
Received: January 16, 2019 148

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

Power and Area Efficient Radix-8 Booth Multiplier for 2-D DWT Architecture

Gundugonti Kishore Kumar1* Narayanam Balaji2 Kotha Srinivasa Reddy1 Vemu Thanuja1

1Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India.

2Jawaharlal Nehru Technological University Kakinada, Narasaraopet, India.
* Corresponding author’s Email: gkishorekumar@vrsiddhartha.ac.in

Abstract: This paper presents a modified 2D Discrete Wavelet Transform (DWT) architecture with a proposed 16-

bit Radix8 Booth multiplier. Existing architecture makes use of Canonic Sign Digit (CSD) representation and when

replaced the CSD multiplier with the proposed 16-bit Radix8 Booth multiplier it achieves better performance with

small area and low power. In proposed Radix-8 Booth multiplier, the necessary product terms are generated and the

remaining terms are truncated. In this method, the n order bit required by the specific coefficient is obtained and the

remaining n bits are truncated so that 2n bit output truncated to n bit. The modified 2D DWT architecture is proposed

to enhance that it occupies less number of clock cycles, so that it improves in the speed of operation By comparing

synthesis results for existing CSD multiplier and the proposed Radix-8 Booth multiplier achieves an improvement of

nearly 29.02% Area Delay Product (ADP) and 26.13% Power Delay Product (PDP).

Keywords: Discrete wavelet transform, Canonic sign digit, Radix-8 booth multiplier, Area delay product, Power

delay product.

1. Introduction

Wavelets convert the picture into a progression

of wavelets that can be store more effectively than

pixel squares, so DWT architectures has gained its

importance in applications where scalability and

tolerable degradation is main in wavelet coding

schemes. When time and frequency domains are

averaged for whole duration of the signal gives

information about the DWT. 2D DWT is used

extensively in many fields of engineering and

medical applications such as in biometrics, image

analysis and imaging applications such as JPEG

2000 etc.

Several lifting architectures are implemented for

effective implementation of 2D DWT. Novel

architecture based on flipping structures [1] to

reduce critical path by reducing the pipelining stages

through rearranging the intermediate values and an

effective dual-scan flipping structure is done by

using modified data flow graph in serial operation

and uses a N2/2 clock cycles in a Z-scan model

optimizing the parallel computations with pipeline

operation. Some of the architectures based on

parallel lifting scheme [2] with effective memory

accessing scheme based on scanning method

requires less memory. Architecture based on Z-

scanning technique [3] presents a multiplier less

pipeline architecture to reduce latency and uses a 4N

temporal memory. With improvements done to

convolution based architectures it provides small

overhead of complexity and with no use of

temporary registers for storing different values with

low area and power reconfigurable architecture [4]

using 9/3 and 5/3 filters. For implementing 2D

DWT in multi-level with regular structure to

maximize hardware utilization efficiency [5] for

high throughput and low latency is implemented for

efficient memory based implementation. Based on

short critical path a lifting based DWT [6] is

implemented for efficient memory usage in scanning

method. Another convolution based implementation

for memory efficient generic structure [7] which

computes a three-level 2D DWT based on

Daubechies is implemented for high throughput rate

is implemented. Implementation of several

Received: January 16, 2019 149

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

architectures has their research on memory efficient,

with high throughput rate for different types of

techniques in which the need for low area and low

power [8] makes a demand for various applications.

In DWT architectures, design of the efficient

multiplier plays a crucial role for performing the

operation with approximated and faster output is

discussed in Booth multiplier [9,10]. Existing

multiplier (CSD) makes use of shift and adds

operation for fast computation but it consumes more

area and power due to which the need for hardware

requirements becomes more. The above mentioned

drawbacks are improved in this paper by designing a

16-bit fixed-width Booth multiplier which occupies

less area and low power. The reduction in area and

power are achieved in this paper by truncating the

partial product terms and necessary changes are

made in 2D DWT architecture for effective

implementation.

