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Abstract: To depict the hyperspectral data, here a sturdy mixing model is implemented by employing various 

perfect spectral signatures mixture, which enhances the generally utilized linear mixture model (LMM) by inserting 

an extra term that describes the potential nonlinear effects (NEs), which are addressed as additive nonlinearities 

(NLs) those are disseminated without dense. Accompanying the traditional nonnegativity and sum-to-one restraints 

underlying to the spectral mixing, this proposed model heads to a novel pattern of sturdy nonnegative matrix 

factorization (S-NMF) with a term named group sparse outlier. The factorization is presented as an issue of 

optimization which is later dealt by an iterative block-coordinated descent algorithm (IB-CDA) regarding the 

updates with maximation-minimisation. Moreover, distinctive hyperspectral mixture models also presented by 

adopting the considerations like NEs, mismodelling effects (MEs) and endmember variability (EV). The extensive 

simulation analysis by the implementation of proposed models with their estimation approaches tested on both the 

synthetic and real-time images. Further, it is also shown that the comparative analysis with the conventional 

approaches. 

Keywords: Spectral unmixing, Hyperspectral images, Linear mixture models, Nonlinear mixture models, Nonlinear 

spectral unmixing, Endmember variability, Sturdy unmixing, Mismodelling effect and coordinate descent algorithm. 

 

 

1. Introduction 

Hyperspectral image investigation, which 

renders significant and comprehensive gathered 

measurements description in several areas of 

application like spectro-microscopy [1], remote 

sensing [2], food monitoring [3] and planetology [4] 

is done by a prefaced concern problem named as 

spectral unmixing (SU), which was an area of 

intensive interest over the last two decades. SU is an 

issue of separating source comprising of 

reconstructing the material’s endmember spectrum 

which is there in the scene and measuring their 

symmetries or abundances inside every pixel of HIS. 

It consists in decomposing 𝑃  multi-band 

observations 𝑌 =  [𝑦1, . . . , 𝑦𝑃] into a collection of 𝐾 

individual spectra 𝑅 =  [𝑟1, . . . , 𝑟𝐾] , called 

endmembers, and estimating their relative 

abundances 𝐴 =  [𝑎1, . . . , 𝑎𝑃]  for each observation 

[5, 6]. Numerous SU approaches presented in the 

literatures of geoscience, signal and image 

processing depends on LMM, 𝑌 ≈ 𝑅𝐴. In truth, a 

good estimation of the physical procedure is 

rendered by LMM which inherent the observation 

and has outcome in practicable solvent for numerous 

applications. Be that as it may, LMM is not suitable 

for several settings like the models with volumetric 

dispersing or suggest materials mixture or terrain 

alleviation. For example, when assuming the scenes 

like arenaceous, light is mattered to the development 

of multiple dispersing and assimilation, that led 

largely NEs. Quite difficult optical modelling is 

necessitated to deal with the thorough examination 

of such models and further it is required to recourse 
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to estimation models to make the issue amenable. 

For those effects [7, 8], which suffers LMM, an 

alternate approach is adopted named as nonlinear 

mixture models (NLMM), which consists of couple 

of categorizations like first is based on procedure of 

signal and attempts to build flexile models that can 

constitutes NLs with a wide range. Second is based 

on physical and admits the multiple scattered 

familiar models like polynomial [9] or bilinear [10-

14]. Conversely, in an image of remotely sensed 

those are compiled of vegetation (e.g., trees), 

photons interaction with several scene elements 

results in NEs that can be assumed employing 

bilinear models [15, 16]. As explained in [17], many 

of these models only differ by the restraints enforced 

on the bilinear term. Furthermore, to estimate 

second order NLs with wide range, a polynomial 

post NLMM is implemented in [18], which has 

established its capability to depict numerous NEs, in 

vegetated areas [19]. A general characteristic of 

such models is that they all integrate an additional 

term that accounts for NLs to the traditional LMM. 

However, these models are not without flaws that 

they necessitate to select a particular pattern of NL, 

which is highly restricted in practice. A complete 

overview of NL models with their supported SU 

algorithms are presented in [20, 21]. 

In both LMM and NLMM, the endmember 

matrix (𝑀) are generally assumed fixed in the whole 

image. This appears as a clear simplification since in 

many cases, the 𝑀  spectra vary along the image 

causing what is known as spectral variability or EV 

[22, 23]. Spectral variability has been identified as a 

relevant source of error in abundance estimation and 

is attracting growing interest in the hyperspectral 

community [22-24]. In the literature, numerous 

approaches were implemented to depict this EV and 

they can be accumulated into couple of major 

categories where the first one assumes every 

physical material as known endmember set [25, 26] 

or reckoned from the data [27, 28]. In addition, 

numerous 𝑀 parametric representation is discovered 

like the every 𝑀 is multiplied by a picture element 

subordinate invariant to explicit a variation in 

illumination in the scene that is noticed [29–31]. 

The latter category trusts on a numerous 𝑀 

statistical representation which are considered as 

random vectors with rendered probability 

dispersions. There are couple of statistical models 

like normal compositional model (NCM) [32–34] 

and beta compositional model (BCM) [35] where 

the first one considers Gaussian dispersions for 

numerous 𝑀  and the latter feats the physically 

naturalistic 𝑀 range reflectance by attributing them 

a beta distribution.  

