the algorithm outputs the best solution (subset 

of features) which is the chromosome with the 

highest fitness value in the current generation. 

Otherwise continue with the following steps. 

4. To improve the performance, the best 

chromosomes in the current generation are 

selected to be persisted in the next generation 

with no change (elitism mechanism). To avoid 

trapping in local peaks, elitism is chosen to be 

performed for 9 consecutive generations and to 

be cancelled for the 10th generation, this is 

repeated for all generations. 

5. Apply Roulette Wheel Selection [30] to select 

subset W for crossover with length lc. Steps of 

selection are as the following: 

(a) Generate random number r between 0 and 

sum of fitness values. 

(b) For each chromosome in the current 

generation, check if the chromosome’s 

fitness is less than r then pick this 

chromosome to be in W and return to step a. 

Otherwise, check another chromosome. 

(c) Repeat steps a and b till lc chromosomes are 

selected. 



Received:  February 19, 2019                                                                                                                                              55 

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019           DOI: 10.22266/ijies2019.0831.06 

 

 
Figure. 1 Pipeline of the proposed approach 

 

 
Figure. 2 Combining genes from CpG-site and Gene 

pools to get the intersecting genes. 
 

6. Apply crossover by randomly selecting two 

parent chromosomes to create two new 

chromosomes. Crossover is applied as in Fig. 5.  
7. Randomly select set of chromosomes with 

length lm for mutation with mutation rate Pm. 

Perform a random single point mutation on 

these chromosomes by altering their genes 

values to ensure that a sufficient portion of the 

parameter space is explored. 

8. Generate new generation from combining all 

chromosomes produced from the elitism, 

crossover, and mutation steps. 

9. Replace old generation with the new one. 

10. Repeat from step 2. 

 
Figure. 3 GA flowchart 

 

Figure. 4 Chromosome Structure. Each gene in the 

chromosome refers to an index of one feature 
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Figure. 5 The crossover mechanism 

2.2.4. Feature sum ranker 

In this step, N feature subsets are produced after 

running an individual GA N runs. The unique 

features are picked from those N subsets, and then 

sorted in descending order based on their cumulative 

frequencies over all the N subsets. The more frequent 

a feature, the higher its rank is. 

2.2.5. Feature subsets combiner 

A ranked features list L is Produced from the 

previous stage after repeatedly running an individual 

GA N runs. Next, IFS is applied to produce S feature 

subsets. The first feature subset is constructed from 

the first two top-ranked features. The remaining 

features are incrementally added one by one to 

produce new feature subsets. Each new subset is the 

same as its previous subset with a new feature added. 

Finally, S feature subsets are constructed where the ith 

feature subset is: sfi = (f1, f2, . . . ,fi ) where (2 ≤ i ≤ S). 

Applying the same process on the five different GAs 

results in five different feature subsets. Obtaining the 

intersected features between the five feature subsets 

is the second level of feature ranking. 

2.2.6. Feature pool generator 

Running the five different GAs in the previous 

step results in intersected feature lists. To generate a 

feature pool, four steps have been applied as follows: 

1. Combine features from the intersected feature 

lists into a single list. 

2. Remove the repetitions to produce the feature 

pool. 

Table 2. GA parameters and their description 

Parameter   Description Value 

F reduced features by t-test (genes, 

CpG-sites)  

3,000 

10,000 

PSize number of chromosomes in the 

population. 

40 

n number of genes in a 

chromosome for Gene pool , 

CPG-site pool 

30 

50 

maxIter max number of iterations. 100 

Pc probability of crossover. 0.5 

Pm probability of mutation. 0.1 

E elitism selected chromosomes. 1 

R number of GA runs. 30 

G number of repeating GA runs. 10 

goalF required fitness value. 90 % 

 

3. For each feature in the feature pool, compute the 

cumulative frequency over all intersected lists of 

features from GAs. 

4. Sort feature pool according to the feature 

cumulative frequency. 
 