This paper is organized as follows. A detailed

description on previous related work is presented in

Section 2. Implementation of proposed Radix-8

Booth multiplier is explained and by taking an

example it is examined in Section 3. Improvements

done to 2D DWT architecture is shown in Section 4.

The synthesis results of existing and proposed

architectures are listed in Section 5 and conclusions

made from the work are detailed in Section 6.

2. Related work

C. Wu, W. Zhang and J. Liu [11] proposed a 2D

DWT architecture with multi-level without off-chip

RAM using the CSD representation for the

multiplier coefficients. The CSD makes use of shift

and add operation for the implementation of the

multiplier. In this 2D DWT structure the architecture

is implemented in three stages. First the pixel inputs

are stored in RAM input and feed to first stage 2D

DWT structure which gives four sub-bands, out of

which low-low band occupies large area so they are

fed back to next levels which is managed through

memory management unit and sort the four-bands. It

accomplishes one full adder delay as critical path. In

this paper it uses simple shift-add operations but this

implementation occupies more area and power and

the need for temporal RAM also arises.
 Y. K. Lai, L. F. Chen, Y.C. Shih [12]

implemented a memory efficient with high

performance architecture for 2D DWT lifting based

architecture using parallel scanning method. For

first level 2D DWT, 4N temporal memory is used to

store input data and to store coefficients 9/7 filter is

used. This architecture is flexible and the 2D DWT

architecture is made of two 1D-DWT with core

input and two output coefficients and achieves one

multiplier delay as the critical path. By

implementing parallel scanning method the internal

buffer size and cost of the hardware is small. The

problem arises in the latency delay and transposing

buffer size is not improved due which number of

stages gets increased.

B. K. Mohanty, A. Mahajan and P.K. Meher

[13] gave a data access method without utilizing

data transposition registers for the calculation of

lifting 2D DWT architecture which requires (4N

+8P) words for on-chip memory. The architecture is

modular and regular used for varying block sizes. It

gives a linear array directly from the data

dependence graph for parallel and pipeline

implementation of 1D DWT. This architecture needs

the same calculation resources as in high throughput

structures with 1.5N less memory. This structure is

proposed for block size of 4 and the drawback is that

it occupies more on-chip memory and has more

critical path.
A. Darji, S. Agrawal and A. Oza [14] proposed a

flipping method with basic control path for

implementing efficient modular architecture. The

sequential task of lifting data flow is streamlined

using parallel calculations with pipeline operation

without influencing the critical path. The structure is

folded to six multipliers and eight adders to reduce

data path. It is symmetrical high speed architecture

with low hardware complexity where it has low

memory storage requirement. It yields a throughput

of two outputs for each cycle with a critical path of

one multiplier delay. In this paper it requires more

registers for transposing unit and impacts in

hardware complexity.

W. Zhang, Z. Jiang, Z. Gao and Y. Liu [15]

proposed an architecture for efficient

implementation of lifting- based DWT with

small area and fast speed. For one multiplier

delay a reduction of four pipelining stages are

required. In this structure initially the pre-

processing unit takes care of converting serial-

parallel data and then sent to the column filter

for generating four sub-groups which is then fed

to transposing unit to satisfy the dataflow order

needed by row filter and then scaling is done.

This structure has one multiplier delay as

critical path having 4N temporal memory size.

The requirement of buffer size can be reduced

due to which it impacts the memory size.

B. K. Mohanty and A. Choubey [16]

implemented a design for 12-bit radix8 Booth

multiplier by evacuating an additional row with

Received: January 16, 2019 150

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

a little overhead complexity in the conventional

radix8 booth multiplier. An adder unit is

intended for optimizing the upper most 12 bits

for taking the output. The lower-most 12 bits

are truncated from the 24 bits with less

truncation error. When this multiplier is

implemented for the lifting 2D DWT

architecture with block based structure it offers

less area and power than radix-4 multiplier. In

this multiplier design the product terms are

generated due to which some more increase in

area is obtained which affects the performance.