Processing of HSI also relate to the MEs, which 

introduced due to the presence of several physical 

development like NEs or EV. Be that as it may, 

these MEs can also be due to the dispersed mistakes 

in the processing chain of signal. In truth, three 

stages are employed for operating SU:  

• 𝑀 estimation. 

• Employment of endmember extraction 

approaches (EEA) like vertex component 

analysis (VCA) [36] and N-FINDR [37] to 

distinguish 𝑀. 

• Abundances approximation underneath 

physical nonnegativity and sum-to-one 

restraints employing algorithms like entirely 

restrained least squares [38].  

Many studies consider a supervised unmixing 

scenario which aims at estimating the abundances 

while if the two first unmixing steps were 

successfully implemented [38–41]. However, an 

error on the estimated number of 𝑀  or in their 

spectra might results in worse estimation of 

abundance, which is assumed by several refreshing 

sturdy SU algorithms those targeted at mitigating 

the outliers of MEs influence [42].  

In a like manner to the NMMs explained above, 

our proposed model is constructed based on 

traditional LMM, with the comprehension of an 

auxiliary linear term that accounts for the impacts of 

NEs. Hence, the proposed model can be assumed to 

study any mixture that outcome from the 

compounding of an additive part 𝑀𝐴  and the 

residual term [43]. Indeed, the first stage 

investigates NEs which can be modelled by 

assuming a variation to the polynomial term 

described in literature, that relies only on the spectra 

of endmember. The second stage assumes the 

impact of EV by innovating a smooth linear 

divergence of every known spectra of endmember. 

Thus, reverse to the NCM explained in some of 

related articles, the proposed model considers the 

endmembers in presence of EV with smooth spatial 

and spectral fluctuation. In addition, the third stage 

innovated for the residual term which accounted for 

the MEs with the smooth spectral and spatial 

properties of corrupting term. Grounded on the 

residual component analysis (RCA) model [44], 

global formulation considers the LMM to be 

profaned by a linear term whose formula can be 

accommodated to describe for the analyzed 

development. This residual term is formulated as a 

compounding of 𝑀  or abundances contingent the 

analyzed NEs or EV. The unknown parameter 

vector joint posterior dispersion is then derived for 

NEs, EV and MEs by employing the likelihood and 
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the assumed prior distributions. However, it is quite 

difficult to calculate the minimum mean square error 

(MMSE) and maximum a posteriori (MAP) 

estimators of these parameters from the prevailed 

joint posteriors, which estimates the MAP by 

assuming the coordinate descent algorithm (CDA) 

[45, 46].  

The main motivation for introducing proposed 

approach is to introduce a flexible unmixing method 

able to analyse a large variety of remotely sensed 

scenes. It is well admitted that, for most of these 

images, LMM is a relevant description of the data. 

For such datasets, resorting to NMMs is not always 

necessary and may in fact result in inaccurate 

estimation (due to, e.g., overfitting). Thus, the LMM 

can be considered as a valid model to describe most 

of the pixels in a remotely sensed image. Conversely, 

as illustrated in previous works, the LMM 

assumption does not support for the areas those are 

particularly localized, primarily placed at the 

heterogeneous areas interface. For this restricted 

number of picture elements, the SU approaches 

based on LMM failed to recover the materials and 

their abundances. Of such assumption, our objective 

is to implement a novel SU model which suits for 

the both scenarios. However, the work addressed in 

[47], doesn’t operates well with the larger NEs since 

CDA algorithm updation is quite difficult and it fails 

to produce good abundance estimate with nonlinear 

model that was corrupted by additive noise. 

Therefore, this work aimed at solving these issues 

and proposed a new CDA algorithm that is named as 

iterative block coordinate descent algorithm (IB-

CDA) that consecutively updates the abundances, 

the noise variances and the residual terms iteratively. 

Moreover, S-NMF is employed to minimize the 

issue where the LMM fails to assume the pixels with 

nonlinearities. As such, we implemented to 

decompose the 𝐿 ×  𝑃  matrix of the observations 

with multi-band as 𝑌 ≈  𝑅𝐴 +  𝑁, where 𝑁 is a not 

thick (and non-negative) residual term explicating 

NEs. The implemented SU models and their reckon 

algorithms are experimented with both synthetic and 

real HSI. The incurred outcome is extremely 

identical and disclose the proposed SU model’s 

possibility with their supported illation algorithms.  

The rest of this article is summarized as follows. 

Section 2 innovates the derivations for the proposed 

mixture model and its versions to handle with NEs, 

EV and MEs. Section 3 explains the proposed 

methodology. Section 4 discusses the simulated 

results of proposed approaches using synthetic 

images with known ground truth. and real HSIs. 

Section V concludes the article and future work also 

discussed in the same finally reported the references. 

