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Abstract: This paper presents a modified 2D Discrete Wavelet Transform (DWT) architecture with a proposed 16-

bit Radix8 Booth multiplier. Existing architecture makes use of Canonic Sign Digit (CSD) representation and when 

replaced the CSD multiplier with the proposed 16-bit Radix8 Booth multiplier it achieves better performance with 

small area and low power. In proposed Radix-8 Booth multiplier, the necessary product terms are generated and the 

remaining terms are truncated. In this method, the n order bit required by the specific coefficient is obtained and the 

remaining n bits are truncated so that 2n bit output truncated to n bit. The modified 2D DWT architecture is proposed 

to enhance that it occupies less number of clock cycles, so that it improves in the speed of operation By comparing 

synthesis results for existing CSD multiplier and the proposed Radix-8 Booth multiplier achieves an improvement of 

nearly 29.02% Area Delay Product (ADP) and 26.13% Power Delay Product (PDP). 

Keywords: Discrete wavelet transform, Canonic sign digit, Radix-8 booth multiplier, Area delay product, Power 

delay product. 

 

 

1. Introduction 

Wavelets convert the picture into a progression 

of wavelets that can be store more effectively than 

pixel squares, so DWT architectures has gained its 

importance in applications where scalability and 

tolerable degradation is main in wavelet coding 

schemes. When time and frequency domains are 

averaged for whole duration of the signal gives 

information about the DWT. 2D DWT is used 

extensively in many fields of engineering and 

medical applications such as in biometrics, image 

analysis and imaging applications such as JPEG 

2000 etc. 

Several lifting architectures are implemented for 

effective implementation of 2D DWT. Novel 

architecture based on flipping structures [1] to 

reduce critical path by reducing the pipelining stages 

through rearranging the intermediate values and an 

effective dual-scan flipping structure is done by 

using modified data flow graph in serial operation 

and uses a N2/2 clock cycles in a Z-scan model 

optimizing the parallel computations with pipeline 

operation. Some of the architectures based on 

parallel lifting scheme [2] with effective memory 

accessing scheme based on scanning method 

requires less memory. Architecture based on Z-

scanning technique [3] presents a multiplier less 

pipeline architecture to reduce latency and uses a 4N 

temporal memory. With improvements done to 

convolution based architectures it provides small 

overhead of complexity and with no use of 

temporary registers for storing different values with 

low area and power reconfigurable architecture [4] 

using 9/3 and 5/3 filters. For implementing 2D 

DWT in multi-level with regular structure to 

maximize hardware utilization efficiency [5] for 

high throughput and low latency is implemented for 

efficient memory based implementation. Based on 

short critical path a lifting based DWT [6] is 

implemented for efficient memory usage in scanning 

method. Another convolution based implementation 

for memory efficient generic structure [7] which 

computes a three-level 2D DWT based on 

Daubechies is implemented for high throughput rate 

is implemented. Implementation of several 
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architectures has their research on memory efficient, 

with high throughput rate for different types of 

techniques in which the need for low area and low 

power [8] makes a demand for various applications. 

In DWT architectures, design of the efficient 

multiplier plays a crucial role for performing the 

operation with approximated and faster output is 

discussed in Booth multiplier [9,10]. Existing 

multiplier (CSD) makes use of shift and adds 

operation for fast computation but it consumes more 

area and power due to which the need for hardware 

requirements becomes more. The above mentioned 

drawbacks are improved in this paper by designing a 

16-bit fixed-width Booth multiplier which occupies 

less area and low power. The reduction in area and 

power are achieved in this paper by truncating the 

partial product terms and necessary changes are 

made in 2D DWT architecture for effective 

implementation.  

This paper is organized as follows. A detailed 

description on previous related work is presented in 

Section 2. Implementation of proposed Radix-8 

Booth multiplier is explained and by taking an 

example it is examined in Section 3. Improvements 

done to 2D DWT architecture is shown in Section 4. 