Many of the 2D DWT architectures listed in

literature work are improved in terms of area,

power and critical path are discussed which

could be improved. To improve the architecture

design, a low area and power efficient

architecture with an efficient multiplier design

is implemented which could result in less area

for image processing applications.

3. Implementation of proposed Radix-8

Booth multiplier

Let us consider two k-bit signed numbers A and

B, where A is the multiplicand and B is the

multiplier which is to be multiplied using Booth

algorithm. A and B can be shown in 2’s complement

as:

𝐴 = −𝑎𝑘−12𝑘−1 + ∑ 𝑎𝑖2𝑖𝑘−2
𝑖=0 (1)

𝐵 = −𝑏𝑘−12𝑘−1 + ∑ 𝑏𝑖2𝑖𝑘−2
𝑖=0 (2)

Where𝑎𝑘−1, 𝑏𝑘−1 of A and B are sign extension bits

The booth algorithm distils the k-bit multiplier into

n= [k/3] groups of three bits. Starting from the right,

three bits have to be grouped and for 4th-bit an

overlapping bit is considered, where i th digit 𝑑𝑖 is

defined

𝑑𝑖 = { 𝑏3𝑖+2𝑏3𝑖+1𝑏3𝑖𝑏3𝑖−1 } (3)

Where 𝑏3𝑖−1 is the bit grouped for overlapping that

belongs to the (i-1)th digit 𝑑𝑖−1. The estimation of

𝑑𝑖 is acquired by the equation:

𝑑𝑖=−4𝑏3𝑖+2 + 2𝑏3𝑖+1 + 𝑏3𝑖 + 𝑏3𝑖−1 (4)

From the number set {-4, -3, -2, -1, 0, 1, 2, 3, 4} 𝑑𝑖

selects the decimal value and when A is multiplied

by 𝑑𝑖 it forms a product term (A.𝑑𝑖) which results in

obtaining necessary partial products of radix8 Booth

multiplier are {-4A, -3A, -2A, -A, 0, A, 2A, 3A,

4A}. The acquired partial product term {2A} is

obtained by shifting A to the left by one bit, {4A} is

done by left shifting A by two bits and {3A} is

achieved by summing A and 2A. To obtain negative

partial product terms {-4A, -3A, -2A, -A} we have to

take 2’s complement of respective positive partial

product values. The 2’s complement is done in two

steps: in the first step the 1’s complement of {4A, 3A,

2A, A} is obtained and in second step to obtain

negative terms, sign bit (𝑛𝑖) is added to

corresponding partial product term.

Radix-8 Booth algorithm has two parts: booth

encoder and booth selector. The Radix8 booth

encoder generates the partial product bits given in

Table 1. The booth selector chooses one value from

the partial product set {A, 2A, 3A, 4A} where the

product term is represented in normal or

complemented form. It uses control signals { 𝑤𝑖,
𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 } to choose partial product set and use

control bit (𝑛𝑖) to produce partial product term for

1’s complement form. The control signal of

respective bit becomes active:

𝑤𝑖 = 1 (becomes active) when partial product term

P = {A,-A};

𝑥𝑖 = 1 (becomes active) when partial product term P

= {2A,-2A};

𝑦𝑖 = 1 (becomes active) when partial product term P

= {3A,-3A};

𝑧𝑖 = 1 (becomes active) when partial product term P

= {4A,-4A};

Radix 8 Booth multiplier structure for 16-bit is

based on Partial Product Array (PPA) as shown in

Fig. 1. To obtain the correct multiplication, for sign

extension up to (2n-1) bit positions, the partial

product row is shifted to left by 3-bit positions with

respective to previous row to extend the sign.