2. Mixing model: NL, EV and MEs  

The SU expression is grounded on RCA model 

that is formulated as the summation of LMM and 

residual term. In practice, the general observation 

model for the (𝐿 × 1) pixel spectrum 𝑦𝑖,𝑗  is given 

by 

 

𝑦𝑖,𝑗 = ∑ 𝑎𝑟,𝑖,𝑗𝑠𝑟,𝑖,𝑗 + 𝜑𝑖,𝑗(𝑆𝑖,𝑗 , 𝑎𝑖,𝑗) + 𝑒𝑖,𝑗 =𝑅
𝑟=1

𝑆𝑖,𝑗𝑎𝑖,𝑗 + 𝜑𝑖,𝑗(𝑆𝑖,𝑗, 𝑎𝑖,𝑗) + 𝑒𝑖,𝑗   (1) 

 

where 𝑎𝑖,𝑗  is an (𝑅 × 1)  abundances vector 

affiliated with the picture element (𝑖, 𝑗), number of 

endmembers are denoted as 𝑅, 𝑒𝑖,𝑗~𝒩(0, Σ) denotes 

the linear focused Gaussian noise with a matrix of 

diagonal covariance Σ = diag(𝜎2) , where 𝜎2 =
[𝜎1

2, ⋯ , 𝜎𝐿
2]𝑇  is an (𝐿 × 1)  vector comprising the 

variances of noise with 𝐿 spectral bands, 𝑆𝑖,𝑗(𝑀) =

𝑆𝑖,𝑗 is the matrix of endmember that relies on every 

picture element to innovate the impact of EV, the 

known matrix of endmember that is unchanged 

denoted as 𝑀  and residual term is denoted as 

𝜑𝑖,𝑗(𝑆𝑖,𝑗, 𝑎𝑖,𝑗), which might rely on the abundances 

or endmembers to model the impacts of NL or EV. 

Because of physical restraints, the vector of 

abundance 𝑎𝑖,𝑗 = [𝑎𝑟,𝑖,𝑗, ⋯ , 𝑎𝑅,𝑖,𝑗]
𝑇

 gratifies the 

adopting positivity and sum-to-one restraints. 

 

𝑎𝑟,𝑖,𝑗 ≥ 0, ∀𝑟 ∈ {1, ⋯ , 𝑅} and 

∑ 𝑎𝑟,𝑖,𝑗 = 1𝑅
𝑟=1     (2) 

 

Eq. (1) shows a general model that can be 

adapted to account for different physical phenomena. 

The NEs model is designed to deal with the multiple 

scattering effect that appears in presence of terrain 

relief, and/or trees. The EV model accounts for the 

deviation of the endmembers that is commonly 

observed in presence of vegetation (such as trees or 

grass), and shadow. It is common to observe the NL 

and the EV effects simultaneously when analysing a 

scene. Therefore, a ME model has been proposed to 

account for both effects. The next sections provide 

details regarding each of these models. 

Nonlinearity Effect: NLMM provide a useful 

alternative for overcoming the inherent limitations 

of the LMM. The latter can be inappropriate for 

some HSI, such as those containing trees, vegetation 

or urban areas. Bilinear/polynomial models have 

shown useful results for these scenes by addressing 

the problem of double scattering effects. In addition 

to the LMM terms, these models consider second 

order interactions between 𝑀 and neglects the effect 

of the higher order terms. The following 



Received:  January 7, 2019                                                                                                                                                169 

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019           DOI: 10.22266/ijies2019.0630.18 

 

polynomial/bilinear nonlinear model is considered 

in this article 

 

𝑦𝑖,𝑗 = 𝑐𝑖,𝑗𝑀𝑎𝑖,𝑗 + 𝜑𝑖,𝑗
𝑁𝐿(𝑀) + 𝑒𝑖,𝑗 (3) 

 

where the residual component is similar to [28] 

as follows: 

 

         𝜑𝑖,𝑗
𝑁𝐿(𝑀) = 

𝑐𝑖,𝑗
2 (∑ ∑ 𝛾𝑖,𝑗

(𝑘,𝑘")
√2𝑅

𝑘′=𝑘+1 𝑚𝑘⨀𝑚𝑘′ +𝑅−1
𝑘=1

∑ 𝛾𝑖,𝑗
(𝑘)

𝑚𝑘⨀𝑚𝑘
𝑅
𝑘=1 )     (4) 

 

With 𝛾𝑖,𝑗 =

[𝛾𝑖,𝑗
(1)

, ⋯ , 𝛾𝑖,𝑗
(𝑅)

, 𝛾𝑖,𝑗
(1,2)

, ⋯ , 𝛾𝑖,𝑗
(𝑅−1,𝑅)

]
𝑇

, ∀𝑖, 𝑗  is the 

(𝐷 × 1) vector of positive nonlinearity coefficients, 

𝐷 =  
𝑅(𝑅+1)

2
, ⨀ denotes the Hadamard (term wise) 

product, 𝑘  denoted as endmember spectra, 𝑠𝑟,𝑖,𝑗 =

𝑐𝑖,𝑗𝑚𝑟, ∀𝑖, 𝑗, with 𝑐𝑖,𝑗 a pixel dependent illumination 

coefficient. The model (3) generalizes the model of 

Somers et al. by including an EV illumination 

parameter 𝑐𝑖,𝑗  that accounts for the main spectral 

variation of endmembers. Contrary to the RCA 

model, model (3) considers physical positive 𝛾𝑖,𝑗 

(the RCA model can be obtained by marginalizing 

unconstrained 𝛾𝑖,𝑗 ). Note also that (3) generalizes 

the LMM (obtained when 𝛾𝑖,𝑗  = 0, and 𝑐𝑖,𝑗 =

1, ∀𝑖, 𝑗) and has a polynomial like form as for the 

bilinear models. Note finally that model (3) (with no 

illumination variation) has been studied by Altmann 

et al. when considering a Markov chain Monte-

Carlo (MCMC) approach and have shown good 

performance for processing HSIs. However, the 

MCMC estimation algorithm was computationally 

expensive, hence a faster algorithm is considered 

which utilizes co-ordinate descent algorithm (CDA) 

described in [47]. Further, CDA is extended to IB-

CDA to obtain more effective outcome when LMM 

fails to assume the pixel NLs. 