The synthesis results of existing and proposed 

architectures are listed in Section 5 and conclusions 

made from the work are detailed in Section 6. 

2. Related work 

C. Wu, W. Zhang and J. Liu [11] proposed a 2D 

DWT architecture with multi-level without off-chip 

RAM using the CSD representation for the 

multiplier coefficients. The CSD makes use of shift 

and add operation for the implementation of the 

multiplier. In this 2D DWT structure the architecture 

is implemented in three stages. First the pixel inputs 

are stored in RAM input and feed to first stage 2D 

DWT structure which gives four sub-bands, out of 

which low-low band occupies large area so they are 

fed back to next levels which is managed through 

memory management unit and sort the four-bands. It 

accomplishes one full adder delay as critical path. In 

this paper it uses simple shift-add operations but this 

implementation occupies more area and power and 

the need for temporal RAM also arises.  
 Y. K. Lai, L. F. Chen, Y.C. Shih [12] 

implemented a memory efficient with high 

performance architecture for 2D DWT lifting based 

architecture using parallel scanning method. For 

first level 2D DWT, 4N temporal memory is used to 

store input data and to store coefficients 9/7 filter is 

used. This architecture is flexible and the 2D DWT 

architecture is made of two 1D-DWT with core 

input and two output coefficients and achieves one 

multiplier delay as the critical path. By 

implementing parallel scanning method the internal 

buffer size and cost of the hardware is small. The 

problem arises in the latency delay and transposing 

buffer size is not improved due which number of 

stages gets increased. 

B. K. Mohanty, A. Mahajan and P.K. Meher 

[13] gave a data access method without utilizing 

data transposition registers for the calculation of 

lifting 2D DWT architecture which requires (4N 

+8P) words for on-chip memory. The architecture is 

modular and regular used for varying block sizes. It 

gives a linear array directly from the data 

dependence graph for parallel and pipeline 

implementation of 1D DWT. This architecture needs 

the same calculation resources as in high throughput 

structures with 1.5N less memory. This structure is 

proposed for block size of 4 and the drawback is that 

it occupies more on-chip memory and has more 

critical path. 
A. Darji, S. Agrawal and A. Oza [14] proposed a 

flipping method with basic control path for 

implementing efficient modular architecture. The 

sequential task of lifting data flow is streamlined 

using parallel calculations with pipeline operation 

without influencing the critical path. The structure is 

folded to six multipliers and eight adders to reduce 

data path. It is symmetrical high speed architecture 

with low hardware complexity where it has low 

memory storage requirement. It yields a throughput 

of two outputs for each cycle with a critical path of 

one multiplier delay. In this paper it requires more 

registers for transposing unit and impacts in 

hardware complexity. 

W. Zhang, Z. Jiang, Z. Gao and Y. Liu [15] 

proposed an architecture for efficient 

implementation of lifting- based DWT with 

small area and fast speed. For one multiplier 

delay a reduction of four pipelining stages are 

required. In this structure initially the pre-

processing unit takes care of converting serial-

parallel data and then sent to the column filter 

for generating four sub-groups which is then fed 

to transposing unit to satisfy the dataflow order 

needed by row filter and then scaling is done. 

This structure has one multiplier delay as 

critical path having 4N temporal memory size. 

The requirement of buffer size can be reduced 

due to which it impacts the memory size. 

B. K. Mohanty and A. Choubey [16] 

implemented a design for 12-bit radix8 Booth 

multiplier by evacuating an additional row with 
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a little overhead complexity in the conventional 

radix8 booth multiplier. An adder unit is 

intended for optimizing the upper most 12 bits 

for taking the output. The lower-most 12 bits 

are truncated from the 24 bits with less 

truncation error. When this multiplier is 

implemented for the lifting 2D DWT 

architecture with block based structure it offers 

less area and power than radix-4 multiplier. In 

this multiplier design the product terms are 

generated due to which some more increase in 

area is obtained which affects the performance. 