3. Results and discussion 

The steps of applying the proposed approach are 

as follows. Firstly, the CpG-sites and Microarray 

genes with missing data are eliminated. Then, the t-

test filtering method is applied (subsection 2.2.2) 

resulting in F feature set of top ranked Microarray 

genes. Five GA with fitness functions MLHD, 

Nearcent, SVM, KNN, and RF are performed on F. 

For each GA, feature sum ranker mentioned in 

subsection 2.2.4 is performed to get the near-optimal 

feature subset. This step is repeated G times for each 

GA producing G feature subsets. After that, feature 

subsets combiner is applied on those G feature 

subsets producing one feature list for each GA as in 

subsection 2.2.5. Finally, feature pool generator 

generates one pool from feature lists of the five GA. 

Table 2 shows the parameter settings for the proposed 

approach. 

The Lung cancer datasets mentioned in 

subsection 2.1 is attempted by the proposed approach 

in two experiments. One experiment is for generating 

a Gene pool utilizing the Gene Expression 

Microarray dataset and the second one is for 

generating a CPG-site pool utilizing the DNAm 

dataset. The summary of the results of the two 

experiments is shown in Table 3. A third experiment 

is performed to get the intersected list of genes from 

both Gene pool and CPG-site pool. An annotation 
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Table 3. Summary of Gene pool and CpG-site pool results 

Pool 

Type 

Num of 

Features 

Feature Frequency 

Gene 

Pool 

206  

Genes 

Genes with frequency 4 = 1  

Genes with frequency 3 = 1 

Genes with frequency 2 = 18 

Genes with frequency 1 = 186 

CpG-

site 

Pool 

194  

CpG- 

Sites 

CpG-sites with frequency 4 = 2  

CpG-sites with frequency 3 = 4 

CpG-sites with frequency 2= 25 

CpG-sites with frequency 1=163 

 
Table 4. The annotation of the three resultant genes to 

their corresponding CpG-sites according to HG19 

Gene 

ID 

Gene 

Name 

Corresponding 

CpG-sites 

1749 DLX5 cg00503840, cg01169726, 

cg02101486, cg06537230, 

cg06911084, cg08878323, 

cg09150117, cg11500797, 

cg11997899, cg12041387, 

cg13344740, cg13462129, 

cg16924616, cg18873386, 

cg20080624, cg24115040, 

cg27016494 

33852 KRT5 cg04254916, cg23645091 

8991 SELENBP1 cg18515587 

 

step is required here to get the genes related to CpG-

sites where each gene can be mapped to h (h = 0 : 50) 

CpG-sites. CpG-sites are mapped to genes by using 

the minfi and the 

IlluminaIlluminaHumanMethylation27kanno:ilmn12

:hg19 R packages. The list of genes resulted from 

intersection is shown in Table 4. 

Table 5 shows the accuracy for classifying the 

two Lung cancer subtypes for the Gene Expression 

dataset. The accuracy has been calculated three times; 

first using only the three genes shown in Table 4 

which are resulting from the third experiment, and the 

second time using genes in Gene pool that have high 

frequency (from 2 to 5 genes). The last accuracy was 

calculated using the genes related to CpG-sites in 

CpG-site pool that have high frequency (from 2 to 5 

CpG-sites). As shown in the table, the accuracy 

obtained by using the three resultant genes is higher 

than using up to five genes from the Gene pool or the 

CpG-site pool individually. 

To justify the effectiveness of the proposed 

approach, it has been compared to the two latest 

approaches proposed in [24] and [28] applied on the 

same datasets for Lung cancer Gene Expression and 

 

Table 5. The classification accuracies over the Gene 

Expression dataset using different gene subsets from 

different pools 

Used 

Genes 

Num. of 

genes 

Accuracy 

Gene pool & CpG-site 

pool 

3 0.9231 

Gene pool 2 0.8654 

Gene pool 3 0.9038 

Gene pool 4 0.8654 

Gene pool 5 0.9038 

CpG-site pool 2 0.8462 

CpG-site pool 3 0.8654 

CpG-site pool 4 0.9038 

CpG-site pool 5 0.8846 

 

 
Figure. 6 The heatmap of the three genes intersecting 

between the Gene pool and the CPG-site pool 

 

DNAm data. The accuracies are 92.31% for the 

proposed approach using 3 genes, 84.54% for the 

approach in [24] using 16 CpG-sites, and 87.60% for 

the NestedGA approach proposed in [28] using 3 

genes. Moreover, the proposed approach is simple 

and fast compared to MSFS [27] and NestedGA [28] 

as it needs no complicated preprocessing steps. 