Endmember Variability Effect: Due to the low 

spatial resolution of hyperspectral images, the image 

might represent very large scenes. Therefore, it 

makes sense to assume that the same material (such 

as vegetation) might differ with respect to (w. r. t.) 

the image regions resulting in what it is known as 

EV. This variability introduces a modification in the 

shape and the scale of the 𝑀 spectrum in each pixel, 

i.e., 𝑠𝑖,𝑗 depends on the pixel location. 

Despite the fact that these spectra are affiliated 

with the similar material, they show some 

differences which is known as EV effect. To 

highlight this effect, we compute the average 

spectrum in each spectral band, and assume that EV 

is obtained by computing the difference between the 

spectra and the average spectrum. Therefore, to 

account for the shape variability of each endmember, 

each endmember can be approximated by the sum of 

a fixed spectrum and a smooth spectral function 

representing EV. This smooth function can be 

modelled by a parametric approach such as spline, 

or a statistical approach as Gaussian process. Here, 

following EV model considered 

  

𝑠𝑟,𝑖,𝑗 = 𝑚𝑟 + 𝑘𝑟,𝑖,𝑗   (5) 

 

where 𝑘𝑟,𝑖,𝑗 is a smooth spectral function, which 

leads to 

 

𝑦𝑖,𝑗 = 𝑀𝑎𝑖,𝑗 + 𝜑𝑖,𝑗
𝐸𝑉(𝑎𝑖,𝑗) + 𝑒𝑖,𝑗  (6) 

 

Where 

 

𝜑𝑖,𝑗
𝐸𝑉(𝑎𝑖,𝑗) = ∑ 𝑎𝑟,𝑖,𝑗𝑘𝑟,𝑖,𝑗

𝑅
𝑟=1   (7) 

 

Note that Eq. (7) does not consider an 

illumination parameter 𝑐𝑖,𝑗  since its effect can be 

included in the smooth function 𝑘𝑟,𝑖,𝑗. Model Eq. (7) 

relates to state-of-the-art models as follows: (i) it 

generalizes the LMM that can be retrieved for 

𝑘𝑟,𝑖,𝑗 = 0𝐿 , ∀𝑖, 𝑗, (ii) it generalizes the model [30] by 

including the effect of shape variability, and (iii) it 

has a similar formulation as in [48] while accounting 

for the spectral smoothness of the residuals. Note 

finally that in the special case where 𝑘𝑟,𝑖,𝑗  is 

Gaussian distributed (Gaussian process), the model 

Eq. (6) will improve the GNCM by including the 

smooth behaviour of EV (model Eq. (6) is closely 

related to the GNCM that can be obtained by 

marginalizing 𝑠𝑖,𝑗  when considering a Bayesian 

approach). 

Mismodelling Effects (ME) or Outliers: The 

LMM is widely used because of its simplicity. As 

previously shown, there is a lot of situations where 

the LMM is not valid because of the presence of 

variability, NL or MEs due to the signal processing 

chain errors. This section accounts for MEs or the 

presence of outliers by considering a residual term 

that shows spatial and spectral correlations. The 

observation model is given by  

 

𝑦𝑖,𝑗 = 𝑐𝑖,𝑗𝑀𝑎𝑖,𝑗 + 𝜑𝑖,𝑗
𝑀𝐸(𝑀) + 𝑒𝑖,𝑗 with

 𝜑𝑖,𝑗
𝑀𝐸 = 𝑑𝑖,𝑗    (8) 

 

Where a function of smooth spectral is denoted 

as 𝑑𝑖,𝑗 . Similarly, to the previous models, Eq. (8) 
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reduces to the LMM when 𝑑𝑖,𝑗 = 0𝐿 , and 𝑐𝑖,𝑗 =

1, ∀𝑖, 𝑗. Note that other models have been introduced 

in the literature to account for the effect of outliers 

that proposed spatial/spectral correlated outliers by 

considering discrete Markov random fields (MRF). 

Note that Eq. (8) be a special case of the EV model 

Eq. (7) when 𝑘𝑟,𝑖,𝑗 = 𝑘𝑟′,𝑖,𝑗, ∀𝑟, 𝑟′ and 𝑐𝑖,𝑗 = 1, i.e., 

the same variability is affecting the different 𝑀 . 

Note also that the NL model Eq. (4) reduces to Eq. 

(8) if 𝛾(𝑘,𝑘′)  =  𝛾, ∀𝑘, 𝑘′  since the spectra 

𝑚𝑘⨀𝑚𝑘′ , ∀, 𝑘, 𝑘′  are generally smooth. However, 

Eq. (8) is more flexible since it does not consider the 

positivity constraint (mainly to account for EV). 