Thereby, there introduces an adder unit complexity,

to compensate the problem introduce guard bits in

every partial product row. In each row of the PPA

the control bit (𝑛𝑖) is added at the starting of each

row to convert 1’s complement number to 2’s

complement number and by this size for an extra

row gets increased, so a carry bit (𝑒𝑖) is generated to

compensate the control bit.

Received: January 16, 2019 151

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

Table 1. Partial product values for radix8 booth encoder

q3

q2

q1

q0

 1 1

 1 1

 1 1

1

Figure. 1 Radix-8 16-bit partial product terms are shown in dot representation is the absorbed carry bit of the

recording factor; are the modified bits by compensating the extra row; q0-q3 are the sign extension bits on modifying

sign bit; a partial product term; 1 is the guard bit.

q3

q2

q1

q0

 1 1

 1 1

 1 1

1

Figure. 2 Proposed method for 16-bit Radix8 Booth multiplier partial product terms

𝑏3𝑖+2𝑏3𝑖+1𝑏3𝑖𝑏3𝑖−1 Operation 𝑤𝑖 𝑥𝑖 𝑦𝑖 𝑧𝑖 𝑛𝑖 𝑝𝑝𝑖𝑗

0000 0 0 0 0 0 0 0

0001 +A 1 0 0 0 0 𝑥𝑗

0010 +A 1 0 0 0 0 𝑥𝑗

0011 +2A 0 1 0 0 0 𝑥𝑗−1

0100 +2A 0 1 0 0 0 𝑥𝑗−1

0101 +3A 0 0 1 0 0 𝑥𝑗 + 𝑥𝑗−1

0110 +3A 0 0 1 0 0 𝑥𝑗 + 𝑥𝑗−1

0111 +4A 0 0 0 1 0 𝑥𝑗−2

1000 -4A 0 0 0 1 1 𝑥𝑗−2

1001 -3A 0 0 1 0 1 𝑥𝑗 + 𝑥𝑗−1

1010 -3A 0 0 1 0 1 𝑥𝑗 + 𝑥𝑗−1

1011 -2A 0 1 0 0 1 𝑥𝑗−1

1100 -2A 0 1 0 0 1 𝑥𝑗−1

1101 -A 1 0 0 0 1 𝑥𝑗

1110 -A 1 0 0 0 1 𝑥𝑗

1111 0 0 0 0 0 0 0

Received: January 16, 2019 152

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0

 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0

 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1

 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

 32 16 8 4 2 1

Figure. 3 Example showing the proposed multiplier for the coefficient (1/α = -0.630464)

The two LSB’s of each row are modified by

compensating the control bit and produce the carry

bit. The sign bits can be generated by the modifying

the sign extension bits where modified bit

expressions are shown below:

𝑚𝑖0 = 𝑝𝑖0 ^ 𝑛𝑖 (5)

𝑚𝑖1=𝑝𝑖1^ (𝑝𝑖0&𝑛𝑖) (6)

𝑒𝑖 = 𝑝𝑖,1𝑝𝑖,0𝑛𝑖 0 ≤ i ≤
𝑛

3
− 2 (7)

 q0 = 𝑝0,15 ^ 𝑟5 (8)

q3= 𝑝0,15𝑟5 (9)

q1, q2 = 𝑞3 (10)

We have extended the approach given in [5] for 16-

bit Radix-8 Booth multiplier and modified the PPA

by only generating the required partial products.

Generally in many VLSI applications the main aim

is to achieve low area and low power with high

performance which will impact the system level

functionality. In the proposed method only the

required product terms are generated and remaining

lower and higher part is truncated, so that the

number of generation terms gets reduced thus area

gets reduced. Upon truncating the number of partial

product terms and utilization of adder units gets

reduced, so that speed is improved. The truncation

used in this method is not uniform scaling because

in this method we try to reduce the generation which

are on the right side. By truncating the remaining

terms a truncation error of +/- 1% error is

introduced, which can be neglected for image

processing applications.