Many of the 2D DWT architectures listed in 

literature work are improved in terms of area, 

power and critical path are discussed which 

could be improved. To improve the architecture 

design, a low area and power efficient 

architecture with an efficient multiplier design 

is implemented which could result in less area 

for image processing applications. 

3. Implementation of proposed Radix-8 

Booth multiplier 

Let us consider two k-bit signed numbers A and 

B, where A is the multiplicand and B is the 

multiplier which is to be multiplied using Booth 

algorithm. A and B can be shown in 2’s complement 

as: 

 

𝐴 =  −𝑎𝑘−12𝑘−1 + ∑ 𝑎𝑖2𝑖𝑘−2
𝑖=0                                   (1) 

 

𝐵 =  −𝑏𝑘−12𝑘−1 + ∑ 𝑏𝑖2𝑖𝑘−2
𝑖=0                                   (2) 

 

Where𝑎𝑘−1, 𝑏𝑘−1 of A and B are sign extension bits  

The booth algorithm distils the k-bit multiplier into 

n= [k/3] groups of three bits. Starting from the right, 

three bits have to be grouped and for 4th-bit an 

overlapping bit is considered, where i th digit 𝑑𝑖 is 

defined  

 

𝑑𝑖 = { 𝑏3𝑖+2𝑏3𝑖+1𝑏3𝑖𝑏3𝑖−1 }    (3) 

 

Where  𝑏3𝑖−1 is the bit grouped for overlapping that 

belongs to the (i-1)th digit  𝑑𝑖−1. The estimation of 

𝑑𝑖 is acquired by the equation:  

 

𝑑𝑖=−4𝑏3𝑖+2 +  2𝑏3𝑖+1  + 𝑏3𝑖 + 𝑏3𝑖−1            (4)                                        

 

From the number set {-4, -3, -2, -1, 0, 1, 2, 3, 4} 𝑑𝑖 

selects the decimal value and when A is multiplied 

by 𝑑𝑖 it forms a product term (A.𝑑𝑖) which results in 

obtaining necessary partial products of radix8 Booth 

multiplier are {-4A, -3A, -2A, -A, 0, A, 2A, 3A, 

4A}. The acquired partial product term {2A} is 

obtained by shifting A to the left by one bit, {4A} is 

done by left shifting A by two bits and {3A} is 

achieved by summing A and 2A. To obtain negative 

partial product terms {-4A, -3A, -2A, -A} we have to 

take 2’s complement of respective positive partial 

product values. The 2’s complement is done in two 

steps: in the first step the 1’s complement of {4A, 3A, 

2A, A} is obtained and in second step to obtain 

negative terms, sign bit ( 𝑛𝑖 ) is added to 

corresponding partial product term. 

Radix-8 Booth algorithm has two parts: booth 

encoder and booth selector. The Radix8 booth 

encoder generates the partial product bits given in 

Table 1. The booth selector chooses one value from 

the partial product set {A, 2A, 3A, 4A} where the 

product term is represented in normal or 

complemented form. It uses control signals { 𝑤𝑖,
𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 } to choose partial product set and use 

control bit (𝑛𝑖) to produce partial product term for 

1’s complement form. The control signal of 

respective bit becomes active: 

 

𝑤𝑖 = 1 (becomes active) when partial product term 

P = {A,-A}; 

 

𝑥𝑖 = 1 (becomes active) when partial product term P 

= {2A,-2A}; 

 

𝑦𝑖 = 1 (becomes active) when partial product term P 

= {3A,-3A}; 

 

𝑧𝑖 = 1 (becomes active) when partial product term P 

= {4A,-4A};     

 

Radix 8 Booth multiplier structure for 16-bit is 

based on Partial Product Array (PPA) as shown in 

Fig. 1. To obtain the correct multiplication, for sign 

extension up to (2n-1) bit positions, the partial 

product row is shifted to left by 3-bit positions with 

respective to previous row to extend the sign. 