 

Algorithm 1: CDA 

1: Estimate 𝑀 using an EEA (such as VCA [], N-

FINDR [], …) 

2: Initialize parameters 𝐴(0) (SUNSAL-FCLS), Γ(0), 

𝐾(0), 𝐷(0), 𝑐(0), ∑(0), 𝜀(0) and t 

3: conv = 0 

4: while conv = 0 do 

5: Update 𝐴(𝑡) with SUNSAL-FCLS  

6: CDA-NL: Update Γ(𝑡) with SUNSAL-FCLS 

7: CDA-EV:  Update K(𝑡) by standard least squares 

8: CDA-ME:  Update D(𝑡) by standard least squares 

9: CDA-NL and CDA-ME:  Update (𝜀, 𝜔)(𝑡)  by 

standard least squares 

10: Update ∑(𝑡) 

11: CDA-ME: Update c(𝑡) by standard least squares 

12: CDA-NL: Update c(𝑡)  by the resolution of 3rd 

order polynomial 

13: Set conv = 1, if the convergence criterion is 

satisfied 

14: 𝑡 =  𝑡 + 1 

15: end while 

3. Proposed methodology 

3.1 Model design 

𝑦𝑖,𝑗 ≈ ∑ 𝑎𝑟,𝑖,𝑗𝑚𝑟 + 𝑛𝑖,𝑗
𝑅
𝑟=1    (9) 

 

The matrix formulation for above equation is given 

by 

 

𝑌 ≈ 𝑅𝐴 + 𝑁    (10)  

 

This Eq. (9) generalizes most of the bilinear 

mixing models that have been widely used to 

analyse hyperspectral scenes acquired over multi-

layered areas by remote sensors. This specific 

context has been extensively studied in the literature, 

for planetary and Earth science to characterize 

vegetation or urban canopies.  

The approximation symbol in Eq. (9) and Eq. 

(10) underlies the minimization of a measure of 

dissimilarity 𝐷(𝑌|𝑅𝐴 + 𝑁) . The measure of 

dissimilarity is such that 𝐷(𝐴|𝐵)  =  ∑ 𝑑(𝑎𝑖𝑗|𝑏𝑖𝑗)𝑖𝑗  , 

where 𝑑(𝑥|𝑦)  is either the squared Euclidean 

distance (SED) or the Kullback-Leibler divergence 

(KLD). We address these two measures of 

dissimilarity because they are the most commonly 

used in non-negative matrix factorization (NMF). 

The SED is the more common one in hyperspectral 

unmixing, but recent papers have also pointed the 

benefits of using the KLD. As will be discussed in 

conclusion section, the methodology presented in 

the paper could also accommodate other measures 

of fit such as the more general β-divergence. The 

matrices 𝑌, 𝑅 and 𝐴 are nonnegative by nature and 

we assume the abundance coefficients to sum to one, 

i.e., 

 

𝑎𝑖,𝑗 ∈ 𝕊𝑅 ≝ {𝑎 ∈ ℕ𝑅|𝑎𝑟 ≥ 0, ∑ 𝑎𝑟
𝑅
𝑟=1 = 1}    (11) 

 

as commonly assumed in most hyperspectral 

data models. In this work, we assume the nonlinear 

component 𝑛𝑖,𝑗 to be nonnegative as well, like in the 

bilinear models and the polynomial model with 

constructive interferences. This assumption allows a 

fair comparison with the latter works, which 

inspired us the proposed methodology, and is 

physically well-motivated for multi-layered models 

(scenes with multiple reflections).  

As discussed in the introduction, we expect 𝑛𝑖,𝑗 

to be often zero, i.e., pixels to follow the standard 

LMM in general. For pixels where the LMM 

assumption fails, nonlinearities will become “active” 

and 𝑛𝑖,𝑗 will become nonzero. This amounts to say 

that the energy vector in sparse. 

 

𝑒 = [‖𝑛𝑟,1‖
2

, ⋯ , ‖𝑛𝑟,𝑖,𝑗‖
2

]  (12) 

 

In Eq. (12), ‖∙‖2  denotes the Euclidean norm. 

Sparsity can be routinely enforced by ℓ1 -

regularization, as done next. 

In light of earlier section, our objective is to 

solve the minimization problem defined by 

  
min

𝑀,𝐴,𝑁
𝐽(𝑅, 𝐴, 𝑁) = 𝐷(𝑌|𝑅𝐴 + 𝑁) + 𝜆‖𝑁‖2,1 

𝑠. 𝑡. 𝑅 ≥ 0, 𝐴 ≥ 0, 𝑁 ≥ 0 and ‖𝑎𝑖,𝑗‖
1

= 1 

      

(13) 
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Where 𝜆 is the nonnegative penalty weight,  𝐴 ≥
0 denotes coefficients nonnegativity of 𝐴 and ‖∙‖2,1 

is the so called ℓ2,1-norm defined by 

  

‖𝑁‖2,1 = ‖𝑒‖1 = ∑ ‖𝑛𝑖,𝑗‖
2

𝑃
𝑖,𝑗=1   (14) 

 