In proposed method when each sample is

multiplied with a constant, the multiplier two

operands are of 16-bit binary numbers and the

resultant output is of 32-bit number. In the proposed

method the truncation done to both higher and lower

order bits and we obtain a 16 bit number on

truncation as shown in Fig. 2. This truncation is

done on scaling coefficient value. Considering an

example using the coefficient used in 2D DWT

where (1/α) = -0.630464, the steps followed are

shown below:

Step 1: Determine the scaling range for the

coefficient.

Step 2: Determine the required partial product terms

that should be generated from the booth encoder.

Step 3: Partial product terms are added using the

carry save adder. The required scaling terms are to

be taken as the output.

Step 4: In the above example the output is taken

from 12th bit to 27th bit as shown in Fig. 2, the

shaded part represents the desired output.

An example is shown on how the proposed

multiplier is done is shown in Fig. 3 where X is the

multiplicand (X= -0.630464) and Y is the multiplier

(Y= 99). By proposed Booth multiplier the required

product terms are generated (i.e12th bit to 27th bit)

from the booth encoder. For the calculation of

output, the entire column of the respective bits are

added using the carry save adder. When multiplying

X with Y the obtained output is -62.415 and by

using proposed Booth multiplier the theoretically

obtained output is -62 which is shown in Fig. 3. The

truncation done for various coefficients used for 2D

DWT is not uniform scaling because we try to scale

the product terms generation part, so that in the

booth encoder the number of partial products gets

reduced as shown in Fig. 2. The various coefficients

used in 2D DWT architecture their value, precision

value; decimal and binary values are listed in Table

2. The below table shows how the scaling should be

done for various coefficients. By using truncation

technique the need for number of adder units,

generation of partial terms gets reduced and ease of

taking the output from the precision bit is easy.

Received: January 16, 2019 153

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

Table 2. Precision values of DWT coefficients

Coefficient Value Precision
Decimal Value

(X2-precision)
Binary Value

(1/α) -0.630464 12-bit -2582 1111010111101010

(1/αβ) 11.900004 9-bit 6093 0001011111001100

((1/δγ)+1) 3.553775 11-bit 7278 0001110001101110

(1/βγ) -21.37815 8-bit -5473 111010101010000

((1/αβ)+1) 12.900004 9-bit 6605 0001100111001100

Figure. 4 Column filter

Figure. 5 Row filter

4. Proposed 2D DWT architecture

Normally in the existing architecture [11] the 1D

DWT architecture consumes 12 clock cycles and the

proposed architecture consumes 8 clock cycles for

the operation by removing the extra 4 registers. By

reducing the number of registers speed is increased

and thus enhances the performance.

In the proposed 2D DWT architecture it consists

of column filter, transposing unit and row filter. The

column filters are of three inputs whereas row filter

is two-input structure generating four sub-bands

having two outputs each with reduced number of

storage elements. Due to reduction of number of

clock cycles for the proposed method the buffer size

for memory is reduced and the image storage

capability is increased. The optimized 1D column

and row filter is shown in Figs. 4 and 5. When

compared the proposed architecture with the lifting

scheme [1] it occupies less number of clock cycles,

so that speed is improved.

The total number of hardware components used

in the 2D DWT is shown in Table 3. Below table

comprises of the total number of registers,

XOR/XNOR, AND/OR/NOR/NAND gates and

latency required for the implementation of the

2DDWT architecture for CSD implementation,

Booth multiplier [16] and proposed architecture.