Thereby, there introduces an adder unit complexity, 

to compensate the problem introduce guard bits in 

every partial product row. In each row of the PPA 

the control bit (𝑛𝑖) is added at the starting of each 

row to convert 1’s complement number to 2’s 

complement number and by this size for an extra 

row gets increased, so a carry bit (𝑒𝑖) is generated to 

compensate the control bit. 
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Table 1. Partial product values for radix8 booth encoder 

 

 

           

q3 

 

q2 

 

q1 

 

q0 

                 

        1 1                      

     1 1                         

  1 1                            

1                               

                               

Figure. 1 Radix-8 16-bit partial product terms are shown in dot representation        is the absorbed carry bit of the 

recording factor;       are the modified bits by compensating the extra row; q0-q3 are the sign extension bits on modifying 

sign bit;       a partial product term;  1  is the guard bit. 
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Figure. 2 Proposed method for 16-bit Radix8 Booth multiplier partial product terms 

 

 

 

𝑏3𝑖+2𝑏3𝑖+1𝑏3𝑖𝑏3𝑖−1 Operation 𝑤𝑖  𝑥𝑖 𝑦𝑖  𝑧𝑖 𝑛𝑖 𝑝𝑝𝑖𝑗  

0000 0 0 0 0 0 0 0 

0001 +A 1 0 0 0 0 𝑥𝑗 

0010 +A 1 0 0 0 0 𝑥𝑗 

0011 +2A 0 1 0 0 0 𝑥𝑗−1 

0100 +2A 0 1 0 0 0 𝑥𝑗−1 

0101 +3A 0 0 1 0 0 𝑥𝑗 + 𝑥𝑗−1 

0110 +3A 0 0 1 0 0 𝑥𝑗 + 𝑥𝑗−1 

0111 +4A 0 0 0 1 0 𝑥𝑗−2 

1000 -4A 0 0 0 1 1 𝑥𝑗−2 

1001 -3A 0 0 1 0 1 𝑥𝑗 + 𝑥𝑗−1 

1010 -3A 0 0 1 0 1 𝑥𝑗 + 𝑥𝑗−1 

1011 -2A 0 1 0 0 1 𝑥𝑗−1 

1100 -2A 0 1 0 0 1 𝑥𝑗−1 

1101 -A 1 0 0 0 1 𝑥𝑗 

1110 -A 1 0 0 0 1 𝑥𝑗 

1111 0 0 0 0 0 0 0 
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          0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 

        1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0   

     1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1      

  1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               

   1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0             

   0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1             

             32 16 8 4 2 1             

Figure. 3 Example showing the proposed multiplier for the coefficient (1/α = -0.630464) 

 

The two LSB’s of each row are modified by 

compensating the control bit and produce the carry 

bit. The sign bits can be generated by the modifying 

the sign extension bits where modified bit 

expressions are shown below: 

 

𝑚𝑖0 = 𝑝𝑖0 ^ 𝑛𝑖       (5) 

 

𝑚𝑖1=𝑝𝑖1^ (𝑝𝑖0&𝑛𝑖)      (6) 

   

𝑒𝑖 =  𝑝𝑖,1𝑝𝑖,0𝑛𝑖                0 ≤ i ≤
𝑛

3
− 2  (7) 

 

 q0 =  𝑝0,15 ^ 𝑟5     (8) 

 

q3= 𝑝0,15𝑟5       (9) 

                  

q1, q2 =  𝑞3               (10) 

 

We have extended the approach given in [5] for 16-

bit Radix-8 Booth multiplier and modified the PPA 

by only generating the required partial products. 

Generally in many VLSI applications the main aim 

is to achieve low area and low power with high 

performance which will impact the system level 

functionality. In the proposed method only the 

required product terms are generated and remaining 

lower and higher part is truncated, so that the 

number of generation terms gets reduced thus area 

gets reduced. Upon truncating the number of partial 

product terms and utilization of adder units gets 

reduced, so that speed is improved. The truncation 

used in this method is not uniform scaling because 

in this method we try to reduce the generation which 

are on the right side. By truncating the remaining 

terms a truncation error of +/- 1% error is 

introduced, which can be neglected for image 

processing applications. 