Eq. (13) defines a sturdy NMF (S-NMF) 

problem. S-NMF is a nonnegative variant of robust 

PCA [48] which has appeared in different forms in 

the literature. In [50], the outlier term 𝑁  is 

nonnegative and penalized by the ℓ1-norm. In [51] 

and [52], 𝑁 is real-valued and penalized by ℓ1 and 

ℓ1,2-norms, respectively. In [53], the ℓ2,1-norm of 

(𝑌 − 𝑅𝐴) is minimized (noise-free scenario). A so-

called S-NMF approach was introduced for the 

reconstruction of reflectance spectra in [54]; 

however, the term “sturdy” there refers to a different 

feature, namely the use of a data-fitting term (the 

hypersurface cost function) that is less sensitive to 

outlier observations than the traditional SED, for the 

computation of a regular NMF 𝑌 ≈ 𝑅𝐴. Note finally 

that other articles have addressed hyperspectral 

unmixing with regular NMF (i.e., in the standard 

linear model). To the best of our knowledge, the 

formulation of S-NMF described by Eq. (5), where 

𝑁  is nonnegative and penalized by the ℓ2,1  norm 

(and where the abundances sum to one), is entirely 

novel. Furthermore, previous works [49-52] have 

only considered S-NMF with the SED, i.e., 

𝐷(𝑌|𝑅𝐴 +  𝑁)  =  ‖𝑌 − 𝑀𝐴 − 𝑁‖2
2, while we here 

also address the case of the KLD. 

In order to solve the S-NMF minimization 

problem defined at Eq. (5), we present an iterative 

block-coordinate descent algorithm that updates 

each of the parameters 𝑀, 𝐴  and 𝑁  in turn. Each 

parameter is updated conditionally upon the current 

value of the other parameters and such that the 

objective function is decreased. This is the updating 

scheme employed by virtually all NMF algorithms. 

Unfortunately, given the non-convexity of the 

objective function 𝐽(𝑅, 𝐴, 𝑁) , this strategy can 

return local solutions and proper initialization is 

required. The updates of the parameters are 

described next. In short, the parameters 𝑅 and 𝑁 are 

updated via majorization-minimization (MM). 

Generally speaking, MM consists in optimizing an 

easier-to minimize tight upper-bound of the original 

objective function. The parameter 𝐴  is updated 

using a heuristic scheme that has proven to work 

well in the literature. All the updates turn out to be 

“multiplicative”, i.e., such that the new update is 

obtained by term-to-term multiplying the previous 

update by a nonnegative matrix, hence automatically 

preserving the nonnegativity of the estimates 

through iterations. The resulting algorithm has linear 

complexity 𝑂(𝐿𝐾𝑃) (in flops) per iteration. 

 

Algorithm 2: S-NMF with IB-CDA  

1: Initialize R, 𝐴 and 𝑁 

2: Set 𝛽 = 1 𝑜𝑟 2, 𝜆 and convergence tolerance ‘𝑡𝑜𝑙’ 
3: 𝑆 = 𝑅𝐴 

4: �̂� = 𝑆 + 𝑁 

5: while 𝑒𝑟𝑟 ≥ 𝑡𝑜𝑙, do 

% Update the term 𝑁 

6: 𝑅 ← 𝑅 [
𝑌.�̂�.(𝛽−2)

�̂�.(𝛽−1)+𝜆 𝑁 𝑑𝑖𝑎𝑔[‖𝑛𝑟,1‖
1

,⋯,‖𝑛𝑟,𝑖,𝑗‖
1

]
−1] 

7: �̂� ← 𝑆 + 𝑁 

% Update abundance A 

8: 𝐴 ← 𝐴.
𝑀𝑇(𝑌.�̂�.(𝛽−2)+1𝐾,𝐿(𝑆.�̂�.(𝛽−1)))

𝑀𝑇(�̂�.(𝛽−1)+1𝐾,𝐿(𝑆.𝑌.�̂�.(𝛽−2)))
 

9: 𝐴 ← 𝐴 diag [‖𝑎𝑟,1‖
1

, ⋯ , ‖𝑎𝑟,𝑖,𝑗‖
1

]
−1

 

10: 𝑆 ← 𝑅𝐴 

11: 𝑌 ← 𝑆 + 𝑁 

% Update endmember M 

12: R← 𝑅. [
(𝑌.�̂�.(𝛽−2))𝐴𝑇

(�̂�.(𝛽−1))𝐴𝑇 ] 

13: 𝑆 ← 𝑅𝐴 

14: 𝑌 ← 𝑆 + 𝑁 

15: Compute the objective function relative decrease 

‘err’ (or any other convergence criterion). 

16: end while 

 

In Algorithm 2, all operators preceded by a dot 

‘·’ are entry wise MATLAB-like operations and 

fraction bars shall be taken term-to-term as well. 

Additionally, 1𝑀,𝑁  denotes the 𝑀 ×  𝑁 matrix with 

coefficients equal to 1. 

3.2 Setting the value of 𝝀  

The hyperparameter 𝜆  controls the trade-off 

between the data-fitting term 𝐷(𝑌|𝑅𝐴 + 𝑁) and the 

penalty term ‖𝑁‖2,1. Setting the “right” value of 𝜆 is 

a difficult task, like in any other so-called variational 

approach that involves a regularization term. We 

describe in this paragraph a rule of thumb for 

choosing λ in a plausible range of values. Our 

approach is based on the method of moments. It 

consists in interpreting the objective function (5) as 

a joint likelihood and in matching the empirical 

mean of the data with its prior expectation in the 

statistical model. The SED and the KLD are 

“pseudo-likelihood” for probabilistic models 

(Gaussian and Poisson, respectively) such that 

𝐸[𝑌|𝑅𝐴 + 𝑁] =  𝑅𝐴 + 𝑁. In the same analogy, the 

term 𝜆‖𝑁‖2,1 can be interpreted as a log-prior term. 
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Using some results from [55], the corresponding 

prior distribution 𝑝(𝑛𝑟,𝑖,𝑗|𝜆)  for each column of 𝑅 

can be obtained as a scale mixture of conditionally 

independent half-Normal distributions, with a 

Gamma distribution assigned to the scale parameter.  