As a step towards the validation of the resultant 

biomarkers, Fig. 6 depicts the heatmap generated for 

the three biomarkers genes (rows) with respect to the 

experimental samples (columns). It is clear from the 

heatmap that these three genes are cooperatively 

indicating high discrimination ability between the 

two Lung cancer subtypes samples. Gene SELENBP1 

has the highest discrimination ability, whereas gene 

DLX5 has the lowest one. 

3.1 Enrichment analysis 

The three resultant genes have been validated 

with respect to the results published in previous 

researches. More specific, DLX5 is one of the family 
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of Distal-less (DLX) homeobox genes. There are six 

family members, namely DLX1 to DLX6, where 

each gene has the same biological function for 

different species [31]. The authors in [32] reported 

that ERβ, like EGR3 and DLX5, is a direct positive 

regulator of NOTCH1 expression in keratinocytes 

and keratinocyte-derived squamous cell carcinoma 

(SCC) cells. As a result, this molecule (ERβ) is 

pointed to be a possible therapeutic target for 

differentiation therapy treatment of SCC. 

According to [33] DLX plays an important role 

in tumour growth and progression because the 

deregulation of the DLX genes, including DLX5, was 

noticed in human solid tumours and hematologic 

malignancies. Moreover, DLX5 is reported to be an 

oncogene in Lymphomas and Lung cancers in [34, 

35]. In Lung cancer cells, DLX5 overexpression is 

related to the tumour size and predictive of poor 

prognosis [36]. Furthermore, it is concluded in [37] 

that DLX5 is a target for the development of 

anticancer drugs and cancer vaccines, and it can act 

as a prognostic biomarker in clinic. In addition, 

DLX5 is considered a potential prognostic marker by 

[38-43]. 

In [44], KRT5 is defined as one of the potential 

biomarkers for discriminating between LUAD and 

LUSC. More specific, KRT5 is suggested to have the 

highest diagnostic value for distinguishing between 

these two cancer types. KRT5 is also reported to be 

associated to Lung Cancer according to [45-49]. 

As shown in [50], the decreased SELENBP1 is an 

early event in LUSC, and it can act as a novel 

potential biomarker for early detection of LUSC. 

Moreover, SELENBP1 is downregulated in many 

cancer types, such as Lung cancer according to [51-

54]. 

4. Conclusion 

In this study, an ensemble feature selection 

approach is introduced to find the biomarkers for 

classifying the Lung cancer subtypes using two 

different high dimensional datasets; Gene Expression 

and DNAm Microarray datasets. Five different 

feature selection techniques have been used as 

different fitness functions in five independent GAs. 

Then, the incremental feature selection strategy is 

applied to select the significant genes and CpG-sites 

resulting in Gene pool and CpG-site pool respectively. 

The resultant genes obtained by intersecting the Gene 

and CpG-site pools produced higher classification 

performance compared to using only genes from the 

Gene pool or CpG-sites from the CpG-site pool. 

The main benefit of the proposed approach is to 

find the biomarker genes from two different types of 

cancer related data. The classification accuracy 

achieved by this study could not be achieved by other 

research studies unless by using more genes and 

higher computational complexity. 

The resultant genes can be used to find more 

informative knowledge related to Lung cancer which 

can be utilized by future studies to discover more 

promising drugs. As a future work, the proposed 

approach can be applied on more than two types of 

data. Moreover, other optimization methods can be 

tried as a fitness function of Genetic Algorithm to get 

higher accuracies and other types of cancer can be 

treated. 
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