In proposed method when each sample is 

multiplied with a constant, the multiplier two 

operands are of 16-bit binary numbers and the 

resultant output is of 32-bit number. In the proposed 

method the truncation done to both higher and lower 

order bits and we obtain a 16 bit number on 

truncation as shown in Fig. 2. This truncation is 

done on scaling coefficient value. Considering an 

example using the coefficient used in 2D DWT 

where (1/α) = -0.630464, the steps followed are 

shown below: 

Step 1: Determine the scaling range for the 

coefficient.   

Step 2: Determine the required partial product terms 

that should be generated from the booth encoder. 

Step 3: Partial product terms are added using the 

carry save adder. The required scaling terms are to 

be taken as the output. 

Step 4: In the above example the output is taken 

from 12th bit to 27th bit as shown in Fig. 2, the 

shaded part represents the desired output. 

An example is shown on how the proposed 

multiplier is done is shown in Fig. 3 where X is the 

multiplicand (X= -0.630464) and Y is the multiplier 

(Y= 99). By proposed Booth multiplier the required 

product terms are generated (i.e12th bit to 27th bit) 

from the booth encoder. For the calculation of 

output, the entire column of the respective bits are 

added using the carry save adder. When multiplying 

X with Y the obtained output is -62.415 and by 

using proposed Booth multiplier the theoretically 

obtained output is -62 which is shown in Fig. 3. The 

truncation done for various coefficients used for 2D 

DWT is not uniform scaling because we try to scale 

the product terms generation part, so that in the 

booth encoder the number of partial products gets 

reduced as shown in Fig. 2. The various coefficients 

used in 2D DWT architecture their value, precision 

value; decimal and binary values are listed in Table 

2. The below table shows how the scaling should be 

done for various coefficients. By using truncation 

technique the need for number of adder units, 

generation of partial terms gets reduced and ease of 

taking the output from the precision bit is easy. 
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Table 2. Precision values of DWT coefficients 

Coefficient Value Precision 
Decimal Value 

(X2-precision ) 
Binary Value 

(1/α) -0.630464 12-bit -2582 1111010111101010 

(1/αβ) 11.900004 9-bit 6093 0001011111001100 

((1/δγ)+1) 3.553775 11-bit 7278 0001110001101110 

(1/βγ) -21.37815 8-bit -5473 111010101010000 

((1/αβ)+1) 12.900004 9-bit 6605 0001100111001100 

 

Figure. 4 Column filter 

 

 
Figure. 5 Row filter 

 

4. Proposed 2D DWT architecture  

Normally in the existing architecture [11] the 1D 

DWT architecture consumes 12 clock cycles and the 

proposed architecture consumes 8 clock cycles for 

the operation by removing the extra 4 registers. By 

reducing the number of registers speed is increased 

and thus enhances the performance.  

In the proposed 2D DWT architecture it consists 

of column filter, transposing unit and row filter. The 

column filters are of three inputs whereas row filter 

is two-input structure generating four sub-bands 

having two outputs each with reduced number of 

storage elements. Due to reduction of number of 

clock cycles for the proposed method the buffer size 

for memory is reduced and the image storage 

capability is increased. The optimized 1D column 

and row filter is shown in Figs. 4 and 5. When 

compared the proposed architecture with the lifting 

scheme [1] it occupies less number of clock cycles, 

so that speed is improved. 

The total number of hardware components used 

in the 2D DWT is shown in Table 3. Below table 

comprises of the total number of registers, 

XOR/XNOR, AND/OR/NOR/NAND gates and 

latency required for the implementation of the 

2DDWT architecture for CSD implementation, 

Booth multiplier [16] and proposed architecture. 