4. Results and discussion 

4.1 Results on synthetic data  

This section evaluates the performance of the 

proposed algorithms with synthetic data. The first 

part introduces the criteria used for the evaluation of 

the unmixing quality. In the second part, we 

evaluate and compare the performance of the 

proposed algorithms with the state-of-the-art 

algorithms when considering different unmixing 

scenarios. 

4.1.1. Evaluation criteria 

For synthetic images, the abundances are known 

and the unmixing quality can be evaluated by using 

the root mean square error (RMSE): 

 

𝑅𝑀𝑆𝐸(𝐴) = √
1

𝑋𝑅
∑ ‖𝑎𝑥 − �̂�𝑥‖2𝑋

𝑥=1  (15) 

 

The unmixing performance can also be 

evaluated by considering the reconstruction error 

(RE) and spectral angular mapper (SAM): 

 

𝑅𝐸 = √
1

𝑋 𝐿
∑ ‖�̂�𝑥 − 𝑌𝑥‖

2𝑋
𝑥=1   (16) 

 

𝑆𝐴𝑀 =
1

𝑋
∑ 𝑎𝑟𝑐𝑐𝑜𝑠 (

�̂�𝑥
𝑇𝑌𝑥

‖𝑌𝑥‖‖�̂�𝑥‖
)𝑋

𝑥=1  (17) 

 

Where 𝑎𝑟𝑐𝑐𝑜𝑠(∙)  is the function of inverse 

cosine and 𝑌𝑥 ,  �̂�𝑥  are the measured and estimated 

𝑥𝑡ℎ pixel spectra. 

4.1.2. Proposed algorithms evaluation 

This section evaluates the performance of the 

proposed unmixing algorithms when considering 

different mixture models. Four synthetic images of 

size 100 × 100 pixels and L = 207 spectral bands 

have been generated using R = 3 endmembers 

corresponding to spectral signatures available in the 

ENVI software library [56]. All images have been 

corrupted by 𝑖. 𝑖. 𝑑 . Gaussian noise (with SNR=25 

dB) for a fair comparison with SU algorithms using 

this assumption. Distinctive unmixing schemes are 

employed for processing of these images that are 

 

Table 1. Results on synthetic data 

Method RMSE 

(× 10−2) 

RE 

(× 10−2) 

SAM(×
10−2) 

FCLS [38] 24.76 15.74 10.64 

SUNSAL-CLS 

[39] 

16.55 4.17 7.57 

AEB [28] 45.72 3.05 6.46 

CDA-EV [47] 16.59 3.34 6.64 

CDA-ME [47] 6.61 2.89 6.17 

CDA-NL [47] 3.86 2.86 6.16 

Proposed 

method 

1.57 1.20 4.9 

 

equate to the proposed models. For every model, it 

is considered that there are known endmembers and 

had assumed spectra of ENVI is employed to 

innovate the images.  

Table 1 shows the obtained results when 

considering synthetic data image. The superior 

performance is obtained by proposed SU model and 

it is sturdier against various NLs since it achieved 

the best value of RMSE compared to the 

conventional SU models. Further, it also achieved 

the best outcome for the values of RE and SAM also 

which indicates that the proposed SU model is 

suitable for the different physical developments like 

NEs, EV or MEs. 

4.2 Results on real data 

In this section we apply S-NMF with IB-CDA to 

real hyperspectral datasets and discuss the results. 

4.2.1. Description of dataset 

We consider two real hyperspectral images that 

have been chosen because of availability of partial 

ground truth. The first image was acquired over 

Moffett Field, CA, in 1997, by the Airborne Visible 

Infrared Imaging Spectrometer (AVIRIS) [57]. 

Water absorption bands have been removed from 

the 224 spectral bands, leading to L = 189 spectral 

bands ranging from 0.4µm to 2.5µm with a nominal 

bandwidth of 10nm. The scene of interest, of size of 

50 × 50  pixels, consists of a part of lake and a 

coastal area composed of soil and vegetation. This 

dataset will be referred to as the “Moffett” image in 

the following and is depicted in Fig. 3(a).  

The second considered dataset was acquired by 

the Hyspex hyperspectral scanner over Villelongue, 

France, in 2010. The sensed spectral domain 

consists of L = 160 spectral bands ranging from 

0.4µm to 1.0µm. This image consists of a forested 

area where 12 vegetation species have been 

identified, during the Madonna project. The sub- 
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(a)             (b) 

Figure. 3 Real HIS: (a) Moffett image and (b) Madonna 

image 

 

image of interest, of size of 50 × 50  pixels, is 

known to be mainly composed of oak and chestnut 

trees, with an additional unknown non-plantedtree 

endmember. This dataset will be referred to as the 

“Madonna” image in the following and is depicted 

in Fig. 3 (b). 