The CSD implementation consumes more number of

registers and the proposed architecture requires less

number of registers. This makes the advantage of

acquiring less area for applying in various image

processing applications. In CSD implementation the

storage element (D flip flop) takes two cycles for the

execution of the operation and to compensate the

effect extra two registers are added in column filter

using CSD implementation. But in proposed

architecture for multipliers there is no need of

registers so it will get executed with less number of

clock cycles than CSD. The proposed 2D DWT

architecture occupies less area by reducing a total of

eight registers than in CSD implementation, by

Received: January 16, 2019 154

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

Table 3. Hardware requirement for 2D DWT architecture

Method Column filter Row filter
XOR/

XNOR

AND/OR/

NOR/NAND
REG LATENCY

XOR/

XNOR

AND/OR/

NOR/NAND
REG LATENCY

CSD 768 1920 35 12 768 1920 35 12

[16] 1164 2536 17 8 1164 2536 16 8

Proposed 802 1949 17 8 802 1949 16 8

Table 4. Synthesis results of 2D DWT architecture

Method
Delay

(ns)

Area

(um2)
Power (mW) ADP

EADP

(%)
PDP EPDP (%)

CSD 1.522 42219.1 1.78 64257.5 29.0194 2.713187 26.12955

[16] 1.862 34297.4 1.56 63861.8 28.2248 2.903482 34.97588

Proposed 1.580 31521.9 1.36 49804.5 -- 2.151112 --

Figure. 6 Area comparisons of different methods

Figure. 7 Power comparisons of different methods

which the proposed architecture gains better

performance. When comparing the latency of CSD

and booth multiplier it occupies extra 2 clock cycles

than the proposed multiplier.

5. Results

Design of the proposed work is done using

Verilog HDL and the synthesis results are done in

Cadence Genus of 90nm technology. The ASIC

implementation results of proposed Radix8 Booth

multiplier, CSD multiplier and Booth multiplier [16]

are shown in Table 4 which shows parameters like

delay, area and power. The ADP of the CSD

architecture is 29.018% excess ADP (EADP) and

for booth multiplier it is 28.22% EADP than

proposed Booth multiplier and the PDP of the CSD

architecture is 26.12% excess PDP (EPDP) and in

booth multiplier it is 34.97% EPDP than proposed

architecture are computed and it shows how much

better performances does the proposed method gives

than the existed method relating to area and power.

The delay is not improved in proposed architecture

than [11] because the critical path is considered

from the truncated part. The throughput for the 2D

DWT architecture in CSD based implementation has

extra four cycles than the proposed architecture.

Table 4 shows in the proposed method the area

and power is reduced when compared to [1,5]

because all the partial product terms are not

generated, only the required terms are generated so

that area gets reduced. Figs. 6 and 7 show the graph

for the different methods comparison based on area

and power. These results are helpful for fast speed

implementations and capable for picture handling

applications. The simulation result for the proposed

multiplier with (X=-0.630464, Y=99) is -63 when

compared with the theoretical output has an error

rate up to +/- 1%.

6. Conclusions

In this work, a 16-bit Radix-8 Booth multiplier

is implemented and applied it to the 2D DWT

architecture. The proposed architecture is compared

with the CSD and observed that the area and power

42219.125

34297.409
31521.857

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

CSD Mohanthy Proposed

A
re

a
 (

S
q

.m
)

Methods

1.78

1.56

1.36

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

CSD Mohanthy Proposed

P
o

w
er

 (
m

W
)

Methods

Received: January 16, 2019 155

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.16

is reduced. Improvements in the architecture are

done to occupy less number of clock duration cycles

and to get a detailed output with no distraction of the

value is done. On performing synthesis, the

proposed method consumes less area and power,

thus saving of 29.01% EADP and 26.12% EPDP for

existing CSD based architecture and 22.25% EADP

and 34.97% EPDP for existing booth multiplier is

achieved with an error rate of +/-1%. This one level

2D-DWT architecture can be extended to multi-level

2D DWT as the future work to improve the design.

References

[1] C. T. Huang, P. C. Tseng, and L. G. Chen,

“Flipping Structure: an efficient VLSI

architecture for lifting-based discrete wavelet

transform”, IEEE Tran. on Signal Processing,

Vol.52, No.4, pp.1080-1089, 2004.