The CSD implementation consumes more number of 

registers and the proposed architecture requires less 

number of registers. This makes the advantage of 

acquiring less area for applying in various image 

processing applications. In CSD implementation the 

storage element (D flip flop) takes two cycles for the 

execution of the operation and to compensate the 

effect extra two registers are added in column filter 

using CSD implementation. But in proposed 

architecture for multipliers there is no need of 

registers so it will get executed with less number of 

clock cycles than CSD. The proposed 2D DWT 

architecture occupies less area by reducing a total of 

eight registers than in CSD implementation, by 
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Table 3. Hardware requirement for 2D DWT architecture 

Method Column filter Row filter  
XOR/ 

XNOR 

AND/OR/ 

NOR/NAND 
REG LATENCY 

XOR/ 

XNOR 

AND/OR/ 

NOR/NAND 
REG LATENCY 

CSD 768 1920 35 12 768 1920 35 12 

[16] 1164 2536 17 8 1164 2536 16 8 

Proposed 802 1949 17 8 802 1949 16 8 

 

Table 4. Synthesis results of 2D DWT architecture 

Method 
Delay 

(ns) 

Area 

(um2) 
Power (mW) ADP 

EADP 

(%) 
PDP EPDP (%) 

CSD 1.522 42219.1 1.78 64257.5 29.0194 2.713187 26.12955 

[16] 1.862 34297.4 1.56 63861.8 28.2248 2.903482 34.97588 

Proposed 1.580 31521.9 1.36 49804.5 -- 2.151112 -- 

 

 
Figure. 6 Area comparisons of different methods 

 

 
Figure. 7 Power comparisons of different methods 

 

which the proposed architecture gains better 

performance.  When comparing the latency of CSD 

and booth multiplier it occupies extra 2 clock cycles 

than the proposed multiplier. 

 

5. Results 

Design of the proposed work is done using 

Verilog HDL and the synthesis results are done in 

Cadence Genus of 90nm technology. The ASIC 

implementation results of proposed Radix8 Booth 

multiplier, CSD multiplier and Booth multiplier [16] 

are shown in Table 4 which shows parameters like 

delay, area and power. The ADP of the CSD 

architecture is 29.018% excess ADP (EADP) and 

for booth multiplier it is 28.22% EADP than 

proposed Booth multiplier and the PDP of the CSD 

architecture is 26.12% excess PDP (EPDP) and in 

booth multiplier it is 34.97% EPDP than proposed 

architecture are computed and it shows how much 

better performances does the proposed method gives 

than the existed method relating to area and power. 

The delay is not improved in proposed architecture 

than [11] because the critical path is considered 

from the truncated part. The throughput for the 2D 

DWT architecture in CSD based implementation has 

extra four cycles than the proposed architecture.    

Table 4 shows in the proposed method the area 

and power is reduced when compared to [1,5] 

because all the partial product terms are not 

generated, only the required terms are generated so 

that area gets reduced. Figs. 6 and 7 show the graph 

for the different methods comparison based on area 

and power. These results are helpful for fast speed 

implementations and capable for picture handling 

applications. The simulation result for the proposed 

multiplier with (X=-0.630464, Y=99) is -63 when 

compared with the theoretical output has an error 

rate up to +/- 1%. 

6. Conclusions 

In this work, a 16-bit Radix-8 Booth multiplier 

is implemented and applied it to the 2D DWT 

architecture. The proposed architecture is compared 

with the CSD and observed that the area and power 
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is reduced. Improvements in the architecture are 

done to occupy less number of clock duration cycles 

and to get a detailed output with no distraction of the 

value is done. On performing synthesis, the 

proposed method consumes less area and power, 

thus saving of 29.01% EADP and 26.12% EPDP for 

existing CSD based architecture and 22.25% EADP 

and 34.97% EPDP for existing booth multiplier is 

achieved with an error rate of +/-1%. This one level 

2D-DWT architecture can be extended to multi-level 

2D DWT as the future work to improve the design. 
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