4.2.2. Unmixing performance  

The abundances of each image have been 

estimated by the considered unmixing algorithms. 

There are four abundance maps (denoted as Abund1, 

Abund2, Abund3 and Abund4 in Fig. 4) since we 

assumed four endmembers i.e., soil, water, tree and 

shadow.  Fig. 4 shows the obtained results of four 

abundance maps of various unmixing algorithms 

such as FCLS [38], SUNSAL [39], UsGNCM [24], 

CDA-NL [47], CDA-ME [47] and proposed 

unmixing algorithm for the Madonna image. Note 

that a white (black) pixel indicates a large (small) 

proportion of the corresponding materials. Except 

FCLS, the considered algorithms show similar 

abundance maps. The behavior of FCLS is due to 

the presence of a high illumination variation for this 

image. In addition, some nonlinearity can be 

interpreted as an illumination variability (as already 

shown when analysing synthetic data) leading to 

high values for the parameter 𝑐 . The unmixing 

performance which can also be compared by 

considering the RMSE, RE, SAM and even spectral 

inverse divergence (SID) as shown in Table 2. 

Considering the Madonna image, the best values of 

obtained metrics are highlighted in bold letter for 

better perception. The best performance on the 

Madonna image are obtained by the proposed S-

NMF with IB-CDA while we obtain good results 

when considering the algorithms including EV such 

as CDA-ME [47].  

 
Figure. 4 Estimated abundance maps with different 

algorithms for the Madonna image, grass, shadow, soil, 

and water 

 

Table. 2 Results on Madonna image 

Method RMSE 

(× 10−2) 

RE 

(×
10−3) 

SAM(×
10−2) 

SID 

FCLS [38] -- 6.3 2.7 2.88 

SUNSAL-

CLS [39] 

-- 6.2 2.6 -- 

UsGNCM 

[24] 

12.03 8.9 2.7 0.42 

CDA-NL 

[47] 

4.81 5.84 2.7 0.04 

CDA-EV 

[47] 

-- 6.0 2.5 -- 

CDA-ME 

[47] 

5.52 3.81 2.6 0.06 

Proposed 

method 

2.19 3.81 2.8 0.07 

 

These results suggest the presence of a higher 

variability effect than nonlinearity in the Madonna 

image. Note finally that the proposed algorithm 

shows a superior performance with comparison to 

the UsGNCM [24], CDA-NL [47] and CDA-ME 

[47] when there are distinctive nonlinearities 

influencing data. Furthermore, the best abundance 

estimation also obtained by the proposed S-NMF 

with IB-CDA since the best outcomes of RMSE and 

RE are achieved by the proposed algorithm.  
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Figure. 5 The estimated 𝑅 = 4 endmembers of Madonna 

image 

 

 
Figure. 6 The estimated 𝑅 = 4 endmembers of Madonna 

image with UsGNCM [24] 

 

 
Figure. 7 The estimated 𝑅 = 4 endmembers of Madonna 

image with proposed S-NMF with IB-CDA 

 

Fig. 5 depicts that the endmember variability of 

original model whereas the UsGNCM model [24] is 

disclosed in Fig. 6 while the proposed unmixing 

model is depicted in Fig. 7, which concludes that the 

estimated endmember variability of proposed model 

is almost similar to that of original one where as the 

obtained endmember variability of UsGNCM [24] is 

over headed the original model which in results the 

NLs and MEs in the pixels of hyperspectral image. 

Performance comparison of obtained evaluation 

criteria values is demonstrated in Fig. 8, which are 

demonstrated in Table 2. It is shown that the best 

values of RMSE and RE are obtained by proposed 

unmixing model which disclose that the sturdiness 

and accurate abundance of HIS with NEs, EV or 

MEs, where the conventional unmixing models 

failed to get the approximate abundance with sturdy 

against the NEs, EV or MEs. 

 

 
Figure. 8 Performance comparison of unmixing models 

with evaluation criteria 

5. Conclusions 

In this paper we have presented a new mixing 

model to describe hyperspectral data. In contrast 

with state-of-the-art literature on nonlinear 

hyperspectral unmixing, our approach does not 

require the specification of a model of nonlinearity. 

The resulting unmixing problem was formulated as 

a new form of sturdy NMF problem, for which we 

developed a simple and effective iterative block-

coordinate descent algorithm that involves 

multiplicative updates. Further, we addressed three 

hyperspectral mixture models for supervised 

hyperspectral unmixing. The three models were 

introduced under a general formulation that can be 

adapted to account for nonlinearity effects, 

endmember variability or mismodelling effects. The 

proposed algorithms showed good performance 

when processing synthetic data generated with the 

linear model or other more sophisticated models. 

Results on real data confirmed the good 

performance of the proposed algorithms and showed 

their ability to extract different features in the 

observed scenes. In addition, parameters like RE, 

RMSE, SAM and SID also calculated to disclose the 

effectiveness of proposed unmixing algorithm over 
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the existing approaches. Based on these values only 

the proposed three unmixing models are concluded 

that they are sturdy against the NLs, EV and MEs. 

Future work includes that the denoising of 

hyperspectral images for an effective unmixing of 

hyperspectral images with more efficacious mixing 

models. 
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