[2] Y.K. Lai, L.F. Chen, and Y.C. Shih, “A high-

performance and memory-efficient VLSI

architecture with parallel scanning method for

2-D lifting-based discrete wavelet transform”,

IEEE Trans. Consum. Electron., Vol.55, No.2,

pp.400-407, 2009.

[3] A. Darji, R. Arun, S. N. Merchant, and A.

Chandorkar, “Multiplier-less pipeline

architecture for lifting-based two-dimensional

discrete wavelet transform”, IET Computers &

Digital Techniques, Vol.9, No.2, pp.113-123,

2014.

[4] P. K. Meher, B. K. Mohanty, and M. N. S.

Swamy, “Low-Area and Low-Power

Reconfigurable Architecture for Convolution-

Based 1-D DWT Using 9/7 and 5/3 Filters”, In:

Proc. of Int. Conf. VLSI Design, pp.327-332,

2015.

[5] B. K. Mohanty and P.K. Meher, “Memory-

efficient modular VLSI architecture for high-

throughput and low-latency implementation of

multilevel lifting 2-D DWT”, IEEE Trans.

Signal Process., Vol.59, No.5, pp.2072-2084,

2011.

[6] Y. Hu and C.C. Jong, “A memory-efficient

scalable architecture for lifting-based discrete

wavelet transform”, IEEE Trans. Circuit Syst.

II Express Brief, Vol. 60, No. 8, pp. 502-506,

2013.

[7] B. K. Mohanty and P. K. Meher, “Memory

efficient high speed convolution based generic

structure for multilevel 2D DWT”, IEEE Trans.

Circuits Syst. Video Technol., Vol.23, No. 2, pp.

353-363, 2013

[8] B.K. Mohanty and P.K. Meher, “Area-delay-

power-efficient architecture for folded two-

dimensional discrete wavelet transform by

multiple lifting computation”, IET Image

Process, Vol.8, No.6, pp.345-353, 2014.

[9] S. Kuang, J. Wang, and C. Guo, “Modified

Booth multiplier with a regular partial product

array”, IEEE Trans. Circuits Syst. II, Vol.56,

No.5, pp.404-408, 2009.

[10] H. Jiang, J. Han, F. Qiao, and F. Lombardi,

“Approximate radix-8 Booth multipliers for

low-power and high-performance operation”,

IEEE Trans. Comput., Vol.65, No.8, pp.2638-

2644, 2016.

[11] C. Wu, W. Zhang, and J. Liu, “Hardware

efficient multiplier-less multi-level 2D DWT

architecture without off-chip RAM”, IET Image

Processing, Vol.11, pp. 362-369, 2017.

[12] Y. K. Lai, L. F. Chen, and Y.C. Shih, “A high-

performance and memory-efficient VLSI

architecture with parallel scanning method for

2-D lifting-based discrete wavelet transform”,

IEEE Trans. Consum. Electron., Vol. 55, No. 2,

pp. 400-407, 2009.

[13] B. K. Mohanty, A. Mahajan, and P.K. Meher,

“Area and power-efficient architecture for high-

throughput implementation of lifting 2-D

DWT”, IEEE Trans. Circuits Syst. II Express

Briefs, Vol. 59, No. 7, pp.434-438, 2012.

[14] A. Darji, S. Agrawal, and A. Oza, “Dual-scan

parallel flipping architecture for a lifting-based

2-D discrete wavelet transform”, IEEE Trans.

Circuit Syst. II Express Brief, Vol.61, No.6,

pp.433-437, 2014.

[15] W. Zhang, Z. Jiang, Z. Gao, and Y. Liu, “An

efficient VLSI architecture for lifting-based

discrete wavelet transform”, IEEE

Trans.Circuits Syst. II Express Briefs, Vol.59,

No.3, pp.158-162, 2012.

[16] B. K. Mohanty and A. Choubey, “Efficient

design for radix-8 booth multiplier and its

application in lifting 2-D DWT”, Circuits Syst.

Signal Process., Vol.36, No.3, pp.1129–1149,

2017.

